/** * @file Euler.hpp * * All rotations and axis systems follow the right-hand rule * * An instance of this class defines a rotation from coordinate frame 1 to coordinate frame 2. * It follows the convention of a 3-2-1 intrinsic Tait-Bryan rotation sequence. * In order to go from frame 1 to frame 2 we apply the following rotations consecutively. * 1) We rotate about our initial Z axis by an angle of _psi. * 2) We rotate about the newly created Y' axis by an angle of _theta. * 3) We rotate about the newly created X'' axis by an angle of _phi. * * @author James Goppert */ #pragma once #include "math.hpp" #ifndef M_PI #define M_PI (3.14159265358979323846f) #endif namespace matrix { template class Dcm; template class Quaternion; /** * Euler angles class * * This class describes the rotation from frame 1 * to frame 2 via 3-2-1 intrinsic Tait-Bryan rotation sequence. */ template class Euler : public Vector { public: virtual ~Euler() {}; /** * Standard constructor */ Euler() : Vector() { } /** * Copy constructor * * @param other vector to copy */ Euler(const Vector &other) : Vector(other) { } /** * Constructor from Matrix31 * * @param other Matrix31 to copy */ Euler(const Matrix &other) : Vector(other) { } /** * Constructor from euler angles * * Instance is initialized from an 3-2-1 intrinsic Tait-Bryan * rotation sequence representing transformation from frame 1 * to frame 2. * * @param phi_ rotation angle about X axis * @param theta_ rotation angle about Y axis * @param psi_ rotation angle about Z axis */ Euler(Type phi_, Type theta_, Type psi_) : Vector() { phi() = phi_; theta() = theta_; psi() = psi_; } /** * Constructor from DCM matrix * * Instance is set from Dcm representing transformation from * frame 2 to frame 1. * This instance will hold the angles defining the 3-2-1 intrinsic * Tait-Bryan rotation sequence from frame 1 to frame 2. * * @param dcm Direction cosine matrix */ Euler(const Dcm &dcm) : Vector() { Type phi_val = Type(atan2(dcm(2, 1), dcm(2, 2))); Type theta_val = Type(asin(-dcm(2, 0))); Type psi_val = Type(atan2(dcm(1, 0), dcm(0, 0))); Type pi = Type(M_PI); if (Type(fabs(theta_val - pi / Type(2))) < Type(1.0e-3)) { phi_val = Type(0.0); psi_val = Type(atan2(dcm(1, 2), dcm(0, 2))); } else if (Type(fabs(theta_val + pi / Type(2))) < Type(1.0e-3)) { phi_val = Type(0.0); psi_val = Type(atan2(-dcm(1, 2), -dcm(0, 2))); } phi() = phi_val; theta() = theta_val; psi() = psi_val; } /** * Constructor from quaternion instance. * * Instance is set from a quaternion representing transformation * from frame 2 to frame 1. * This instance will hold the angles defining the 3-2-1 intrinsic * Tait-Bryan rotation sequence from frame 1 to frame 2. * * @param q quaternion */ Euler(const Quaternion &q) : Vector() { *this = Euler(Dcm(q)); } inline Type phi() const { return (*this)(0); } inline Type theta() const { return (*this)(1); } inline Type psi() const { return (*this)(2); } inline Type &phi() { return (*this)(0); } inline Type &theta() { return (*this)(1); } inline Type &psi() { return (*this)(2); } }; typedef Euler Eulerf; } // namespace matrix /* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */