/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file estimator_interface.h * Definition of base class for attitude estimators * * @author Roman Bast * */ #include #include #include "RingBuffer.h" #include "geo.h" #include "common.h" using namespace estimator; class EstimatorInterface { public: EstimatorInterface(); ~EstimatorInterface(); virtual bool init(uint64_t timestamp) = 0; virtual bool update() = 0; // gets the innovations of velocity and position measurements // 0-2 vel, 3-5 pos virtual void get_vel_pos_innov(float vel_pos_innov[6]) = 0; // gets the innovations of the earth magnetic field measurements virtual void get_mag_innov(float mag_innov[3]) = 0; // gets the innovations of the heading measurement virtual void get_heading_innov(float *heading_innov) = 0; // gets the innovation variances of velocity and position measurements // 0-2 vel, 3-5 pos virtual void get_vel_pos_innov_var(float vel_pos_innov_var[6]) = 0; // gets the innovation variances of the earth magnetic field measurements virtual void get_mag_innov_var(float mag_innov_var[3]) = 0; // gets the innovation variance of the heading measurement virtual void get_heading_innov_var(float *heading_innov_var) = 0; virtual void get_state_delayed(float *state) = 0; virtual void get_covariances(float *covariances) = 0; // get the ekf WGS-84 origin position and height and the system time it was last set virtual void get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) = 0; // ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined virtual bool collect_gps(uint64_t time_usec, struct gps_message *gps) { return true; } virtual bool collect_imu(imuSample &imu) { return true; } virtual bool collect_mag(uint64_t time_usec, float *data) { return true; } virtual bool collect_baro(uint64_t time_usec, float *data) { return true; } virtual bool collect_airspeed(uint64_t time_usec, float *data) { return true; } virtual bool collect_range(uint64_t time_usec, float *data) { return true; } virtual bool collect_opticalflow(uint64_t time_usec, float *data) { return true; } // set delta angle imu data void setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, float *delta_ang, float *delta_vel); // set magnetometer data void setMagData(uint64_t time_usec, float *data); //void setMagData(uint64_t time_usec, struct magSample *mag); // set gps data void setGpsData(uint64_t time_usec, struct gps_message *gps); // set baro data void setBaroData(uint64_t time_usec, float *data); // set airspeed data void setAirspeedData(uint64_t time_usec, float *data); // set range data void setRangeData(uint64_t time_usec, float *data); // set optical flow data void setOpticalFlowData(uint64_t time_usec, float *data); // return a address to the parameters struct // in order to give access to the application parameters *getParamHandle() {return &_params;} // set vehicle arm status data void set_arm_status(bool data) { _vehicle_armed = data; } // set vehicle landed status data void set_in_air_status(bool in_air) {_in_air = in_air;} bool position_is_valid(); void copy_quaternion(float *quat) { for (unsigned i = 0; i < 4; i++) { quat[i] = _output_new.quat_nominal(i); } } void copy_velocity(float *vel) { for (unsigned i = 0; i < 3; i++) { vel[i] = _output_new.vel(i); } } void copy_position(float *pos) { for (unsigned i = 0; i < 3; i++) { pos[i] = _output_new.pos(i); } } void copy_timestamp(uint64_t *time_us) { *time_us = _time_last_imu; } // Copy the magnetic declination that we wish to save to the EKF2_MAG_DECL parameter for the next startup void copy_mag_decl_deg(float *val) { *val = _mag_declination_to_save_deg; } protected: parameters _params; // filter parameters static const uint8_t OBS_BUFFER_LENGTH = 10; // defines how many measurement samples we can buffer static const uint8_t IMU_BUFFER_LENGTH = 30; // defines how many imu samples we can buffer static const unsigned FILTER_UPDATE_PERRIOD_MS = 10; // ekf prediction period in milliseconds float _dt_imu_avg; // average imu update period in s imuSample _imu_sample_delayed; // captures the imu sample on the delayed time horizon // measurement samples capturing measurements on the delayed time horizon magSample _mag_sample_delayed; baroSample _baro_sample_delayed; gpsSample _gps_sample_delayed; rangeSample _range_sample_delayed; airspeedSample _airspeed_sample_delayed; flowSample _flow_sample_delayed; outputSample _output_sample_delayed; // filter output on the delayed time horizon outputSample _output_new; // filter output on the non-delayed time horizon imuSample _imu_sample_new; // imu sample capturing the newest imu data uint64_t _imu_ticks; // counter for imu updates bool _imu_updated; // true if the ekf should update (completed downsampling process) bool _initialised; // true if the ekf interface instance (data buffering) is initialized bool _vehicle_armed; // vehicle arm status used to turn off functionality used on the ground bool _in_air; // we assume vehicle is in the air, set by the given landing detector bool _NED_origin_initialised; bool _gps_speed_valid; float _gps_speed_accuracy; // GPS receiver reported speed accuracy (m/s) struct map_projection_reference_s _pos_ref; // Contains WGS-84 position latitude and longitude (radians) float _gps_hpos_accuracy = 0.0f; // GPS receiver reported 1-sigma horizontal accuracy (m) bool _mag_healthy; // computed by mag innovation test float _yaw_test_ratio; // yaw innovation consistency check ratio float _mag_test_ratio[3]; // magnetometer XYZ innovation consistency check ratios float _vel_pos_test_ratio[6]; // velocity and position innovation consistency check ratios // data buffer instances RingBuffer _imu_buffer; RingBuffer _gps_buffer; RingBuffer _mag_buffer; RingBuffer _baro_buffer; RingBuffer _range_buffer; RingBuffer _airspeed_buffer; RingBuffer _flow_buffer; RingBuffer _output_buffer; uint64_t _time_last_imu; // timestamp of last imu sample in microseconds uint64_t _time_last_gps; // timestamp of last gps measurement in microseconds uint64_t _time_last_mag; // timestamp of last magnetometer measurement in microseconds uint64_t _time_last_baro; // timestamp of last barometer measurement in microseconds uint64_t _time_last_range; // timestamp of last range measurement in microseconds uint64_t _time_last_airspeed; // timestamp of last airspeed measurement in microseconds fault_status_t _fault_status; // allocate data buffers and intialise interface variables bool initialise_interface(uint64_t timestamp); // free buffer memory void unallocate_buffers(); float _mag_declination_gps; // magnetic declination returned by the geo library using the last valid GPS position (rad) float _mag_declination_to_save_deg; // magnetic declination to save to EKF2_MAG_DECL (deg) };