/**************************************************************************** * * Copyright (c) 2019 ECL Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #include #include #include "EKF/ekf.h" class EkfInitializationTest : public ::testing::Test { public: Ekf _ekf{}; // Basics sensors const uint32_t _imu_dt_us{4000}; // 250 Hz Period between IMU updates const uint32_t _baro_dt_us{12500}; // 80 Hz Period between barometer updates const uint32_t _mag_dt_us{12500}; // 80 Hz Period between magnetometer updates const uint32_t _gps_dt_us{200000}; // 5 Hz Period between GPS updates // Flags that control if a sensor is fused bool _fuse_imu{true}; bool _fuse_baro{true}; bool _fuse_mag{true}; bool _fuse_gps{false}; // GPS measurements are expected to not come in from beginning // GPS message gps_message _gps_message{}; uint32_t _update_dt_us{}; // greatest common divider of all basic sensor periods const uint32_t _init_duration_us{2000000}; // 2s Duration of // counter of how many sensor measurement are put into Ekf uint32_t _counter_imu{0}; uint32_t _counter_baro{0}; uint32_t _counter_mag{0}; uint32_t _t_us{0}; // Setup the Ekf with synthetic measurements void SetUp() override { _ekf.init(0); // setup gps message to reasonable default values _gps_message.time_usec = 0; _gps_message.lat = 473566094; _gps_message.lon = 85190237; _gps_message.alt = 422056; _gps_message.yaw = 0.0f; _gps_message.yaw_offset = 0.0f; _gps_message.fix_type = 3; _gps_message.eph = 0.5f; _gps_message.epv = 0.8f; _gps_message.sacc = 0.2f; _gps_message.vel_m_s = 0.0; _gps_message.vel_ned[0] = 0.0f; _gps_message.vel_ned[1] = 0.0f; _gps_message.vel_ned[2] = 0.0f; _gps_message.vel_ned_valid = 1; _gps_message.nsats = 16; _gps_message.gdop = 0.0f; update_with_const_sensors(_init_duration_us); // output how many sensor measurement were put into the EKF // std::cout << "Initialized EKF with:" << std::endl; // std::cout << "update_dt_us: " << _update_dt_us << std::endl; // std::cout << "counter_imu: " << _counter_imu << std::endl // << "counter_baro: " << _counter_baro << std::endl // << "counter_mag: " << _counter_mag << std::endl; } void update_with_const_sensors(uint32_t duration_us, Vector3f ang_vel = Vector3f{0.0f,0.0f,0.0f}, Vector3f accel = Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}, Vector3f mag_data = Vector3f{0.2f, 0.0f, 0.4f}, float baro_data = 122.2f) { // store start time uint32_t start_time_us = _t_us; // compute update time step such that we can update the basic sensor at different rates _update_dt_us = std::__gcd(_imu_dt_us,std::__gcd(_mag_dt_us,std::__gcd(_baro_dt_us,_gps_dt_us))); // update EKF with synthetic sensor measurements for( ; _t_us < start_time_us+duration_us; _t_us += _update_dt_us) { // Check which sensors update we should do if(_fuse_imu && !(_t_us %_imu_dt_us)) { // push imu data into estimator imuSample imu_sample_new; imu_sample_new.time_us = _t_us; imu_sample_new.delta_ang_dt = _imu_dt_us * 1.e-6f; imu_sample_new.delta_ang = ang_vel * imu_sample_new.delta_ang_dt; imu_sample_new.delta_vel_dt = _imu_dt_us * 1.e-6f; imu_sample_new.delta_vel = accel * imu_sample_new.delta_vel_dt; _ekf.setIMUData(imu_sample_new); _counter_imu++; } if(_fuse_baro && !(_t_us % _baro_dt_us)) { _ekf.setBaroData(_t_us,baro_data); _counter_baro++; } if(_fuse_mag && !(_t_us % _mag_dt_us)) { float mag[3]; mag_data.copyTo(mag); _ekf.setMagData(_t_us,mag); _counter_mag++; } if(_fuse_gps && !(_t_us % _gps_dt_us)) { _gps_message.time_usec = _t_us; _ekf.setGpsData(_t_us,_gps_message); _counter_mag++; } _ekf.update(); } } // Use this method to clean up any memory, network etc. after each test void TearDown() override { } }; TEST_F(EkfInitializationTest, tiltAlign) { // GIVEN: reasonable static sensor data for some duration // THEN: EKF should tilt align EXPECT_EQ(true,_ekf.attitude_valid()); } TEST_F(EkfInitializationTest, initialControlMode) { // GIVEN: reasonable static sensor data for some duration // THEN: EKF control status should be reasonable filter_control_status_u control_status; _ekf.get_control_mode(&control_status.value); EXPECT_EQ(1, (int) control_status.flags.tilt_align); EXPECT_EQ(1, (int) control_status.flags.yaw_align); EXPECT_EQ(0, (int) control_status.flags.gps); EXPECT_EQ(0, (int) control_status.flags.opt_flow); EXPECT_EQ(1, (int) control_status.flags.mag_hdg); EXPECT_EQ(0, (int) control_status.flags.mag_3D); EXPECT_EQ(0, (int) control_status.flags.mag_dec); EXPECT_EQ(0, (int) control_status.flags.in_air); EXPECT_EQ(0, (int) control_status.flags.wind); EXPECT_EQ(1, (int) control_status.flags.baro_hgt); EXPECT_EQ(0, (int) control_status.flags.rng_hgt); EXPECT_EQ(0, (int) control_status.flags.gps_hgt); EXPECT_EQ(0, (int) control_status.flags.ev_pos); EXPECT_EQ(0, (int) control_status.flags.ev_yaw); EXPECT_EQ(0, (int) control_status.flags.ev_hgt); EXPECT_EQ(0, (int) control_status.flags.fuse_beta); EXPECT_EQ(0, (int) control_status.flags.update_mag_states_only); EXPECT_EQ(0, (int) control_status.flags.fixed_wing); EXPECT_EQ(0, (int) control_status.flags.mag_fault); EXPECT_EQ(0, (int) control_status.flags.gnd_effect); EXPECT_EQ(0, (int) control_status.flags.rng_stuck); EXPECT_EQ(0, (int) control_status.flags.gps_yaw); EXPECT_EQ(0, (int) control_status.flags.mag_align_complete); EXPECT_EQ(0, (int) control_status.flags.ev_vel); EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z); } TEST_F(EkfInitializationTest, convergesToZero) { // GIVEN: initialized EKF with default IMU, baro and mag input for 2s // WHEN: Added more defautl sensor measurements update_with_const_sensors(4000000); // for further 4s float converged_pos[3]; float converged_vel[3]; float converged_accel_bias[3]; float converged_gyro_bias[3]; _ekf.get_position(converged_pos); _ekf.get_velocity(converged_vel); _ekf.get_accel_bias(converged_accel_bias); _ekf.get_gyro_bias(converged_gyro_bias); // THEN: EKF should stay or converge to zero for(int i=0; i<3; ++i) { EXPECT_NEAR(0.0f,converged_pos[i],0.001f); EXPECT_NEAR(0.0f,converged_vel[i],0.001f); EXPECT_NEAR(0.0f,converged_accel_bias[i],0.001f); EXPECT_NEAR(0.0f,converged_gyro_bias[i],0.001f); } } TEST_F(EkfInitializationTest, gpsFusion) { // GIVEN: initialized EKF with default IMU, baro and mag input for 2s // WHEN: setting GPS measurements for 11s, minimum GPS health time is set to 10 sec _fuse_gps = true; update_with_const_sensors(11000000,Vector3f{0.0f,0.0f,0.0f},Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}); // for further 3s // THEN: EKF should fuse GPS, but no other position sensor filter_control_status_u control_status; _ekf.get_control_mode(&control_status.value); EXPECT_EQ(1, (int) control_status.flags.tilt_align); EXPECT_EQ(1, (int) control_status.flags.yaw_align); EXPECT_EQ(1, (int) control_status.flags.gps); EXPECT_EQ(0, (int) control_status.flags.opt_flow); EXPECT_EQ(1, (int) control_status.flags.mag_hdg); EXPECT_EQ(0, (int) control_status.flags.mag_3D); EXPECT_EQ(0, (int) control_status.flags.mag_dec); EXPECT_EQ(0, (int) control_status.flags.in_air); EXPECT_EQ(0, (int) control_status.flags.wind); EXPECT_EQ(1, (int) control_status.flags.baro_hgt); EXPECT_EQ(0, (int) control_status.flags.rng_hgt); EXPECT_EQ(0, (int) control_status.flags.gps_hgt); EXPECT_EQ(0, (int) control_status.flags.ev_pos); EXPECT_EQ(0, (int) control_status.flags.ev_yaw); EXPECT_EQ(0, (int) control_status.flags.ev_hgt); EXPECT_EQ(0, (int) control_status.flags.fuse_beta); EXPECT_EQ(0, (int) control_status.flags.update_mag_states_only); EXPECT_EQ(0, (int) control_status.flags.fixed_wing); EXPECT_EQ(0, (int) control_status.flags.mag_fault); EXPECT_EQ(0, (int) control_status.flags.gnd_effect); EXPECT_EQ(0, (int) control_status.flags.rng_stuck); EXPECT_EQ(0, (int) control_status.flags.gps_yaw); EXPECT_EQ(0, (int) control_status.flags.mag_align_complete); EXPECT_EQ(0, (int) control_status.flags.ev_vel); EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z); } TEST_F(EkfInitializationTest, accleBiasEstimation) { // GIVEN: initialized EKF with default IMU, baro and mag input for 2s // WHEN: Added more sensor measurements with accel bias and gps measurements Vector3f accel_bias = {0.0f,0.0f,0.1f}; _fuse_gps = true; update_with_const_sensors(10000000,Vector3f{0.0f,0.0f,0.0f},Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}+accel_bias); // for further 10s float converged_pos[3]; float converged_vel[3]; float converged_accel_bias[3]; float converged_gyro_bias[3]; _ekf.get_position(converged_pos); _ekf.get_velocity(converged_vel); _ekf.get_accel_bias(converged_accel_bias); _ekf.get_gyro_bias(converged_gyro_bias); // THEN: EKF should estimate bias correctelly for(int i=0; i<3; ++i) { EXPECT_NEAR(0.0f,converged_pos[i],0.001f) << "i: " << i; EXPECT_NEAR(0.0f,converged_vel[i],0.001f) << "i: " << i; EXPECT_NEAR(accel_bias(i),converged_accel_bias[i],0.001f) << "i: " << i; EXPECT_NEAR(0.0f,converged_gyro_bias[i],0.001f) << "i: " << i; } } // TODO: Add sampling tests