#include #include #include using namespace matrix; template class Quaternion; template class Euler; template class Dcm; int main() { double eps = 1e-6; // check data Eulerf euler_check(0.1f, 0.2f, 0.3f); Quatf q_check(0.98334744f, 0.0342708f, 0.10602051f, .14357218f); float dcm_data[] = { 0.93629336f, -0.27509585f, 0.21835066f, 0.28962948f, 0.95642509f, -0.03695701f, -0.19866933f, 0.0978434f, 0.97517033f }; Dcmf dcm_check(dcm_data); // euler ctor euler_check.T().print(); assert(euler_check == Vector3f(0.1f, 0.2f, 0.3f)); // euler default ctor Eulerf e; Eulerf e_zero = zeros(); assert(e == e_zero); assert(e == e); // euler vector ctor Vector v; v(0) = 0.1f; v(1) = 0.2f; v(2) = 0.3f; Eulerf euler_copy(v); assert(euler_copy == euler_check); // quaternion ctor Quatf q(1, 2, 3, 4); assert(fabs(q(0) - 1) < eps); assert(fabs(q(1) - 2) < eps); assert(fabs(q(2) - 3) < eps); assert(fabs(q(3) - 4) < eps); // quat normalization q.T().print(); q.normalize(); q.T().print(); assert(q == Quatf(0.18257419f, 0.36514837f, 0.54772256f, 0.73029674f)); // quat default ctor q = Quatf(); assert(q == Quatf(1, 0, 0, 0)); // euler to quaternion q = Quatf(euler_check); q.T().print(); assert(q == q_check); // euler to dcm Dcmf dcm(euler_check); dcm.print(); assert(dcm == dcm_check); // quaternion to euler Eulerf e1(q_check); assert(e1 == euler_check); // quaternion to dcm Dcmf dcm1(q_check); dcm1.print(); assert(dcm1 == dcm_check); // dcm default ctor Dcmf dcm2; dcm2.print(); SquareMatrix I = eye(); assert(dcm2 == I); // dcm to euler Eulerf e2(dcm_check); assert(e2 == euler_check); // dcm to quaterion Quatf q2(dcm_check); assert(q2 == q_check); // euler gimbal lock check // note if theta = pi/2, then roll is set to zero float pi_2 = float(M_PI_2); Eulerf euler_gimbal_lock(0.1f, pi_2, 0.2f); Dcmf dcm_lock(euler_gimbal_lock); Eulerf euler_gimbal_lock_out(dcm_lock); euler_gimbal_lock_out.T().print(); euler_gimbal_lock.T().print(); assert(euler_gimbal_lock == euler_gimbal_lock_out); // note if theta = pi/2, then roll is set to zero Eulerf euler_gimbal_lock2(0.1f, -pi_2, 0.2f); Dcmf dcm_lock2(euler_gimbal_lock2); Eulerf euler_gimbal_lock_out2(dcm_lock2); euler_gimbal_lock_out2.T().print(); euler_gimbal_lock2.T().print(); assert(euler_gimbal_lock2 == euler_gimbal_lock_out2); // quaterion copy ctors float data_v4[] = {1, 2, 3, 4}; Vector v4(data_v4); Quatf q_from_v(v4); assert(q_from_v == v4); Matrix m4(data_v4); Quatf q_from_m(m4); assert(q_from_m == m4); // quaternion derivate Vector q_dot = q.derivative(Vector3f(1, 2, 3)); printf("q_dot:\n"); q_dot.T().print(); // quaternion product Quatf q_prod_check( 0.93394439f, 0.0674002f, 0.20851f, 0.28236266f); assert(q_prod_check == q_check*q_check); q_check *= q_check; assert(q_prod_check == q_check); // Quaternion scalar multiplication float scalar = 0.5; Quatf q_scalar_mul(1.0f, 2.0f, 3.0f, 4.0f); Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar, 3.0f * scalar, 4.0f * scalar); Quatf q_scalar_mul_res = scalar * q_scalar_mul; assert(q_scalar_mul_check == q_scalar_mul_res); Quatf q_scalar_mul_res2 = q_scalar_mul * scalar; assert(q_scalar_mul_check == q_scalar_mul_res2); Quatf q_scalar_mul_res3(q_scalar_mul); q_scalar_mul_res3 *= scalar; assert(q_scalar_mul_check == q_scalar_mul_res3); // quaternion inverse q = q_check.inversed(); assert(fabsf(q_check(0) - q(0)) < eps); assert(fabsf(q_check(1) + q(1)) < eps); assert(fabsf(q_check(2) + q(2)) < eps); assert(fabsf(q_check(3) + q(3)) < eps); q = q_check; q.invert(); assert(fabsf(q_check(0) - q(0)) < eps); assert(fabsf(q_check(1) + q(1)) < eps); assert(fabsf(q_check(2) + q(2)) < eps); assert(fabsf(q_check(3) + q(3)) < eps); // rotate quaternion (nonzero rotation) Quatf qI(1.0f, 0.0f, 0.0f, 0.0f); Vector rot; rot(0) = 1.0f; rot(1) = rot(2) = 0.0f; qI.rotate(rot); Quatf q_true(cosf(1.0f / 2), sinf(1.0f / 2), 0.0f, 0.0f); assert(fabsf(qI(0) - q_true(0)) < eps); assert(fabsf(qI(1) - q_true(1)) < eps); assert(fabsf(qI(2) - q_true(2)) < eps); assert(fabsf(qI(3) - q_true(3)) < eps); // rotate quaternion (zero rotation) qI = Quatf(1.0f, 0.0f, 0.0f, 0.0f); rot(0) = 0.0f; rot(1) = rot(2) = 0.0f; qI.rotate(rot); q_true = Quatf(cosf(0.0f), sinf(0.0f), 0.0f, 0.0f); assert(fabsf(qI(0) - q_true(0)) < eps); assert(fabsf(qI(1) - q_true(1)) < eps); assert(fabsf(qI(2) - q_true(2)) < eps); assert(fabsf(qI(3) - q_true(3)) < eps); // get rotation axis from quaternion (nonzero rotation) q = Quatf(cosf(1.0f / 2), 0.0f, sinf(1.0f / 2), 0.0f); rot = q.to_axis_angle(); assert(fabsf(rot(0)) < eps); assert(fabsf(rot(1) -1.0f) < eps); assert(fabsf(rot(2)) < eps); // get rotation axis from quaternion (zero rotation) q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); rot = q.to_axis_angle(); assert(fabsf(rot(0)) < eps); assert(fabsf(rot(1)) < eps); assert(fabsf(rot(2)) < eps); // from axis angle (zero rotation) rot(0) = rot(1) = rot(2) = 0.0f; q.from_axis_angle(rot, 0.0f); q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f); assert(fabsf(q(0) - q_true(0)) < eps); assert(fabsf(q(1) - q_true(1)) < eps); assert(fabsf(q(2) - q_true(2)) < eps); assert(fabsf(q(3) - q_true(3)) < eps); }; /* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */