/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf_helper.cpp * Definition of ekf helper functions. * * @author Roman Bast * */ #include "ekf.h" #include #include #include void Ekf::resetVelocity() { if (_control_status.flags.gps && isTimedOut(_last_gps_fail_us, (uint64_t)_min_gps_health_time_us)) { // this reset is only called if we have new gps data at the fusion time horizon resetVelocityToGps(); } else if (_control_status.flags.opt_flow) { resetHorizontalVelocityToOpticalFlow(); } else if (_control_status.flags.ev_vel) { resetVelocityToVision(); } else { resetHorizontalVelocityToZero(); } } void Ekf::resetVelocityToGps() { ECL_INFO_TIMESTAMPED("reset velocity to GPS"); resetVelocityTo(_gps_sample_delayed.vel); P.uncorrelateCovarianceSetVariance<3>(4, sq(_gps_sample_delayed.sacc)); } void Ekf::resetHorizontalVelocityToOpticalFlow() { ECL_INFO_TIMESTAMPED("reset velocity to flow"); // constrain height above ground to be above minimum possible const float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance); // calculate absolute distance from focal point to centre of frame assuming a flat earth const float range = heightAboveGndEst / _range_sensor.getCosTilt(); if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) { // we should have reliable OF measurements so // calculate X and Y body relative velocities from OF measurements Vector3f vel_optflow_body; vel_optflow_body(0) = - range * _flow_compensated_XY_rad(1) / _flow_sample_delayed.dt; vel_optflow_body(1) = range * _flow_compensated_XY_rad(0) / _flow_sample_delayed.dt; vel_optflow_body(2) = 0.0f; // rotate from body to earth frame const Vector3f vel_optflow_earth = _R_to_earth * vel_optflow_body; resetHorizontalVelocityTo(Vector2f(vel_optflow_earth)); } else { resetHorizontalVelocityTo(Vector2f{0.f, 0.f}); } // reset the horizontal velocity variance using the optical flow noise variance P.uncorrelateCovarianceSetVariance<2>(4, sq(range) * calcOptFlowMeasVar()); } void Ekf::resetVelocityToVision() { ECL_INFO_TIMESTAMPED("reset to vision velocity"); Vector3f _ev_vel = _ev_sample_delayed.vel; if(_params.fusion_mode & MASK_ROTATE_EV){ _ev_vel = _R_ev_to_ekf *_ev_sample_delayed.vel; } resetVelocityTo(getVisionVelocityInEkfFrame()); P.uncorrelateCovarianceSetVariance<3>(4, getVisionVelocityVarianceInEkfFrame()); } void Ekf::resetHorizontalVelocityToZero() { ECL_INFO_TIMESTAMPED("reset velocity to zero"); // Used when falling back to non-aiding mode of operation resetHorizontalVelocityTo(Vector2f{0.f, 0.f}); P.uncorrelateCovarianceSetVariance<2>(4, 25.0f); } void Ekf::resetVelocityTo(const Vector3f &new_vel) { resetHorizontalVelocityTo(Vector2f(new_vel)); resetVerticalVelocityTo(new_vel(2)); } void Ekf::resetHorizontalVelocityTo(const Vector2f &new_horz_vel) { const Vector2f delta_horz_vel = new_horz_vel - Vector2f(_state.vel); _state.vel.xy() = new_horz_vel; for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { _output_buffer[index].vel.xy() += delta_horz_vel; } _output_new.vel.xy() += delta_horz_vel; _state_reset_status.velNE_change = delta_horz_vel; _state_reset_status.velNE_counter++; } void Ekf::resetVerticalVelocityTo(float new_vert_vel) { const float delta_vert_vel = new_vert_vel - _state.vel(2); _state.vel(2) = new_vert_vel; for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { _output_buffer[index].vel(2) += delta_vert_vel; _output_vert_buffer[index].vert_vel += delta_vert_vel; } _output_new.vel(2) += delta_vert_vel; _output_vert_delayed.vert_vel = new_vert_vel; _output_vert_new.vert_vel += delta_vert_vel; _state_reset_status.velD_change = delta_vert_vel; _state_reset_status.velD_counter++; } void Ekf::resetHorizontalPosition() { // let the next odometry update know that the previous value of states cannot be used to calculate the change in position _hpos_prev_available = false; if (_control_status.flags.gps) { // this reset is only called if we have new gps data at the fusion time horizon resetHorizontalPositionToGps(); } else if (_control_status.flags.ev_pos) { // this reset is only called if we have new ev data at the fusion time horizon resetHorizontalPositionToVision(); } else if (_control_status.flags.opt_flow) { ECL_INFO_TIMESTAMPED("reset position to last known position"); if (!_control_status.flags.in_air) { // we are likely starting OF for the first time so reset the horizontal position resetHorizontalPositionTo(Vector2f(0.f, 0.f)); } else { resetHorizontalPositionTo(_last_known_posNE); } // estimate is relative to initial position in this mode, so we start with zero error. P.uncorrelateCovarianceSetVariance<2>(7, 0.0f); } else { ECL_INFO_TIMESTAMPED("reset position to last known position"); // Used when falling back to non-aiding mode of operation resetHorizontalPositionTo(_last_known_posNE); P.uncorrelateCovarianceSetVariance<2>(7, sq(_params.pos_noaid_noise)); } } void Ekf::resetHorizontalPositionToGps() { ECL_INFO_TIMESTAMPED("reset position to GPS"); resetHorizontalPositionTo(_gps_sample_delayed.pos); P.uncorrelateCovarianceSetVariance<2>(7, sq(_gps_sample_delayed.hacc)); } void Ekf::resetHorizontalPositionToVision() { ECL_INFO_TIMESTAMPED("reset position to ev position"); Vector3f _ev_pos = _ev_sample_delayed.pos; if(_params.fusion_mode & MASK_ROTATE_EV){ _ev_pos = _R_ev_to_ekf *_ev_sample_delayed.pos; } resetHorizontalPositionTo(Vector2f(_ev_pos)); P.uncorrelateCovarianceSetVariance<2>(7, _ev_sample_delayed.posVar.slice<2, 1>(0, 0)); } void Ekf::resetHorizontalPositionTo(const Vector2f &new_horz_pos) { const Vector2f delta_horz_pos = new_horz_pos - Vector2f(_state.pos); _state.pos.xy() = new_horz_pos; for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { _output_buffer[index].pos.xy() += delta_horz_pos; } _output_new.pos.xy() += delta_horz_pos; _state_reset_status.posNE_change = delta_horz_pos; _state_reset_status.posNE_counter++; } // Reset height state using the last height measurement void Ekf::resetHeight() { // Get the most recent GPS data const gpsSample &gps_newest = _gps_buffer.get_newest(); // store the current vertical position and velocity for reference so we can calculate and publish the reset amount const float old_vert_pos = _state.pos(2); bool vert_pos_reset = false; // reset the vertical position if (_control_status.flags.rng_hgt) { const float new_pos_down = _hgt_sensor_offset - _range_sensor.getDistBottom(); // update the state and associated variance _state.pos(2) = new_pos_down; // the state variance is the same as the observation P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.range_noise)); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup const baroSample &baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else if (_control_status.flags.baro_hgt) { // initialize vertical position with newest baro measurement const baroSample &baro_newest = _baro_buffer.get_newest(); if (!_baro_hgt_faulty) { _state.pos(2) = -baro_newest.hgt + _baro_hgt_offset; // the state variance is the same as the observation P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.baro_noise)); vert_pos_reset = true; } else { // TODO: reset to last known baro based estimate } } else if (_control_status.flags.gps_hgt) { // initialize vertical position and velocity with newest gps measurement if (!_gps_hgt_intermittent) { _state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref; // the state variance is the same as the observation P.uncorrelateCovarianceSetVariance<1>(9, sq(gps_newest.hacc)); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup const baroSample &baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else { // TODO: reset to last known gps based estimate } } else if (_control_status.flags.ev_hgt) { // initialize vertical position with newest measurement const extVisionSample &ev_newest = _ext_vision_buffer.get_newest(); // use the most recent data if it's time offset from the fusion time horizon is smaller const int32_t dt_newest = ev_newest.time_us - _imu_sample_delayed.time_us; const int32_t dt_delayed = _ev_sample_delayed.time_us - _imu_sample_delayed.time_us; vert_pos_reset = true; if (std::abs(dt_newest) < std::abs(dt_delayed)) { _state.pos(2) = ev_newest.pos(2); } else { _state.pos(2) = _ev_sample_delayed.pos(2); } } // reset the vertical velocity state if (_control_status.flags.gps && !_gps_hgt_intermittent) { // If we are using GPS, then use it to reset the vertical velocity resetVerticalVelocityTo(gps_newest.vel(2)); // the state variance is the same as the observation P.uncorrelateCovarianceSetVariance<1>(6, sq(1.5f * gps_newest.sacc)); } else { // we don't know what the vertical velocity is, so set it to zero resetVerticalVelocityTo(0.0f); // Set the variance to a value large enough to allow the state to converge quickly // that does not destabilise the filter P.uncorrelateCovarianceSetVariance<1>(6, 10.0f); } // store the reset amount and time to be published if (vert_pos_reset) { _state_reset_status.posD_change = _state.pos(2) - old_vert_pos; _state_reset_status.posD_counter++; } // apply the change in height / height rate to our newest height / height rate estimate // which have already been taken out from the output buffer if (vert_pos_reset) { _output_new.pos(2) += _state_reset_status.posD_change; } // add the reset amount to the output observer buffered data for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { if (vert_pos_reset) { _output_buffer[i].pos(2) += _state_reset_status.posD_change; _output_vert_buffer[i].vert_vel_integ += _state_reset_status.posD_change; } } // add the reset amount to the output observer vertical position state if (vert_pos_reset) { _output_vert_delayed.vert_vel_integ = _state.pos(2); _output_vert_new.vert_vel_integ = _state.pos(2); } } // align output filter states to match EKF states at the fusion time horizon void Ekf::alignOutputFilter() { // calculate the quaternion rotation delta from the EKF to output observer states at the EKF fusion time horizon Quatf q_delta = _state.quat_nominal * _output_sample_delayed.quat_nominal.inversed(); q_delta.normalize(); // calculate the velocity and position deltas between the output and EKF at the EKF fusion time horizon const Vector3f vel_delta = _state.vel - _output_sample_delayed.vel; const Vector3f pos_delta = _state.pos - _output_sample_delayed.pos; // loop through the output filter state history and add the deltas for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { _output_buffer[i].quat_nominal = q_delta * _output_buffer[i].quat_nominal; _output_buffer[i].quat_nominal.normalize(); _output_buffer[i].vel += vel_delta; _output_buffer[i].pos += pos_delta; } _output_new.quat_nominal = q_delta * _output_new.quat_nominal; _output_new.quat_nominal.normalize(); _output_sample_delayed.quat_nominal = q_delta * _output_sample_delayed.quat_nominal; _output_sample_delayed.quat_nominal.normalize(); } // Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS. // It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only. bool Ekf::realignYawGPS() { const float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1))); // Need at least 5 m/s of GPS horizontal speed and // ratio of velocity error to velocity < 0.15 for a reliable alignment const bool gps_yaw_alignment_possible = (gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed)); if (!gps_yaw_alignment_possible) { // attempt a normal alignment using the magnetometer return resetMagHeading(_mag_lpf.getState()); } // check for excessive horizontal GPS velocity innovations const bool badVelInnov = (_gps_vel_test_ratio(0) > 1.0f) && _control_status.flags.gps; // calculate GPS course over ground angle const float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0)); // calculate course yaw angle const float ekfCOG = atan2f(_state.vel(1), _state.vel(0)); // Check the EKF and GPS course over ground for consistency const float courseYawError = wrap_pi(gpsCOG - ekfCOG); // If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad const bool badYawErr = fabsf(courseYawError) > 0.5f; const bool badMagYaw = (badYawErr && badVelInnov); if (badMagYaw) { _num_bad_flight_yaw_events ++; } // correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned if (badMagYaw || !_control_status.flags.yaw_align) { ECL_WARN_TIMESTAMPED("bad yaw, using GPS course"); // declare the magnetometer as failed if a bad yaw has occurred more than once if (_control_status.flags.mag_aligned_in_flight && (_num_bad_flight_yaw_events >= 2) && !_control_status.flags.mag_fault) { ECL_WARN_TIMESTAMPED("stopping mag use"); _control_status.flags.mag_fault = true; } // calculate new yaw estimate float yaw_new; if (!_control_status.flags.mag_aligned_in_flight) { // This is our first flight alignment so we can assume that the recent change in velocity has occurred due to a // forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error const Eulerf euler321(_state.quat_nominal); yaw_new = euler321(2) + courseYawError; _control_status.flags.mag_aligned_in_flight = true; } else if (_control_status.flags.wind) { // we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is // aligned with the wind relative GPS velocity vector yaw_new = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)), (_gps_sample_delayed.vel(0) - _state.wind_vel(0))); } else { // we don't have wind estimates, so align yaw to the GPS velocity vector yaw_new = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0)); } // use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment const float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P(4,4) + P(5,5); const float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f); const float yaw_variance_new = sq(asinf(sineYawError)); // Apply updated yaw and yaw variance to states and covariances resetQuatStateYaw(yaw_new, yaw_variance_new, true); // Use the last magnetometer measurements to reset the field states _state.mag_B.zero(); _R_to_earth = Dcmf(_state.quat_nominal); _state.mag_I = _R_to_earth * _mag_sample_delayed.mag; resetMagCov(); // record the start time for the magnetic field alignment _flt_mag_align_start_time = _imu_sample_delayed.time_us; // If heading was bad, then we also need to reset the velocity and position states _velpos_reset_request = badMagYaw; return true; } else { // align mag states only // calculate initial earth magnetic field states _state.mag_I = _R_to_earth * _mag_sample_delayed.mag; resetMagCov(); // record the start time for the magnetic field alignment _flt_mag_align_start_time = _imu_sample_delayed.time_us; return true; } } // Reset heading and magnetic field states bool Ekf::resetMagHeading(const Vector3f &mag_init, bool increase_yaw_var, bool update_buffer) { // prevent a reset being performed more than once on the same frame if (_imu_sample_delayed.time_us == _flt_mag_align_start_time) { return true; } if (_params.mag_fusion_type >= MAG_FUSE_TYPE_NONE) { stopMagFusion(); return false; } // calculate the observed yaw angle and yaw variance float yaw_new; float yaw_new_variance = 0.0f; if (_control_status.flags.ev_yaw) { // convert the observed quaternion to a rotation matrix const Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame // calculate the yaw angle for a 312 sequence yaw_new = atan2f(R_to_earth_ev(1, 0), R_to_earth_ev(0, 0)); if (increase_yaw_var) { yaw_new_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f)); } } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) { // rotate the magnetometer measurements into earth frame using a zero yaw angle Dcmf R_to_earth; if (fabsf(_R_to_earth(2, 0)) < fabsf(_R_to_earth(2, 1))) { // rolled more than pitched so use 321 rotation order Eulerf euler321(_state.quat_nominal); euler321(2) = 0.0f; R_to_earth = Dcmf(euler321); } else { // pitched more than rolled so use 312 rotation order const Vector3f rotVec312(0.0f, // yaw asinf(_R_to_earth(2, 1)), // roll atan2f(-_R_to_earth(2, 0), _R_to_earth(2, 2))); // pitch R_to_earth = taitBryan312ToRotMat(rotVec312); } // the angle of the projection onto the horizontal gives the yaw angle const Vector3f mag_earth_pred = R_to_earth * mag_init; yaw_new = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination(); if (increase_yaw_var) { yaw_new_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); } } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR && _is_yaw_fusion_inhibited) { // we are operating temporarily without knowing the earth frame yaw angle return true; } else { // there is no yaw observation return false; } // update quaternion states and corresponding covarainces resetQuatStateYaw(yaw_new, yaw_new_variance, update_buffer); // set the earth magnetic field states using the updated rotation _state.mag_I = _R_to_earth * mag_init; resetMagCov(); // record the time for the magnetic field alignment event _flt_mag_align_start_time = _imu_sample_delayed.time_us; return true; } // Return the magnetic declination in radians to be used by the alignment and fusion processing float Ekf::getMagDeclination() { // set source of magnetic declination for internal use if (_control_status.flags.mag_aligned_in_flight) { // Use value consistent with earth field state return atan2f(_state.mag_I(1), _state.mag_I(0)); } else if (_params.mag_declination_source & MASK_USE_GEO_DECL) { // use parameter value until GPS is available, then use value returned by geo library if (_NED_origin_initialised) { return _mag_declination_gps; } else { return math::radians(_params.mag_declination_deg); } } else { // always use the parameter value return math::radians(_params.mag_declination_deg); } } void Ekf::constrainStates() { _state.quat_nominal = matrix::constrain(_state.quat_nominal, -1.0f, 1.0f); _state.vel = matrix::constrain(_state.vel, -1000.0f, 1000.0f); _state.pos = matrix::constrain(_state.pos, -1.e6f, 1.e6f); const float delta_ang_bias_limit = math::radians(20.f) * _dt_ekf_avg; _state.delta_ang_bias = matrix::constrain(_state.delta_ang_bias, -delta_ang_bias_limit, delta_ang_bias_limit); const float delta_vel_bias_limit = _params.acc_bias_lim * _dt_ekf_avg; _state.delta_vel_bias = matrix::constrain(_state.delta_vel_bias, -delta_vel_bias_limit, delta_vel_bias_limit); _state.mag_I = matrix::constrain(_state.mag_I, -1.0f, 1.0f); _state.mag_B = matrix::constrain(_state.mag_B, -0.5f, 0.5f); _state.wind_vel = matrix::constrain(_state.wind_vel, -100.0f, 100.0f); } float Ekf::compensateBaroForDynamicPressure(const float baro_alt_uncompensated) { // calculate static pressure error = Pmeas - Ptruth // model position error sensitivity as a body fixed ellipse with a different scale in the positive and // negative X and Y directions. Used to correct baro data for positional errors const matrix::Dcmf R_to_body(_output_new.quat_nominal.inversed()); // Calculate airspeed in body frame const Vector3f velocity_earth = _output_new.vel - _vel_imu_rel_body_ned; const Vector3f wind_velocity_earth(_state.wind_vel(0), _state.wind_vel(1), 0.0f); const Vector3f airspeed_earth = velocity_earth - wind_velocity_earth; const Vector3f airspeed_body = R_to_body * airspeed_earth; const Vector3f K_pstatic_coef(airspeed_body(0) >= 0.0f ? _params.static_pressure_coef_xp : _params.static_pressure_coef_xn, airspeed_body(1) >= 0.0f ? _params.static_pressure_coef_yp : _params.static_pressure_coef_yn, _params.static_pressure_coef_z); const Vector3f airspeed_squared = matrix::min(airspeed_body.emult(airspeed_body), sq(_params.max_correction_airspeed)); const float pstatic_err = 0.5f * _air_density * (airspeed_squared.dot(K_pstatic_coef)); // correct baro measurement using pressure error estimate and assuming sea level gravity return baro_alt_uncompensated + pstatic_err / (_air_density * CONSTANTS_ONE_G); } // calculate the earth rotation vector Vector3f Ekf::calcEarthRateNED(float lat_rad) const { return Vector3f(CONSTANTS_EARTH_SPIN_RATE * cosf(lat_rad), 0.0f, -CONSTANTS_EARTH_SPIN_RATE * sinf(lat_rad)); } void Ekf::getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const { hvel[0] = _gps_vel_innov(0); hvel[1] = _gps_vel_innov(1); vvel = _gps_vel_innov(2); hpos[0] = _gps_pos_innov(0); hpos[1] = _gps_pos_innov(1); vpos = _gps_pos_innov(2); } void Ekf::getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const { hvel[0] = _gps_vel_innov_var(0); hvel[1] = _gps_vel_innov_var(1); vvel = _gps_vel_innov_var(2); hpos[0] = _gps_pos_innov_var(0); hpos[1] = _gps_pos_innov_var(1); vpos = _gps_pos_innov_var(2); } void Ekf::getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const { hvel = _gps_vel_test_ratio(0); vvel = _gps_vel_test_ratio(1); hpos = _gps_pos_test_ratio(0); vpos = _gps_pos_test_ratio(1); } void Ekf::getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const { hvel[0] = _ev_vel_innov(0); hvel[1] = _ev_vel_innov(1); vvel = _ev_vel_innov(2); hpos[0] = _ev_pos_innov(0); hpos[1] = _ev_pos_innov(1); vpos = _ev_pos_innov(2); } void Ekf::getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const { hvel[0] = _ev_vel_innov_var(0); hvel[1] = _ev_vel_innov_var(1); vvel = _ev_vel_innov_var(2); hpos[0] = _ev_pos_innov_var(0); hpos[1] = _ev_pos_innov_var(1); vpos = _ev_pos_innov_var(2); } void Ekf::getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const { hvel = _ev_vel_test_ratio(0); vvel = _ev_vel_test_ratio(1); hpos = _ev_pos_test_ratio(0); vpos = _ev_pos_test_ratio(1); } void Ekf::getBaroHgtInnov(float &baro_hgt_innov) const { baro_hgt_innov = _baro_hgt_innov(2); } void Ekf::getBaroHgtInnovVar(float &baro_hgt_innov_var) const { baro_hgt_innov_var = _baro_hgt_innov_var(2); } void Ekf::getBaroHgtInnovRatio(float &baro_hgt_innov_ratio) const { baro_hgt_innov_ratio = _baro_hgt_test_ratio(1); } void Ekf::getRngHgtInnov(float &rng_hgt_innov) const { rng_hgt_innov = _rng_hgt_innov(2); } void Ekf::getRngHgtInnovVar(float &rng_hgt_innov_var) const { rng_hgt_innov_var = _rng_hgt_innov_var(2); } void Ekf::getRngHgtInnovRatio(float &rng_hgt_innov_ratio) const { rng_hgt_innov_ratio = _rng_hgt_test_ratio(1); } void Ekf::getAuxVelInnov(float aux_vel_innov[2]) const { aux_vel_innov[0] = _aux_vel_innov(0); aux_vel_innov[1] = _aux_vel_innov(1); } void Ekf::getAuxVelInnovVar(float aux_vel_innov_var[2]) const { aux_vel_innov_var[0] = _aux_vel_innov_var(0); aux_vel_innov_var[1] = _aux_vel_innov_var(1); } void Ekf::getAuxVelInnovRatio(float &aux_vel_innov_ratio) const { aux_vel_innov_ratio = _aux_vel_test_ratio(0); } void Ekf::getFlowInnov(float flow_innov[2]) const { _flow_innov.copyTo(flow_innov); } void Ekf::getFlowInnovVar(float flow_innov_var[2]) const { _flow_innov_var.copyTo(flow_innov_var); } void Ekf::getFlowInnovRatio(float &flow_innov_ratio) const { flow_innov_ratio = _optflow_test_ratio; } void Ekf::getHeadingInnov(float &heading_innov) const { heading_innov = _heading_innov; } void Ekf::getHeadingInnovVar(float &heading_innov_var) const { heading_innov_var = _heading_innov_var; } void Ekf::getHeadingInnovRatio(float &heading_innov_ratio) const { heading_innov_ratio = _yaw_test_ratio; } void Ekf::getMagInnov(float mag_innov[3]) const { _mag_innov.copyTo(mag_innov); } void Ekf::getMagInnovVar(float mag_innov_var[3]) const { _mag_innov_var.copyTo(mag_innov_var); } void Ekf::getMagInnovRatio(float &mag_innov_ratio) const { mag_innov_ratio = _mag_test_ratio.max(); } void Ekf::getDragInnov(float drag_innov[2]) const { _drag_innov.copyTo(drag_innov); } void Ekf::getDragInnovVar(float drag_innov_var[2]) const { _drag_innov_var.copyTo(drag_innov_var); } void Ekf::getDragInnovRatio(float drag_innov_ratio[2]) const { _drag_test_ratio.copyTo(drag_innov_ratio); } void Ekf::getAirspeedInnov(float &airspeed_innov) const { airspeed_innov = _airspeed_innov; } void Ekf::getAirspeedInnovVar(float &airspeed_innov_var) const { airspeed_innov_var = _airspeed_innov_var; } void Ekf::getAirspeedInnovRatio(float &airspeed_innov_ratio) const { airspeed_innov_ratio = _tas_test_ratio; } void Ekf::getBetaInnov(float &beta_innov) const { beta_innov = _beta_innov; } void Ekf::getBetaInnovVar(float &beta_innov_var) const { beta_innov_var = _beta_innov_var; } void Ekf::getBetaInnovRatio(float &beta_innov_ratio) const { beta_innov_ratio = _beta_test_ratio; } void Ekf::getHaglInnov(float &hagl_innov) const { hagl_innov = _hagl_innov; } void Ekf::getHaglInnovVar(float &hagl_innov_var) const { hagl_innov_var = _hagl_innov_var; } void Ekf::getHaglInnovRatio(float &hagl_innov_ratio) const { hagl_innov_ratio = _hagl_test_ratio; } // get GPS check status void Ekf::get_gps_check_status(uint16_t *val) { *val = _gps_check_fail_status.value; } // get the state vector at the delayed time horizon matrix::Vector Ekf::getStateAtFusionHorizonAsVector() const { matrix::Vector state; state.slice<4, 1>(0, 0) = _state.quat_nominal; state.slice<3, 1>(4, 0) = _state.vel; state.slice<3, 1>(7, 0) = _state.pos; state.slice<3, 1>(10, 0) = _state.delta_ang_bias; state.slice<3, 1>(13, 0) = _state.delta_vel_bias; state.slice<3, 1>(16, 0) = _state.mag_I; state.slice<3, 1>(19, 0) = _state.mag_B; state.slice<2, 1>(22, 0) = _state.wind_vel; return state; } Vector3f Ekf::getAccelBias() const { return _state.delta_vel_bias / _dt_ekf_avg; } Vector3f Ekf::getGyroBias() const { return _state.delta_ang_bias / _dt_ekf_avg; } // get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set // return true if the origin is valid bool Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) { memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t)); memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s)); memcpy(origin_alt, &_gps_alt_ref, sizeof(float)); return _NED_origin_initialised; } // return a vector containing the output predictor angular, velocity and position tracking // error magnitudes (rad), (m/s), (m) Vector3f Ekf::getOutputTrackingError() const { return _output_tracking_error; } /* Returns following IMU vibration metrics in the following array locations 0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle) 1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle) 2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity) */ Vector3f Ekf::getImuVibrationMetrics() const { return _vibe_metrics; } /* First argument returns GPS drift metrics in the following array locations 0 : Horizontal position drift rate (m/s) 1 : Vertical position drift rate (m/s) 2 : Filtered horizontal velocity (m/s) Second argument returns true when IMU movement is blocking the drift calculation Function returns true if the metrics have been updated and not returned previously by this function */ bool Ekf::get_gps_drift_metrics(float drift[3], bool *blocked) { memcpy(drift, _gps_drift_metrics, 3 * sizeof(float)); *blocked = !_control_status.flags.vehicle_at_rest; if (_gps_drift_updated) { _gps_drift_updated = false; return true; } return false; } // get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) { // report absolute accuracy taking into account the uncertainty in location of the origin // If not aiding, return 0 for horizontal position estimate as no estimate is available // TODO - allow for baro drift in vertical position error float hpos_err = sqrtf(P(7,7) + P(8,8) + sq(_gps_origin_eph)); // If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error // The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors // and using state variances for accuracy reporting is overly optimistic in these situations if (_is_dead_reckoning && (_control_status.flags.gps)) { hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1)))); } else if (_is_dead_reckoning && (_control_status.flags.ev_pos)) { hpos_err = math::max(hpos_err, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1)))); } *ekf_eph = hpos_err; *ekf_epv = sqrtf(P(9,9) + sq(_gps_origin_epv)); } // get the 1-sigma horizontal and vertical position uncertainty of the ekf local position void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) { // TODO - allow for baro drift in vertical position error float hpos_err = sqrtf(P(7,7) + P(8,8)); // If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error // The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors // and using state variances for accuracy reporting is overly optimistic in these situations if (_is_dead_reckoning && _control_status.flags.gps) { hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1)))); } *ekf_eph = hpos_err; *ekf_epv = sqrtf(P(9,9)); } // get the 1-sigma horizontal and vertical velocity uncertainty void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) { float hvel_err = sqrtf(P(4,4) + P(5,5)); // If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal velocity error // The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors // and using state variances for accuracy reporting is overly optimistic in these situations if (_is_dead_reckoning) { float vel_err_conservative = 0.0f; if (_control_status.flags.opt_flow) { float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f); vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * _flow_innov.norm(); } if (_control_status.flags.gps) { vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1)))); } else if (_control_status.flags.ev_pos) { vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1)))); } if (_control_status.flags.ev_vel) { vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_vel_innov(0)) + sq(_ev_vel_innov(1)))); } hvel_err = math::max(hvel_err, vel_err_conservative); } *ekf_evh = hvel_err; *ekf_evv = sqrtf(P(6,6)); } /* Returns the following vehicle control limits required by the estimator to keep within sensor limitations. vxy_max : Maximum ground relative horizontal speed (meters/sec). NaN when limiting is not needed. vz_max : Maximum ground relative vertical speed (meters/sec). NaN when limiting is not needed. hagl_min : Minimum height above ground (meters). NaN when limiting is not needed. hagl_max : Maximum height above ground (meters). NaN when limiting is not needed. */ void Ekf::get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) { // Calculate range finder limits const float rangefinder_hagl_min = _range_sensor.getValidMinVal(); // Allow use of 75% of rangefinder maximum range to allow for angular motion const float rangefinder_hagl_max = 0.75f * _range_sensor.getValidMaxVal(); // Calculate optical flow limits // Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion const float flow_vxy_max = fmaxf(0.5f * _flow_max_rate * (_terrain_vpos - _state.pos(2)), 0.0f); const float flow_hagl_min = _flow_min_distance; const float flow_hagl_max = _flow_max_distance; // TODO : calculate visual odometry limits const bool relying_on_rangefinder = _control_status.flags.rng_hgt && !_params.range_aid; const bool relying_on_optical_flow = isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow); // Do not require limiting by default *vxy_max = NAN; *vz_max = NAN; *hagl_min = NAN; *hagl_max = NAN; // Keep within range sensor limit when using rangefinder as primary height source if (relying_on_rangefinder) { *vxy_max = NAN; *vz_max = NAN; *hagl_min = rangefinder_hagl_min; *hagl_max = rangefinder_hagl_max; } // Keep within flow AND range sensor limits when exclusively using optical flow if (relying_on_optical_flow) { *vxy_max = flow_vxy_max; *vz_max = NAN; *hagl_min = fmaxf(rangefinder_hagl_min, flow_hagl_min); *hagl_max = fminf(rangefinder_hagl_max, flow_hagl_max); } } bool Ekf::reset_imu_bias() { if (_imu_sample_delayed.time_us - _last_imu_bias_cov_reset_us < (uint64_t)10e6) { return false; } // Zero the delta angle and delta velocity bias states _state.delta_ang_bias.zero(); _state.delta_vel_bias.zero(); // Zero the corresponding covariances and set // variances to the values use for initial alignment P.uncorrelateCovarianceSetVariance<3>(10, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S)); P.uncorrelateCovarianceSetVariance<3>(13, sq(_params.switch_on_accel_bias * FILTER_UPDATE_PERIOD_S)); _last_imu_bias_cov_reset_us = _imu_sample_delayed.time_us; // Set previous frame values _prev_dvel_bias_var = P.slice<3,3>(13,13).diag(); return true; } // get EKF innovation consistency check status information comprising of: // status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check // Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold. // A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF // Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned. void Ekf::get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas, float &hagl, float &beta) { // return the integer bitmask containing the consistency check pass/fail status status = _innov_check_fail_status.value; // return the largest magnetometer innovation test ratio mag = sqrtf(math::max(_yaw_test_ratio,_mag_test_ratio.max())); // return the largest velocity innovation test ratio vel = math::max(sqrtf(math::max(_gps_vel_test_ratio(0), _gps_vel_test_ratio(1))), sqrtf(math::max(_ev_vel_test_ratio(0), _ev_vel_test_ratio(1)))); // return the largest position innovation test ratio pos = math::max(sqrtf(_gps_pos_test_ratio(0)),sqrtf(_ev_pos_test_ratio(0))); // return the vertical position innovation test ratio hgt = sqrtf(_gps_pos_test_ratio(0)); // return the airspeed fusion innovation test ratio tas = sqrtf(_tas_test_ratio); // return the terrain height innovation test ratio hagl = sqrtf(_hagl_test_ratio); // return the synthetic sideslip innovation test ratio beta = sqrtf(_beta_test_ratio); } // return a bitmask integer that describes which state estimates are valid void Ekf::get_ekf_soln_status(uint16_t *status) { ekf_solution_status soln_status; // TODO: Is this accurate enough? soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0); soln_status.flags.velocity_horiz = (isHorizontalAidingActive() || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0); soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0); soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0); soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0); soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert; soln_status.flags.pos_vert_agl = isTerrainEstimateValid(); soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz; soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel; soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs; const bool gps_vel_innov_bad = (_gps_vel_test_ratio(0) > 1.0f) || (_gps_vel_test_ratio(1) > 1.0f); const bool gps_pos_innov_bad = (_gps_pos_test_ratio(0) > 1.0f); const bool mag_innov_good = (_mag_test_ratio.max() < 1.0f) && (_yaw_test_ratio < 1.0f); soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good; soln_status.flags.accel_error = _bad_vert_accel_detected; *status = soln_status.value; } void Ekf::fuse(const Vector24f& K, float innovation) { _state.quat_nominal -= K.slice<4, 1>(0, 0) * innovation; _state.quat_nominal.normalize(); _state.vel -= K.slice<3, 1>(4, 0) * innovation; _state.pos -= K.slice<3, 1>(7, 0) * innovation; _state.delta_ang_bias -= K.slice<3, 1>(10, 0) * innovation; _state.delta_vel_bias -= K.slice<3, 1>(13, 0) * innovation; _state.mag_I -= K.slice<3, 1>(16, 0) * innovation; _state.mag_B -= K.slice<3, 1>(19, 0) * innovation; _state.wind_vel -= K.slice<2, 1>(22, 0) * innovation; } void Ekf::uncorrelateQuatFromOtherStates() { P.slice<_k_num_states - 4, 4>(4, 0) = 0.f; P.slice<4, _k_num_states - 4>(0, 4) = 0.f; } bool Ekf::global_position_is_valid() { // return true if the origin is set we are not doing unconstrained free inertial navigation // and have not started using synthetic position observations to constrain drift return (_NED_origin_initialised && !_deadreckon_time_exceeded && !_using_synthetic_position); } // return true if we are totally reliant on inertial dead-reckoning for position void Ekf::update_deadreckoning_status() { const bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.ev_vel) && (isRecent(_time_last_hor_pos_fuse, _params.no_aid_timeout_max) || isRecent(_time_last_hor_vel_fuse, _params.no_aid_timeout_max) || isRecent(_time_last_delpos_fuse, _params.no_aid_timeout_max)); const bool optFlowAiding = _control_status.flags.opt_flow && isRecent(_time_last_of_fuse, _params.no_aid_timeout_max); const bool airDataAiding = _control_status.flags.wind && isRecent(_time_last_arsp_fuse, _params.no_aid_timeout_max) && isRecent(_time_last_beta_fuse, _params.no_aid_timeout_max); _is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding; _is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding; if (!_is_dead_reckoning) { _time_last_aiding = _time_last_imu - _params.no_aid_timeout_max; } // report if we have been deadreckoning for too long, initial state is deadreckoning until aiding is present _deadreckon_time_exceeded = (_time_last_aiding == 0) || isTimedOut(_time_last_aiding, (uint64_t)_params.valid_timeout_max); } // calculate the variances for the rotation vector equivalent Vector3f Ekf::calcRotVecVariances() { Vector3f rot_var_vec; float q0, q1, q2, q3; if (_state.quat_nominal(0) >= 0.0f) { q0 = _state.quat_nominal(0); q1 = _state.quat_nominal(1); q2 = _state.quat_nominal(2); q3 = _state.quat_nominal(3); } else { q0 = -_state.quat_nominal(0); q1 = -_state.quat_nominal(1); q2 = -_state.quat_nominal(2); q3 = -_state.quat_nominal(3); } float t2 = q0*q0; float t3 = acosf(q0); float t4 = -t2+1.0f; float t5 = t2-1.0f; if ((t4 > 1e-9f) && (t5 < -1e-9f)) { float t6 = 1.0f/t5; float t7 = q1*t6*2.0f; float t8 = 1.0f/powf(t4,1.5f); float t9 = q0*q1*t3*t8*2.0f; float t10 = t7+t9; float t11 = 1.0f/sqrtf(t4); float t12 = q2*t6*2.0f; float t13 = q0*q2*t3*t8*2.0f; float t14 = t12+t13; float t15 = q3*t6*2.0f; float t16 = q0*q3*t3*t8*2.0f; float t17 = t15+t16; rot_var_vec(0) = t10*(P(0,0)*t10+P(1,0)*t3*t11*2.0f)+t3*t11*(P(0,1)*t10+P(1,1)*t3*t11*2.0f)*2.0f; rot_var_vec(1) = t14*(P(0,0)*t14+P(2,0)*t3*t11*2.0f)+t3*t11*(P(0,2)*t14+P(2,2)*t3*t11*2.0f)*2.0f; rot_var_vec(2) = t17*(P(0,0)*t17+P(3,0)*t3*t11*2.0f)+t3*t11*(P(0,3)*t17+P(3,3)*t3*t11*2.0f)*2.0f; } else { rot_var_vec = 4.0f * P.slice<3,3>(1,1).diag(); } return rot_var_vec; } // initialise the quaternion covariances using rotation vector variances // do not call before quaternion states are initialised void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var) { // calculate an equivalent rotation vector from the quaternion float q0,q1,q2,q3; if (_state.quat_nominal(0) >= 0.0f) { q0 = _state.quat_nominal(0); q1 = _state.quat_nominal(1); q2 = _state.quat_nominal(2); q3 = _state.quat_nominal(3); } else { q0 = -_state.quat_nominal(0); q1 = -_state.quat_nominal(1); q2 = -_state.quat_nominal(2); q3 = -_state.quat_nominal(3); } float delta = 2.0f*acosf(q0); float scaler = (delta/sinf(delta*0.5f)); float rotX = scaler*q1; float rotY = scaler*q2; float rotZ = scaler*q3; // autocode generated using matlab symbolic toolbox float t2 = rotX*rotX; float t4 = rotY*rotY; float t5 = rotZ*rotZ; float t6 = t2+t4+t5; if (t6 > 1e-9f) { float t7 = sqrtf(t6); float t8 = t7*0.5f; float t3 = sinf(t8); float t9 = t3*t3; float t10 = 1.0f/t6; float t11 = 1.0f/sqrtf(t6); float t12 = cosf(t8); float t13 = 1.0f/powf(t6,1.5f); float t14 = t3*t11; float t15 = rotX*rotY*t3*t13; float t16 = rotX*rotZ*t3*t13; float t17 = rotY*rotZ*t3*t13; float t18 = t2*t10*t12*0.5f; float t27 = t2*t3*t13; float t19 = t14+t18-t27; float t23 = rotX*rotY*t10*t12*0.5f; float t28 = t15-t23; float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f; float t25 = rotX*rotZ*t10*t12*0.5f; float t31 = t16-t25; float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f; float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f; float t24 = t15-t23; float t26 = t16-t25; float t29 = t4*t10*t12*0.5f; float t34 = t3*t4*t13; float t30 = t14+t29-t34; float t32 = t5*t10*t12*0.5f; float t40 = t3*t5*t13; float t33 = t14+t32-t40; float t36 = rotY*rotZ*t10*t12*0.5f; float t39 = t17-t36; float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f; float t37 = t15-t23; float t38 = t17-t36; float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25); float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39; float t43 = t16-t25; float t44 = t17-t36; // zero all the quaternion covariances P.uncorrelateCovarianceSetVariance<2>(0, 0.0f); P.uncorrelateCovarianceSetVariance<2>(2, 0.0f); // Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox P(0,0) = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f; P(0,1) = t22; P(0,2) = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f; P(0,3) = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f; P(1,0) = t22; P(1,1) = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26); P(1,2) = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; P(1,3) = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; P(2,0) = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f; P(2,1) = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; P(2,2) = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38); P(2,3) = t42; P(3,0) = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f; P(3,1) = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; P(3,2) = t42; P(3,3) = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44); } else { // the equations are badly conditioned so use a small angle approximation P.uncorrelateCovarianceSetVariance<1>(0, 0.0f); P.uncorrelateCovarianceSetVariance<3>(1, 0.25f * rot_vec_var); } } void Ekf::setControlBaroHeight() { _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; _control_status.flags.ev_hgt = false; } void Ekf::setControlRangeHeight() { _control_status.flags.rng_hgt = true; _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.ev_hgt = false; } void Ekf::setControlGPSHeight() { _control_status.flags.gps_hgt = true; _control_status.flags.baro_hgt = false; _control_status.flags.rng_hgt = false; _control_status.flags.ev_hgt = false; } void Ekf::setControlEVHeight() { _control_status.flags.ev_hgt = true; _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; } void Ekf::stopMagFusion() { stopMag3DFusion(); stopMagHdgFusion(); clearMagCov(); } void Ekf::stopMag3DFusion() { // save covariance data for re-use if currently doing 3-axis fusion if (_control_status.flags.mag_3D) { saveMagCovData(); _control_status.flags.mag_3D = false; } } void Ekf::stopMagHdgFusion() { _control_status.flags.mag_hdg = false; } void Ekf::startMagHdgFusion() { stopMag3DFusion(); _control_status.flags.mag_hdg = true; } void Ekf::startMag3DFusion() { if (!_control_status.flags.mag_3D) { stopMagHdgFusion(); zeroMagCov(); loadMagCovData(); _control_status.flags.mag_3D = true; } } void Ekf::startBaroHgtFusion() { setControlBaroHeight(); // We don't need to set a height sensor offset // since we track a separate _baro_hgt_offset _hgt_sensor_offset = 0.0f; // Turn off ground effect compensation if it times out if (_control_status.flags.gnd_effect) { if (isTimedOut(_time_last_gnd_effect_on, GNDEFFECT_TIMEOUT)) { _control_status.flags.gnd_effect = false; } } } void Ekf::startGpsHgtFusion() { setControlGPSHeight(); // we have just switched to using gps height, calculate height sensor offset such that current // measurement matches our current height estimate if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) { _hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2); } } void Ekf::updateBaroHgtOffset() { // calculate a filtered offset between the baro origin and local NED origin if we are not // using the baro as a height reference if (!_control_status.flags.baro_hgt && _baro_data_ready) { const float local_time_step = math::constrain(1e-6f * _delta_time_baro_us, 0.0f, 1.0f); // apply a 10 second first order low pass filter to baro offset const float offset_rate_correction = 0.1f * (_baro_sample_delayed.hgt + _state.pos(2) - _baro_hgt_offset); _baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f); } } Vector3f Ekf::getVisionVelocityInEkfFrame() const { Vector3f vel; // correct velocity for offset relative to IMU const Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body; const Vector3f vel_offset_body = _ang_rate_delayed_raw % pos_offset_body; // rotate measurement into correct earth frame if required switch(_ev_sample_delayed.vel_frame) { case BODY_FRAME_FRD: vel = _R_to_earth * (_ev_sample_delayed.vel - vel_offset_body); break; case LOCAL_FRAME_FRD: const Vector3f vel_offset_earth = _R_to_earth * vel_offset_body; if (_params.fusion_mode & MASK_ROTATE_EV) { vel = _R_ev_to_ekf *_ev_sample_delayed.vel - vel_offset_earth; } else { vel = _ev_sample_delayed.vel - vel_offset_earth; } break; } return vel; } Vector3f Ekf::getVisionVelocityVarianceInEkfFrame() const { Matrix3f ev_vel_cov = _ev_sample_delayed.velCov; // rotate measurement into correct earth frame if required switch(_ev_sample_delayed.vel_frame) { case BODY_FRAME_FRD: ev_vel_cov = _R_to_earth * ev_vel_cov * _R_to_earth.transpose(); break; case LOCAL_FRAME_FRD: if(_params.fusion_mode & MASK_ROTATE_EV) { ev_vel_cov = _R_ev_to_ekf * ev_vel_cov * _R_ev_to_ekf.transpose(); } break; } return ev_vel_cov.diag(); } // update the rotation matrix which rotates EV measurements into the EKF's navigation frame void Ekf::calcExtVisRotMat() { // Calculate the quaternion delta that rotates from the EV to the EKF reference frame at the EKF fusion time horizon. const Quatf q_error((_state.quat_nominal * _ev_sample_delayed.quat.inversed()).normalized()); _R_ev_to_ekf = Dcmf(q_error); } // return the quaternions for the rotation from External Vision system reference frame to the EKF reference frame matrix::Quatf Ekf::getVisionAlignmentQuaternion() const { return Quatf(_R_ev_to_ekf); } // Increase the yaw error variance of the quaternions // Argument is additional yaw variance in rad**2 void Ekf::increaseQuatYawErrVariance(float yaw_variance) { // See DeriveYawResetEquations.m for derivation which produces code fragments in C_code4.txt file // The auto-code was cleaned up and had terms multiplied by zero removed to give the following: // Intermediate variables float SG[3]; SG[0] = sq(_state.quat_nominal(0)) - sq(_state.quat_nominal(1)) - sq(_state.quat_nominal(2)) + sq(_state.quat_nominal(3)); SG[1] = 2*_state.quat_nominal(0)*_state.quat_nominal(2) - 2*_state.quat_nominal(1)*_state.quat_nominal(3); SG[2] = 2*_state.quat_nominal(0)*_state.quat_nominal(1) + 2*_state.quat_nominal(2)*_state.quat_nominal(3); float SQ[4]; SQ[0] = 0.5f * ((_state.quat_nominal(1)*SG[0]) - (_state.quat_nominal(0)*SG[2]) + (_state.quat_nominal(3)*SG[1])); SQ[1] = 0.5f * ((_state.quat_nominal(0)*SG[1]) - (_state.quat_nominal(2)*SG[0]) + (_state.quat_nominal(3)*SG[2])); SQ[2] = 0.5f * ((_state.quat_nominal(3)*SG[0]) - (_state.quat_nominal(1)*SG[1]) + (_state.quat_nominal(2)*SG[2])); SQ[3] = 0.5f * ((_state.quat_nominal(0)*SG[0]) + (_state.quat_nominal(1)*SG[2]) + (_state.quat_nominal(2)*SG[1])); // Limit yaw variance increase to prevent a badly conditioned covariance matrix yaw_variance = fminf(yaw_variance, 1.0e-2f); // Add covariances for additonal yaw uncertainty to existing covariances. // This assumes that the additional yaw error is uncorrrelated to existing errors P(0,0) += yaw_variance*sq(SQ[2]); P(0,1) += yaw_variance*SQ[1]*SQ[2]; P(1,1) += yaw_variance*sq(SQ[1]); P(0,2) += yaw_variance*SQ[0]*SQ[2]; P(1,2) += yaw_variance*SQ[0]*SQ[1]; P(2,2) += yaw_variance*sq(SQ[0]); P(0,3) -= yaw_variance*SQ[2]*SQ[3]; P(1,3) -= yaw_variance*SQ[1]*SQ[3]; P(2,3) -= yaw_variance*SQ[0]*SQ[3]; P(3,3) += yaw_variance*sq(SQ[3]); P(1,0) += yaw_variance*SQ[1]*SQ[2]; P(2,0) += yaw_variance*SQ[0]*SQ[2]; P(2,1) += yaw_variance*SQ[0]*SQ[1]; P(3,0) -= yaw_variance*SQ[2]*SQ[3]; P(3,1) -= yaw_variance*SQ[1]*SQ[3]; P(3,2) -= yaw_variance*SQ[0]*SQ[3]; } // save covariance data for re-use when auto-switching between heading and 3-axis fusion void Ekf::saveMagCovData() { // save variances for the D earth axis and XYZ body axis field for (uint8_t index = 0; index <= 3; index ++) { _saved_mag_bf_variance[index] = P(index + 18,index + 18); } // save the NE axis covariance sub-matrix _saved_mag_ef_covmat = P.slice<2, 2>(16, 16); } void Ekf::loadMagCovData() { // re-instate variances for the D earth axis and XYZ body axis field for (uint8_t index = 0; index <= 3; index ++) { P(index + 18,index + 18) = _saved_mag_bf_variance[index]; } // re-instate the NE axis covariance sub-matrix P.slice<2, 2>(16, 16) = _saved_mag_ef_covmat; } void Ekf::startGpsFusion() { resetHorizontalPositionToGps(); // when using optical flow, // velocity reset is not necessary if (!_control_status.flags.opt_flow) { resetVelocityToGps(); } ECL_INFO_TIMESTAMPED("starting GPS fusion"); _control_status.flags.gps = true; } void Ekf::stopGpsFusion() { stopGpsPosFusion(); stopGpsVelFusion(); stopGpsYawFusion(); } void Ekf::stopGpsPosFusion() { _control_status.flags.gps = false; _control_status.flags.gps_hgt = false; _gps_pos_innov.setZero(); _gps_pos_innov_var.setZero(); _gps_pos_test_ratio.setZero(); } void Ekf::stopGpsVelFusion() { _gps_vel_innov.setZero(); _gps_vel_innov_var.setZero(); _gps_vel_test_ratio.setZero(); } void Ekf::startGpsYawFusion() { _control_status.flags.mag_dec = false; stopEvYawFusion(); stopMagHdgFusion(); stopMag3DFusion(); _control_status.flags.gps_yaw = true; } void Ekf::stopGpsYawFusion() { _control_status.flags.gps_yaw = false; } void Ekf::startEvPosFusion() { _control_status.flags.ev_pos = true; resetHorizontalPosition(); ECL_INFO_TIMESTAMPED("starting vision pos fusion"); } void Ekf::startEvVelFusion() { _control_status.flags.ev_vel = true; resetVelocity(); ECL_INFO_TIMESTAMPED("starting vision vel fusion"); } void Ekf::startEvYawFusion() { // reset the yaw angle to the value from the vision quaternion const Eulerf euler_obs(_ev_sample_delayed.quat); const float yaw = euler_obs(2); const float yaw_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f)); resetQuatStateYaw(yaw, yaw_variance, true); // flag the yaw as aligned _control_status.flags.yaw_align = true; // turn on fusion of external vision yaw measurements and disable all magnetometer fusion _control_status.flags.ev_yaw = true; _control_status.flags.mag_dec = false; stopMagHdgFusion(); stopMag3DFusion(); ECL_INFO_TIMESTAMPED("starting vision yaw fusion"); } void Ekf::stopEvFusion() { stopEvPosFusion(); stopEvVelFusion(); stopEvYawFusion(); } void Ekf::stopEvPosFusion() { _control_status.flags.ev_pos = false; _ev_pos_innov.setZero(); _ev_pos_innov_var.setZero(); _ev_pos_test_ratio.setZero(); } void Ekf::stopEvVelFusion() { _control_status.flags.ev_vel = false; _ev_vel_innov.setZero(); _ev_vel_innov_var.setZero(); _ev_vel_test_ratio.setZero(); } void Ekf::stopEvYawFusion() { _control_status.flags.ev_yaw = false; } void Ekf::stopAuxVelFusion() { _aux_vel_innov.setZero(); _aux_vel_innov_var.setZero(); _aux_vel_test_ratio.setZero(); } void Ekf::stopFlowFusion() { _control_status.flags.opt_flow = false; _flow_innov.setZero(); _flow_innov_var.setZero(); _optflow_test_ratio = 0.0f; } void Ekf::resetQuatStateYaw(float yaw, float yaw_variance, bool update_buffer) { // save a copy of the quaternion state for later use in calculating the amount of reset change const Quatf quat_before_reset = _state.quat_nominal; // update transformation matrix from body to world frame using the current estimate _R_to_earth = Dcmf(_state.quat_nominal); // update the rotation matrix using the new yaw value // determine if a 321 or 312 Euler sequence is best if (fabsf(_R_to_earth(2, 0)) < fabsf(_R_to_earth(2, 1))) { // use a 321 sequence Eulerf euler321(_R_to_earth); euler321(2) = yaw; _R_to_earth = Dcmf(euler321); } else { // Calculate the 312 Tait-Bryan rotation sequence that rotates from earth to body frame // We use a 312 sequence as an alternate when there is more pitch tilt than roll tilt // to avoid gimbal lock const Vector3f rot312(yaw, asinf(_R_to_earth(2, 1)), atan2f(-_R_to_earth(2, 0), _R_to_earth(2, 2))); _R_to_earth = taitBryan312ToRotMat(rot312); } // calculate the amount that the quaternion has changed by const Quatf quat_after_reset(_R_to_earth); const Quatf q_error((quat_after_reset * quat_before_reset.inversed()).normalized()); // update quaternion states _state.quat_nominal = quat_after_reset; uncorrelateQuatFromOtherStates(); // record the state change _state_reset_status.quat_change = q_error; // update the yaw angle variance if (yaw_variance > FLT_EPSILON) { increaseQuatYawErrVariance(yaw_variance); } // add the reset amount to the output observer buffered data if (update_buffer) { for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { _output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal; } // apply the change in attitude quaternion to our newest quaternion estimate // which was already taken out from the output buffer _output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal; } // capture the reset event _state_reset_status.quat_counter++; } // Resets the main Nav EKf yaw to the estimator from the EKF-GSF yaw estimator // Resets the horizontal velocity and position to the default navigation sensor // Returns true if the reset was successful bool Ekf::resetYawToEKFGSF() { // don't allow reet using the EKF-GSF estimate until the filter has started fusing velocity // data and the yaw estimate has converged float new_yaw, new_yaw_variance; if (!yawEstimator.getYawData(&new_yaw, &new_yaw_variance)) { return false; } const bool has_converged = new_yaw_variance < sq(_params.EKFGSF_yaw_err_max); if (!has_converged) { return false; } resetQuatStateYaw(new_yaw, new_yaw_variance, true); // reset velocity and position states to GPS - if yaw is fixed then the filter should start to operate correctly resetVelocity(); resetHorizontalPosition(); // record a magnetic field alignment event to prevent possibility of the EKF trying to reset the yaw to the mag later in flight _flt_mag_align_start_time = _imu_sample_delayed.time_us; _control_status.flags.yaw_align = true; if (_params.mag_fusion_type == MAG_FUSE_TYPE_NONE) { ECL_INFO_TIMESTAMPED("Yaw aligned using IMU and GPS"); } else { // stop using the magnetometer in the main EKF otherwise it's fusion could drag the yaw around // and cause another navigation failure _control_status.flags.mag_fault = true; ECL_INFO_TIMESTAMPED("Emergency yaw reset - mag use stopped"); } return true; } void Ekf::requestEmergencyNavReset() { _do_ekfgsf_yaw_reset = true; } bool Ekf::getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]) { return yawEstimator.getLogData(yaw_composite,yaw_variance,yaw,innov_VN,innov_VE,weight); } void Ekf::runYawEKFGSF() { float TAS; if (isTimedOut(_airspeed_sample_delayed.time_us, 1000000) && _control_status.flags.fixed_wing) { TAS = _params.EKFGSF_tas_default; } else { TAS = _airspeed_sample_delayed.true_airspeed; } const Vector3f imu_gyro_bias = getGyroBias(); yawEstimator.update(_imu_sample_delayed, _control_status.flags.in_air, TAS, imu_gyro_bias); // basic sanity check on GPS velocity data if (_gps_data_ready && _gps_sample_delayed.vacc > FLT_EPSILON && ISFINITE(_gps_sample_delayed.vel(0)) && ISFINITE(_gps_sample_delayed.vel(1))) { yawEstimator.setVelocity(_gps_sample_delayed.vel.xy(), _gps_sample_delayed.vacc); } } void Ekf::resetGpsDriftCheckFilters() { _gps_velNE_filt.setZero(); _gps_pos_deriv_filt.setZero(); }