/** * @file Quaternion.hpp * * A quaternion class. * * @author James Goppert */ #pragma once #include "math.hpp" namespace matrix { template class Dcm; template class Euler; template class Quaternion : public Vector { public: virtual ~Quaternion() {}; typedef Matrix Matrix41; typedef Matrix Matrix31; Quaternion() : Vector() { Quaternion &q = *this; q(0) = 1; q(1) = 0; q(2) = 0; q(3) = 0; } Quaternion(const Matrix41 & other) : Vector(other) { } Quaternion(const Dcm & dcm) : Vector() { Quaternion &q = *this; q(0) = Type(0.5 * sqrt(1 + dcm(0, 0) + dcm(1, 1) + dcm(2, 2))); q(1) = Type((dcm(2, 1) - dcm(1, 2)) / (4 * q(0))); q(2) = Type((dcm(0, 2) - dcm(2, 0)) / (4 * q(0))); q(3) = Type((dcm(1, 0) - dcm(0, 1)) / (4 * q(0))); } Quaternion(const Euler & euler) : Vector() { Quaternion &q = *this; Type cosPhi_2 = Type(cos(euler.phi() / 2.0)); Type cosTheta_2 = Type(cos(euler.theta() / 2.0)); Type cosPsi_2 = Type(cos(euler.psi() / 2.0)); Type sinPhi_2 = Type(sin(euler.phi() / 2.0)); Type sinTheta_2 = Type(sin(euler.theta() / 2.0)); Type sinPsi_2 = Type(sin(euler.psi() / 2.0)); q(0) = cosPhi_2 * cosTheta_2 * cosPsi_2 + sinPhi_2 * sinTheta_2 * sinPsi_2; q(1) = sinPhi_2 * cosTheta_2 * cosPsi_2 - cosPhi_2 * sinTheta_2 * sinPsi_2; q(2) = cosPhi_2 * sinTheta_2 * cosPsi_2 + sinPhi_2 * cosTheta_2 * sinPsi_2; q(3) = cosPhi_2 * cosTheta_2 * sinPsi_2 - sinPhi_2 * sinTheta_2 * cosPsi_2; } Quaternion(Type a, Type b, Type c, Type d) : Vector() { Quaternion &q = *this; q(0) = a; q(1) = b; q(2) = c; q(3) = d; } Quaternion operator*(const Quaternion &q) const { const Quaternion &p = *this; Quaternion r; r(0) = p(0)*q(0) - p(1)*q(1) - p(2)*q(2) - p(3)*q(3); r(1) = p(0)*q(1) + p(1)*q(0) - p(2)*q(3) + p(3)*q(2); r(2) = p(0)*q(2) + p(1)*q(3) + p(2)*q(0) - p(3)*q(1); r(3) = p(0)*q(3) - p(1)*q(2) + p(2)*q(1) + p(3)*q(0); return r; } void operator*=(const Quaternion & other) { Quaternion &self = *this; self = self * other; } Matrix41 derivative(const Matrix31 & w) const { const Quaternion &q = *this; Type dataQ[] = { q(0), -q(1), -q(2), -q(3), q(1), q(0), -q(3), q(2), q(2), q(3), q(0), -q(1), q(3), -q(2), q(1), q(0) }; Matrix Q(dataQ); Vector v; v(0) = 0; v(1) = w(0,0); v(2) = w(1,0); v(3) = w(2,0); return Q * v * Type(0.5); } }; typedef Quaternion Quatf; }; // namespace matrix /* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */