#include "autopilot_tester.h" #include #include std::string connection_url {"udp://"}; void AutopilotTester::connect(const std::string uri) { ConnectionResult ret = _mavsdk.add_any_connection(uri); REQUIRE(ret == ConnectionResult::SUCCESS); std::cout << "Waiting for system connect" << std::endl; REQUIRE(poll_condition_with_timeout( [this]() { return _mavsdk.is_connected(); }, std::chrono::seconds(25))); auto& system = _mavsdk.system(); _telemetry.reset(new Telemetry(system)); _action.reset(new Action(system)); _mission.reset(new Mission(system)); _offboard.reset(new Offboard(system)); } void AutopilotTester::wait_until_ready() { std::cout << "Waiting for system to be ready" << std::endl; CHECK(poll_condition_with_timeout( [this]() { return _telemetry->health_all_ok(); }, std::chrono::seconds(20))); } void AutopilotTester::wait_until_ready_local_position_only() { std::cout << "Waiting for system to be ready" << std::endl; CHECK(poll_condition_with_timeout( [this]() { return (_telemetry->health().gyrometer_calibration_ok && _telemetry->health().accelerometer_calibration_ok && _telemetry->health().magnetometer_calibration_ok && _telemetry->health().level_calibration_ok && _telemetry->health().local_position_ok); }, std::chrono::seconds(20))); } void AutopilotTester::set_takeoff_altitude(const float altitude_m) { CHECK(Action::Result::SUCCESS == _action->set_takeoff_altitude(altitude_m)); const auto result = _action->get_takeoff_altitude(); CHECK(result.first == Action::Result::SUCCESS); CHECK(result.second == Approx(altitude_m)); } void AutopilotTester::arm() { const auto result = _action->arm(); REQUIRE(result == Action::Result::SUCCESS); } void AutopilotTester::takeoff() { const auto result = _action->takeoff(); REQUIRE(result == Action::Result::SUCCESS); } void AutopilotTester::land() { const auto result = _action->land(); REQUIRE(result == Action::Result::SUCCESS); } void AutopilotTester::transition_to_fixedwing() { const auto result = _action->transition_to_fixedwing(); REQUIRE(result == Action::Result::SUCCESS); } void AutopilotTester::transition_to_multicopter() { const auto result = _action->transition_to_multicopter(); REQUIRE(result == Action::Result::SUCCESS); } void AutopilotTester::wait_until_disarmed() { REQUIRE(poll_condition_with_timeout( [this]() { return !_telemetry->armed(); }, std::chrono::seconds(60))); } void AutopilotTester::wait_until_hovering() { REQUIRE(poll_condition_with_timeout( [this]() { return _telemetry->landed_state() == Telemetry::LandedState::IN_AIR; }, std::chrono::seconds(10))); } void AutopilotTester::prepare_square_mission(MissionOptions mission_options) { const auto ct = _get_coordinate_transformation(); std::vector> mission_items {}; mission_items.push_back(_create_mission_item({mission_options.leg_length_m, 0.}, mission_options, ct)); mission_items.push_back(_create_mission_item({mission_options.leg_length_m, mission_options.leg_length_m}, mission_options, ct)); mission_items.push_back(_create_mission_item({0., mission_options.leg_length_m}, mission_options, ct)); _mission->set_return_to_launch_after_mission(mission_options.rtl_at_end); std::promise prom; auto fut = prom.get_future(); _mission->upload_mission_async(mission_items, [&prom](Mission::Result result) { REQUIRE(Mission::Result::SUCCESS == result); prom.set_value(); }); REQUIRE(fut.wait_for(std::chrono::seconds(2)) == std::future_status::ready); } void AutopilotTester::execute_mission() { std::promise prom; auto fut = prom.get_future(); _mission->start_mission_async([&prom](Mission::Result result) { REQUIRE(Mission::Result::SUCCESS == result); prom.set_value(); }); // TODO: Adapt time limit based on mission size, flight speed, sim speed factor, etc. REQUIRE(poll_condition_with_timeout( [this]() { return _mission->mission_finished(); }, std::chrono::seconds(60))); REQUIRE(fut.wait_for(std::chrono::seconds(1)) == std::future_status::ready); } CoordinateTransformation AutopilotTester::_get_coordinate_transformation() { const auto home = _telemetry->home_position(); REQUIRE(std::isfinite(home.latitude_deg)); REQUIRE(std::isfinite(home.longitude_deg)); return CoordinateTransformation({home.latitude_deg, home.longitude_deg}); } std::shared_ptr AutopilotTester::_create_mission_item( const CoordinateTransformation::LocalCoordinate& local_coordinate, const MissionOptions& mission_options, const CoordinateTransformation& ct) { auto mission_item = std::make_shared(); const auto pos_north = ct.global_from_local(local_coordinate); mission_item->set_position(pos_north.latitude_deg, pos_north.longitude_deg); mission_item->set_relative_altitude(mission_options.relative_altitude_m); return mission_item; } void AutopilotTester::execute_rtl() { REQUIRE(Action::Result::SUCCESS == _action->return_to_launch()); } void AutopilotTester::offboard_goto(const Offboard::PositionNEDYaw& target, float acceptance_radius_m, std::chrono::seconds timeout_duration) { _offboard->set_position_ned(target); REQUIRE(_offboard->start() == Offboard::Result::SUCCESS); REQUIRE(poll_condition_with_timeout( [=]() { return estimated_position_close_to(target, acceptance_radius_m); }, timeout_duration)); std::cout << "Target position reached" << std::endl; } void AutopilotTester::offboard_land() { Offboard::VelocityNEDYaw land_velocity; land_velocity.north_m_s = 0.0f; land_velocity.east_m_s = 0.0f; land_velocity.down_m_s = 1.0f; land_velocity.yaw_deg = 0.0f; _offboard->set_velocity_ned(land_velocity); } bool AutopilotTester::estimated_position_close_to(const Offboard::PositionNEDYaw& target_pos, float acceptance_radius_m) { Telemetry::PositionNED est_pos = _telemetry->position_velocity_ned().position; return sq(est_pos.north_m - target_pos.north_m) + sq(est_pos.east_m - target_pos.east_m) + sq(est_pos.down_m - target_pos.down_m) < sq(acceptance_radius_m); } bool AutopilotTester::estimated_horizontal_position_close_to(const Offboard::PositionNEDYaw& target_pos, float acceptance_radius_m) { Telemetry::PositionNED est_pos = _telemetry->position_velocity_ned().position; return sq(est_pos.north_m - target_pos.north_m) + sq(est_pos.east_m - target_pos.east_m) < sq(acceptance_radius_m); } void AutopilotTester::request_ground_truth() { REQUIRE(_telemetry->set_rate_ground_truth(15) == Telemetry::Result::SUCCESS); std::this_thread::sleep_for(std::chrono::milliseconds(100)); } Telemetry::GroundTruth AutopilotTester::get_ground_truth_position() { return _telemetry->ground_truth(); } bool AutopilotTester::ground_truth_horizontal_position_close_to(const Telemetry::GroundTruth& target_pos, float acceptance_radius_m) { REQUIRE(std::isfinite(target_pos.latitude_deg)); REQUIRE(std::isfinite(target_pos.longitude_deg)); using GlobalCoordinate = CoordinateTransformation::GlobalCoordinate; using LocalCoordinate = CoordinateTransformation::LocalCoordinate; CoordinateTransformation ct(GlobalCoordinate{target_pos.latitude_deg, target_pos.longitude_deg}); Telemetry::GroundTruth current_pos = _telemetry->ground_truth(); REQUIRE(std::isfinite(current_pos.latitude_deg)); REQUIRE(std::isfinite(current_pos.longitude_deg)); LocalCoordinate local_pos= ct.local_from_global(GlobalCoordinate{current_pos.latitude_deg, current_pos.longitude_deg}); return sq(local_pos.north_m) + sq(local_pos.east_m) < sq(acceptance_radius_m); }