/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file airspeed_fusion.cpp * airspeed fusion methods. * equations generated using EKF/python/ekf_derivation/main.py * * @author Carl Olsson * @author Roman Bast * @author Paul Riseborough * */ #include "../ecl.h" #include "ekf.h" #include void Ekf::fuseAirspeed() { const float &vn = _state.vel(0); // Velocity in north direction const float &ve = _state.vel(1); // Velocity in east direction const float &vd = _state.vel(2); // Velocity in downwards direction const float &vwn = _state.wind_vel(0); // Wind speed in north direction const float &vwe = _state.wind_vel(1); // Wind speed in east direction // Variance for true airspeed measurement - (m/sec)^2 const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f)); // determine if we need the sideslip fusion to correct states other than wind const bool update_wind_only = !_is_wind_dead_reckoning; // Intermediate variables const float HK0 = vn - vwn; const float HK1 = ve - vwe; const float HK2 = ecl::powf(HK0, 2) + ecl::powf(HK1, 2) + ecl::powf(vd, 2); const float v_tas_pred = sqrtf(HK2); // predicted airspeed //const float HK3 = powf(HK2, -1.0F/2.0F); if (v_tas_pred < 1.0f) { // calculation can be badly conditioned for very low airspeed values so don't fuse this time return; } const float HK3 = 1.0f / v_tas_pred; const float HK4 = HK0*HK3; const float HK5 = HK1*HK3; const float HK6 = 1.0F/HK2; const float HK7 = HK0*P(4,6) - HK0*P(6,22) + HK1*P(5,6) - HK1*P(6,23) + P(6,6)*vd; const float HK8 = HK1*P(5,23); const float HK9 = HK0*P(4,5) - HK0*P(5,22) + HK1*P(5,5) - HK8 + P(5,6)*vd; const float HK10 = HK1*HK6; const float HK11 = HK0*P(4,22); const float HK12 = HK0*P(4,4) - HK1*P(4,23) + HK1*P(4,5) - HK11 + P(4,6)*vd; const float HK13 = HK0*HK6; const float HK14 = -HK0*P(22,23) + HK0*P(4,23) - HK1*P(23,23) + HK8 + P(6,23)*vd; const float HK15 = -HK0*P(22,22) - HK1*P(22,23) + HK1*P(5,22) + HK11 + P(6,22)*vd; //const float HK16 = HK3/(-HK10*HK14 + HK10*HK9 + HK12*HK13 - HK13*HK15 + HK6*HK7*vd + R_TAS); // innovation variance - check for badly conditioned calculation _airspeed_innov_var = (-HK10*HK14 + HK10*HK9 + HK12*HK13 - HK13*HK15 + HK6*HK7*vd + R_TAS); if (_airspeed_innov_var < R_TAS) { // // Reset the estimator covariance matrix // if we are getting aiding from other sources, warn and reset the wind states and covariances only const char* action_string = nullptr; if (update_wind_only) { resetWindStates(); resetWindCovariance(); action_string = "wind"; } else { initialiseCovariance(); _state.wind_vel.setZero(); action_string = "full"; } ECL_ERR("airspeed badly conditioned - %s covariance reset", action_string); _fault_status.flags.bad_airspeed = true; return; } const float HK16 = HK3 / _airspeed_innov_var; _fault_status.flags.bad_airspeed = false; // Observation Jacobians SparseVector24f<4,5,6,22,23> Hfusion; Hfusion.at<4>() = HK4; Hfusion.at<5>() = HK5; Hfusion.at<6>() = HK3*vd; Hfusion.at<22>() = -HK4; Hfusion.at<23>() = -HK5; Vector24f Kfusion; // Kalman gain vector if (!update_wind_only) { // we have no other source of aiding, so use airspeed measurements to correct states for (unsigned row = 0; row <= 3; row++) { Kfusion(row) = HK16*(HK0*P(4,row) - HK0*P(row,22) + HK1*P(5,row) - HK1*P(row,23) + P(6,row)*vd); } Kfusion(4) = HK12*HK16; Kfusion(5) = HK16*HK9; Kfusion(6) = HK16*HK7; for (unsigned row = 7; row <= 21; row++) { Kfusion(row) = HK16*(HK0*P(4,row) - HK0*P(row,22) + HK1*P(5,row) - HK1*P(row,23) + P(6,row)*vd); } } Kfusion(22) = HK15*HK16; Kfusion(23) = HK14*HK16; // Calculate measurement innovation _airspeed_innov = v_tas_pred - _airspeed_sample_delayed.true_airspeed; // Compute the ratio of innovation to gate size _tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var); // If the innovation consistency check fails then don't fuse the sample and indicate bad airspeed health if (_tas_test_ratio > 1.0f) { _innov_check_fail_status.flags.reject_airspeed = true; return; } else { _innov_check_fail_status.flags.reject_airspeed = false; } const bool is_fused = measurementUpdate(Kfusion, Hfusion, _airspeed_innov); _fault_status.flags.bad_airspeed = !is_fused; if (is_fused) { _time_last_arsp_fuse = _time_last_imu; _control_status.flags.fuse_aspd = true; } } void Ekf::get_true_airspeed(float *tas) const { const float tempvar = sqrtf(sq(_state.vel(0) - _state.wind_vel(0)) + sq(_state.vel(1) - _state.wind_vel(1)) + sq(_state.vel(2))); memcpy(tas, &tempvar, sizeof(float)); } /* * Reset the wind states using the current airspeed measurement, ground relative nav velocity, yaw angle and assumption of zero sideslip */ void Ekf::resetWindStates() { const float euler_yaw = getEuler321Yaw(_state.quat_nominal); if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) { // estimate wind using zero sideslip assumption and airspeed measurement if airspeed available _state.wind_vel(0) = _state.vel(0) - _airspeed_sample_delayed.true_airspeed * cosf(euler_yaw); _state.wind_vel(1) = _state.vel(1) - _airspeed_sample_delayed.true_airspeed * sinf(euler_yaw); } else { // If we don't have an airspeed measurement, then assume the wind is zero _state.wind_vel.setZero(); } }