/* * kalman.c * * Created on: 01.12.2010 * Author: Laurens Mackay */ #include "kalman.h" //#include "mavlink_debug.h" void kalman_init(kalman_t *kalman, int states, int measurements, m_elem a[], m_elem c[], m_elem gain_start[], m_elem gain[], m_elem x_apriori[], m_elem x_aposteriori[], int gainfactorsteps) { kalman->states = states; kalman->measurements = measurements; kalman->gainfactorsteps = gainfactorsteps; kalman->gainfactor = 0; //Create all matrices that are persistent kalman->a = matrix_create(states, states, a); kalman->c = matrix_create(measurements, states, c); kalman->gain_start = matrix_create(states, measurements, gain_start); kalman->gain = matrix_create(states, measurements, gain); kalman->x_apriori = matrix_create(states, 1, x_apriori); kalman->x_aposteriori = matrix_create(states, 1, x_aposteriori); } void kalman_predict(kalman_t *kalman) { matrix_mult(kalman->a, kalman->x_aposteriori, kalman->x_apriori); } void kalman_correct(kalman_t *kalman, m_elem measurement_a[], m_elem mask_a[]) { //create matrices from inputs matrix_t measurement = matrix_create(kalman->measurements, 1, measurement_a); matrix_t mask = matrix_create(kalman->measurements, 1, mask_a); //create temporary matrices m_elem gain_start_part_a[KALMAN_MAX_STATES * KALMAN_MAX_MEASUREMENTS] = { }; matrix_t gain_start_part = matrix_create(kalman->states, kalman->measurements, gain_start_part_a); m_elem gain_part_a[KALMAN_MAX_STATES * KALMAN_MAX_MEASUREMENTS] = { }; matrix_t gain_part = matrix_create(kalman->states, kalman->measurements, gain_part_a); m_elem gain_sum_a[KALMAN_MAX_STATES * KALMAN_MAX_MEASUREMENTS] = { }; matrix_t gain_sum = matrix_create(kalman->states, kalman->measurements, gain_sum_a); m_elem error_a[KALMAN_MAX_MEASUREMENTS * 1] = { }; matrix_t error = matrix_create(kalman->measurements, 1, error_a); m_elem measurement_estimate_a[KALMAN_MAX_MEASUREMENTS * 1] = { }; matrix_t measurement_estimate = matrix_create(kalman->measurements, 1, measurement_estimate_a); m_elem x_update_a[KALMAN_MAX_STATES * 1] = { }; matrix_t x_update = matrix_create(kalman->states, 1, x_update_a); //x(:,i+1)=xapriori+(gainfactor*[M_50(:,1) M(:,2)]+(1-gainfactor)*M_start)*(z-C*xapriori); //est=C*xapriori; matrix_mult(kalman->c, kalman->x_apriori, measurement_estimate); //error=(z-C*xapriori) = measurement-estimate matrix_sub(measurement, measurement_estimate, error); matrix_mult_element(error, mask, error); kalman->gainfactor = kalman->gainfactor * (1.0f - 1.0f / kalman->gainfactorsteps) + 1.0f * 1.0f / kalman->gainfactorsteps; matrix_mult_scalar(kalman->gainfactor, kalman->gain, gain_part); matrix_mult_scalar(1.0f - kalman->gainfactor, kalman->gain_start, gain_start_part); matrix_add(gain_start_part, gain_part, gain_sum); //gain*(z-C*xapriori) matrix_mult(gain_sum, error, x_update); //xaposteriori = xapriori + update matrix_add(kalman->x_apriori, x_update, kalman->x_aposteriori); // static int i=0; // if(i++==4){ // i=0; // float_vect3 out_kal; // out_kal.x = M(gain_sum,0,1); //// out_kal_z.x = z_measurement[1]; // out_kal.y = M(gain_sum,1,1); // out_kal.z = M(gain_sum,2,1); // debug_vect("out_kal", out_kal); // } } m_elem kalman_get_state(kalman_t *kalman, int state) { return M(kalman->x_aposteriori, state, 0); }