''' MAVLink protocol implementation (auto-generated by mavgen.py) Generated from: common.xml Note: this file has been auto-generated. DO NOT EDIT ''' import struct, array, mavutil, time, json WIRE_PROTOCOL_VERSION = "1.0" # some base types from mavlink_types.h MAVLINK_TYPE_CHAR = 0 MAVLINK_TYPE_UINT8_T = 1 MAVLINK_TYPE_INT8_T = 2 MAVLINK_TYPE_UINT16_T = 3 MAVLINK_TYPE_INT16_T = 4 MAVLINK_TYPE_UINT32_T = 5 MAVLINK_TYPE_INT32_T = 6 MAVLINK_TYPE_UINT64_T = 7 MAVLINK_TYPE_INT64_T = 8 MAVLINK_TYPE_FLOAT = 9 MAVLINK_TYPE_DOUBLE = 10 class MAVLink_header(object): '''MAVLink message header''' def __init__(self, msgId, mlen=0, seq=0, srcSystem=0, srcComponent=0): self.mlen = mlen self.seq = seq self.srcSystem = srcSystem self.srcComponent = srcComponent self.msgId = msgId def pack(self): return struct.pack('BBBBBB', 254, self.mlen, self.seq, self.srcSystem, self.srcComponent, self.msgId) class MAVLink_message(object): '''base MAVLink message class''' def __init__(self, msgId, name): self._header = MAVLink_header(msgId) self._payload = None self._msgbuf = None self._crc = None self._fieldnames = [] self._type = name def get_msgbuf(self): if isinstance(self._msgbuf, str): return self._msgbuf return self._msgbuf.tostring() def get_header(self): return self._header def get_payload(self): return self._payload def get_crc(self): return self._crc def get_fieldnames(self): return self._fieldnames def get_type(self): return self._type def get_msgId(self): return self._header.msgId def get_srcSystem(self): return self._header.srcSystem def get_srcComponent(self): return self._header.srcComponent def get_seq(self): return self._header.seq def __str__(self): ret = '%s {' % self._type for a in self._fieldnames: v = getattr(self, a) ret += '%s : %s, ' % (a, v) ret = ret[0:-2] + '}' return ret def to_dict(self): d = dict({}) d['mavpackettype'] = self._type for a in self._fieldnames: d[a] = getattr(self, a) return d def to_json(self): return json.dumps(self.to_dict) def pack(self, mav, crc_extra, payload): self._payload = payload self._header = MAVLink_header(self._header.msgId, len(payload), mav.seq, mav.srcSystem, mav.srcComponent) self._msgbuf = self._header.pack() + payload crc = mavutil.x25crc(self._msgbuf[1:]) if True: # using CRC extra crc.accumulate(chr(crc_extra)) self._crc = crc.crc self._msgbuf += struct.pack('<H', self._crc) return self._msgbuf # enums # MAV_AUTOPILOT MAV_AUTOPILOT_GENERIC = 0 # Generic autopilot, full support for everything MAV_AUTOPILOT_PIXHAWK = 1 # PIXHAWK autopilot, http://pixhawk.ethz.ch MAV_AUTOPILOT_SLUGS = 2 # SLUGS autopilot, http://slugsuav.soe.ucsc.edu MAV_AUTOPILOT_ARDUPILOTMEGA = 3 # ArduPilotMega / ArduCopter, http://diydrones.com MAV_AUTOPILOT_OPENPILOT = 4 # OpenPilot, http://openpilot.org MAV_AUTOPILOT_GENERIC_WAYPOINTS_ONLY = 5 # Generic autopilot only supporting simple waypoints MAV_AUTOPILOT_GENERIC_WAYPOINTS_AND_SIMPLE_NAVIGATION_ONLY = 6 # Generic autopilot supporting waypoints and other simple navigation # commands MAV_AUTOPILOT_GENERIC_MISSION_FULL = 7 # Generic autopilot supporting the full mission command set MAV_AUTOPILOT_INVALID = 8 # No valid autopilot, e.g. a GCS or other MAVLink component MAV_AUTOPILOT_PPZ = 9 # PPZ UAV - http://nongnu.org/paparazzi MAV_AUTOPILOT_UDB = 10 # UAV Dev Board MAV_AUTOPILOT_FP = 11 # FlexiPilot MAV_AUTOPILOT_PX4 = 12 # PX4 Autopilot - http://pixhawk.ethz.ch/px4/ MAV_AUTOPILOT_ENUM_END = 13 # # MAV_TYPE MAV_TYPE_GENERIC = 0 # Generic micro air vehicle. MAV_TYPE_FIXED_WING = 1 # Fixed wing aircraft. MAV_TYPE_QUADROTOR = 2 # Quadrotor MAV_TYPE_COAXIAL = 3 # Coaxial helicopter MAV_TYPE_HELICOPTER = 4 # Normal helicopter with tail rotor. MAV_TYPE_ANTENNA_TRACKER = 5 # Ground installation MAV_TYPE_GCS = 6 # Operator control unit / ground control station MAV_TYPE_AIRSHIP = 7 # Airship, controlled MAV_TYPE_FREE_BALLOON = 8 # Free balloon, uncontrolled MAV_TYPE_ROCKET = 9 # Rocket MAV_TYPE_GROUND_ROVER = 10 # Ground rover MAV_TYPE_SURFACE_BOAT = 11 # Surface vessel, boat, ship MAV_TYPE_SUBMARINE = 12 # Submarine MAV_TYPE_HEXAROTOR = 13 # Hexarotor MAV_TYPE_OCTOROTOR = 14 # Octorotor MAV_TYPE_TRICOPTER = 15 # Octorotor MAV_TYPE_FLAPPING_WING = 16 # Flapping wing MAV_TYPE_KITE = 17 # Flapping wing MAV_TYPE_ENUM_END = 18 # # MAV_MODE_FLAG MAV_MODE_FLAG_CUSTOM_MODE_ENABLED = 1 # 0b00000001 Reserved for future use. MAV_MODE_FLAG_TEST_ENABLED = 2 # 0b00000010 system has a test mode enabled. This flag is intended for # temporary system tests and should not be # used for stable implementations. MAV_MODE_FLAG_AUTO_ENABLED = 4 # 0b00000100 autonomous mode enabled, system finds its own goal # positions. Guided flag can be set or not, # depends on the actual implementation. MAV_MODE_FLAG_GUIDED_ENABLED = 8 # 0b00001000 guided mode enabled, system flies MISSIONs / mission items. MAV_MODE_FLAG_STABILIZE_ENABLED = 16 # 0b00010000 system stabilizes electronically its attitude (and # optionally position). It needs however # further control inputs to move around. MAV_MODE_FLAG_HIL_ENABLED = 32 # 0b00100000 hardware in the loop simulation. All motors / actuators are # blocked, but internal software is full # operational. MAV_MODE_FLAG_MANUAL_INPUT_ENABLED = 64 # 0b01000000 remote control input is enabled. MAV_MODE_FLAG_SAFETY_ARMED = 128 # 0b10000000 MAV safety set to armed. Motors are enabled / running / can # start. Ready to fly. MAV_MODE_FLAG_ENUM_END = 129 # # MAV_MODE_FLAG_DECODE_POSITION MAV_MODE_FLAG_DECODE_POSITION_CUSTOM_MODE = 1 # Eighth bit: 00000001 MAV_MODE_FLAG_DECODE_POSITION_TEST = 2 # Seventh bit: 00000010 MAV_MODE_FLAG_DECODE_POSITION_AUTO = 4 # Sixt bit: 00000100 MAV_MODE_FLAG_DECODE_POSITION_GUIDED = 8 # Fifth bit: 00001000 MAV_MODE_FLAG_DECODE_POSITION_STABILIZE = 16 # Fourth bit: 00010000 MAV_MODE_FLAG_DECODE_POSITION_HIL = 32 # Third bit: 00100000 MAV_MODE_FLAG_DECODE_POSITION_MANUAL = 64 # Second bit: 01000000 MAV_MODE_FLAG_DECODE_POSITION_SAFETY = 128 # First bit: 10000000 MAV_MODE_FLAG_DECODE_POSITION_ENUM_END = 129 # # MAV_GOTO MAV_GOTO_DO_HOLD = 0 # Hold at the current position. MAV_GOTO_DO_CONTINUE = 1 # Continue with the next item in mission execution. MAV_GOTO_HOLD_AT_CURRENT_POSITION = 2 # Hold at the current position of the system MAV_GOTO_HOLD_AT_SPECIFIED_POSITION = 3 # Hold at the position specified in the parameters of the DO_HOLD action MAV_GOTO_ENUM_END = 4 # # MAV_MODE MAV_MODE_PREFLIGHT = 0 # System is not ready to fly, booting, calibrating, etc. No flag is set. MAV_MODE_MANUAL_DISARMED = 64 # System is allowed to be active, under manual (RC) control, no # stabilization MAV_MODE_TEST_DISARMED = 66 # UNDEFINED mode. This solely depends on the autopilot - use with # caution, intended for developers only. MAV_MODE_STABILIZE_DISARMED = 80 # System is allowed to be active, under assisted RC control. MAV_MODE_GUIDED_DISARMED = 88 # System is allowed to be active, under autonomous control, manual # setpoint MAV_MODE_AUTO_DISARMED = 92 # System is allowed to be active, under autonomous control and # navigation (the trajectory is decided # onboard and not pre-programmed by MISSIONs) MAV_MODE_MANUAL_ARMED = 192 # System is allowed to be active, under manual (RC) control, no # stabilization MAV_MODE_TEST_ARMED = 194 # UNDEFINED mode. This solely depends on the autopilot - use with # caution, intended for developers only. MAV_MODE_STABILIZE_ARMED = 208 # System is allowed to be active, under assisted RC control. MAV_MODE_GUIDED_ARMED = 216 # System is allowed to be active, under autonomous control, manual # setpoint MAV_MODE_AUTO_ARMED = 220 # System is allowed to be active, under autonomous control and # navigation (the trajectory is decided # onboard and not pre-programmed by MISSIONs) MAV_MODE_ENUM_END = 221 # # MAV_STATE MAV_STATE_UNINIT = 0 # Uninitialized system, state is unknown. MAV_STATE_BOOT = 1 # System is booting up. MAV_STATE_CALIBRATING = 2 # System is calibrating and not flight-ready. MAV_STATE_STANDBY = 3 # System is grounded and on standby. It can be launched any time. MAV_STATE_ACTIVE = 4 # System is active and might be already airborne. Motors are engaged. MAV_STATE_CRITICAL = 5 # System is in a non-normal flight mode. It can however still navigate. MAV_STATE_EMERGENCY = 6 # System is in a non-normal flight mode. It lost control over parts or # over the whole airframe. It is in mayday and # going down. MAV_STATE_POWEROFF = 7 # System just initialized its power-down sequence, will shut down now. MAV_STATE_ENUM_END = 8 # # MAV_COMPONENT MAV_COMP_ID_ALL = 0 # MAV_COMP_ID_CAMERA = 100 # MAV_COMP_ID_SERVO1 = 140 # MAV_COMP_ID_SERVO2 = 141 # MAV_COMP_ID_SERVO3 = 142 # MAV_COMP_ID_SERVO4 = 143 # MAV_COMP_ID_SERVO5 = 144 # MAV_COMP_ID_SERVO6 = 145 # MAV_COMP_ID_SERVO7 = 146 # MAV_COMP_ID_SERVO8 = 147 # MAV_COMP_ID_SERVO9 = 148 # MAV_COMP_ID_SERVO10 = 149 # MAV_COMP_ID_SERVO11 = 150 # MAV_COMP_ID_SERVO12 = 151 # MAV_COMP_ID_SERVO13 = 152 # MAV_COMP_ID_SERVO14 = 153 # MAV_COMP_ID_MAPPER = 180 # MAV_COMP_ID_MISSIONPLANNER = 190 # MAV_COMP_ID_PATHPLANNER = 195 # MAV_COMP_ID_IMU = 200 # MAV_COMP_ID_IMU_2 = 201 # MAV_COMP_ID_IMU_3 = 202 # MAV_COMP_ID_GPS = 220 # MAV_COMP_ID_UDP_BRIDGE = 240 # MAV_COMP_ID_UART_BRIDGE = 241 # MAV_COMP_ID_SYSTEM_CONTROL = 250 # MAV_COMPONENT_ENUM_END = 251 # # MAV_FRAME MAV_FRAME_GLOBAL = 0 # Global coordinate frame, WGS84 coordinate system. First value / x: # latitude, second value / y: longitude, third # value / z: positive altitude over mean sea # level (MSL) MAV_FRAME_LOCAL_NED = 1 # Local coordinate frame, Z-up (x: north, y: east, z: down). MAV_FRAME_MISSION = 2 # NOT a coordinate frame, indicates a mission command. MAV_FRAME_GLOBAL_RELATIVE_ALT = 3 # Global coordinate frame, WGS84 coordinate system, relative altitude # over ground with respect to the home # position. First value / x: latitude, second # value / y: longitude, third value / z: # positive altitude with 0 being at the # altitude of the home location. MAV_FRAME_LOCAL_ENU = 4 # Local coordinate frame, Z-down (x: east, y: north, z: up) MAV_FRAME_ENUM_END = 5 # # MAVLINK_DATA_STREAM_TYPE MAVLINK_DATA_STREAM_IMG_JPEG = 1 # MAVLINK_DATA_STREAM_IMG_BMP = 2 # MAVLINK_DATA_STREAM_IMG_RAW8U = 3 # MAVLINK_DATA_STREAM_IMG_RAW32U = 4 # MAVLINK_DATA_STREAM_IMG_PGM = 5 # MAVLINK_DATA_STREAM_IMG_PNG = 6 # MAVLINK_DATA_STREAM_TYPE_ENUM_END = 7 # # MAV_CMD MAV_CMD_NAV_WAYPOINT = 16 # Navigate to MISSION. MAV_CMD_NAV_LOITER_UNLIM = 17 # Loiter around this MISSION an unlimited amount of time MAV_CMD_NAV_LOITER_TURNS = 18 # Loiter around this MISSION for X turns MAV_CMD_NAV_LOITER_TIME = 19 # Loiter around this MISSION for X seconds MAV_CMD_NAV_RETURN_TO_LAUNCH = 20 # Return to launch location MAV_CMD_NAV_LAND = 21 # Land at location MAV_CMD_NAV_TAKEOFF = 22 # Takeoff from ground / hand MAV_CMD_NAV_ROI = 80 # Sets the region of interest (ROI) for a sensor set or the vehicle # itself. This can then be used by the # vehicles control system to control the # vehicle attitude and the attitude of various # sensors such as cameras. MAV_CMD_NAV_PATHPLANNING = 81 # Control autonomous path planning on the MAV. MAV_CMD_NAV_LAST = 95 # NOP - This command is only used to mark the upper limit of the # NAV/ACTION commands in the enumeration MAV_CMD_CONDITION_DELAY = 112 # Delay mission state machine. MAV_CMD_CONDITION_CHANGE_ALT = 113 # Ascend/descend at rate. Delay mission state machine until desired # altitude reached. MAV_CMD_CONDITION_DISTANCE = 114 # Delay mission state machine until within desired distance of next NAV # point. MAV_CMD_CONDITION_YAW = 115 # Reach a certain target angle. MAV_CMD_CONDITION_LAST = 159 # NOP - This command is only used to mark the upper limit of the # CONDITION commands in the enumeration MAV_CMD_DO_SET_MODE = 176 # Set system mode. MAV_CMD_DO_JUMP = 177 # Jump to the desired command in the mission list. Repeat this action # only the specified number of times MAV_CMD_DO_CHANGE_SPEED = 178 # Change speed and/or throttle set points. MAV_CMD_DO_SET_HOME = 179 # Changes the home location either to the current location or a # specified location. MAV_CMD_DO_SET_PARAMETER = 180 # Set a system parameter. Caution! Use of this command requires # knowledge of the numeric enumeration value # of the parameter. MAV_CMD_DO_SET_RELAY = 181 # Set a relay to a condition. MAV_CMD_DO_REPEAT_RELAY = 182 # Cycle a relay on and off for a desired number of cyles with a desired # period. MAV_CMD_DO_SET_SERVO = 183 # Set a servo to a desired PWM value. MAV_CMD_DO_REPEAT_SERVO = 184 # Cycle a between its nominal setting and a desired PWM for a desired # number of cycles with a desired period. MAV_CMD_DO_CONTROL_VIDEO = 200 # Control onboard camera system. MAV_CMD_DO_LAST = 240 # NOP - This command is only used to mark the upper limit of the DO # commands in the enumeration MAV_CMD_PREFLIGHT_CALIBRATION = 241 # Trigger calibration. This command will be only accepted if in pre- # flight mode. MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS = 242 # Set sensor offsets. This command will be only accepted if in pre- # flight mode. MAV_CMD_PREFLIGHT_STORAGE = 245 # Request storage of different parameter values and logs. This command # will be only accepted if in pre-flight mode. MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN = 246 # Request the reboot or shutdown of system components. MAV_CMD_OVERRIDE_GOTO = 252 # Hold / continue the current action MAV_CMD_MISSION_START = 300 # start running a mission MAV_CMD_COMPONENT_ARM_DISARM = 400 # Arms / Disarms a component MAV_CMD_ENUM_END = 401 # # MAV_DATA_STREAM MAV_DATA_STREAM_ALL = 0 # Enable all data streams MAV_DATA_STREAM_RAW_SENSORS = 1 # Enable IMU_RAW, GPS_RAW, GPS_STATUS packets. MAV_DATA_STREAM_EXTENDED_STATUS = 2 # Enable GPS_STATUS, CONTROL_STATUS, AUX_STATUS MAV_DATA_STREAM_RC_CHANNELS = 3 # Enable RC_CHANNELS_SCALED, RC_CHANNELS_RAW, SERVO_OUTPUT_RAW MAV_DATA_STREAM_RAW_CONTROLLER = 4 # Enable ATTITUDE_CONTROLLER_OUTPUT, POSITION_CONTROLLER_OUTPUT, # NAV_CONTROLLER_OUTPUT. MAV_DATA_STREAM_POSITION = 6 # Enable LOCAL_POSITION, GLOBAL_POSITION/GLOBAL_POSITION_INT messages. MAV_DATA_STREAM_EXTRA1 = 10 # Dependent on the autopilot MAV_DATA_STREAM_EXTRA2 = 11 # Dependent on the autopilot MAV_DATA_STREAM_EXTRA3 = 12 # Dependent on the autopilot MAV_DATA_STREAM_ENUM_END = 13 # # MAV_ROI MAV_ROI_NONE = 0 # No region of interest. MAV_ROI_WPNEXT = 1 # Point toward next MISSION. MAV_ROI_WPINDEX = 2 # Point toward given MISSION. MAV_ROI_LOCATION = 3 # Point toward fixed location. MAV_ROI_TARGET = 4 # Point toward of given id. MAV_ROI_ENUM_END = 5 # # MAV_CMD_ACK MAV_CMD_ACK_OK = 1 # Command / mission item is ok. MAV_CMD_ACK_ERR_FAIL = 2 # Generic error message if none of the other reasons fails or if no # detailed error reporting is implemented. MAV_CMD_ACK_ERR_ACCESS_DENIED = 3 # The system is refusing to accept this command from this source / # communication partner. MAV_CMD_ACK_ERR_NOT_SUPPORTED = 4 # Command or mission item is not supported, other commands would be # accepted. MAV_CMD_ACK_ERR_COORDINATE_FRAME_NOT_SUPPORTED = 5 # The coordinate frame of this command / mission item is not supported. MAV_CMD_ACK_ERR_COORDINATES_OUT_OF_RANGE = 6 # The coordinate frame of this command is ok, but he coordinate values # exceed the safety limits of this system. # This is a generic error, please use the more # specific error messages below if possible. MAV_CMD_ACK_ERR_X_LAT_OUT_OF_RANGE = 7 # The X or latitude value is out of range. MAV_CMD_ACK_ERR_Y_LON_OUT_OF_RANGE = 8 # The Y or longitude value is out of range. MAV_CMD_ACK_ERR_Z_ALT_OUT_OF_RANGE = 9 # The Z or altitude value is out of range. MAV_CMD_ACK_ENUM_END = 10 # # MAV_PARAM_TYPE MAV_PARAM_TYPE_UINT8 = 1 # 8-bit unsigned integer MAV_PARAM_TYPE_INT8 = 2 # 8-bit signed integer MAV_PARAM_TYPE_UINT16 = 3 # 16-bit unsigned integer MAV_PARAM_TYPE_INT16 = 4 # 16-bit signed integer MAV_PARAM_TYPE_UINT32 = 5 # 32-bit unsigned integer MAV_PARAM_TYPE_INT32 = 6 # 32-bit signed integer MAV_PARAM_TYPE_UINT64 = 7 # 64-bit unsigned integer MAV_PARAM_TYPE_INT64 = 8 # 64-bit signed integer MAV_PARAM_TYPE_REAL32 = 9 # 32-bit floating-point MAV_PARAM_TYPE_REAL64 = 10 # 64-bit floating-point MAV_PARAM_TYPE_ENUM_END = 11 # # MAV_RESULT MAV_RESULT_ACCEPTED = 0 # Command ACCEPTED and EXECUTED MAV_RESULT_TEMPORARILY_REJECTED = 1 # Command TEMPORARY REJECTED/DENIED MAV_RESULT_DENIED = 2 # Command PERMANENTLY DENIED MAV_RESULT_UNSUPPORTED = 3 # Command UNKNOWN/UNSUPPORTED MAV_RESULT_FAILED = 4 # Command executed, but failed MAV_RESULT_ENUM_END = 5 # # MAV_MISSION_RESULT MAV_MISSION_ACCEPTED = 0 # mission accepted OK MAV_MISSION_ERROR = 1 # generic error / not accepting mission commands at all right now MAV_MISSION_UNSUPPORTED_FRAME = 2 # coordinate frame is not supported MAV_MISSION_UNSUPPORTED = 3 # command is not supported MAV_MISSION_NO_SPACE = 4 # mission item exceeds storage space MAV_MISSION_INVALID = 5 # one of the parameters has an invalid value MAV_MISSION_INVALID_PARAM1 = 6 # param1 has an invalid value MAV_MISSION_INVALID_PARAM2 = 7 # param2 has an invalid value MAV_MISSION_INVALID_PARAM3 = 8 # param3 has an invalid value MAV_MISSION_INVALID_PARAM4 = 9 # param4 has an invalid value MAV_MISSION_INVALID_PARAM5_X = 10 # x/param5 has an invalid value MAV_MISSION_INVALID_PARAM6_Y = 11 # y/param6 has an invalid value MAV_MISSION_INVALID_PARAM7 = 12 # param7 has an invalid value MAV_MISSION_INVALID_SEQUENCE = 13 # received waypoint out of sequence MAV_MISSION_DENIED = 14 # not accepting any mission commands from this communication partner MAV_MISSION_RESULT_ENUM_END = 15 # # MAV_SEVERITY MAV_SEVERITY_EMERGENCY = 0 # System is unusable. This is a "panic" condition. MAV_SEVERITY_ALERT = 1 # Action should be taken immediately. Indicates error in non-critical # systems. MAV_SEVERITY_CRITICAL = 2 # Action must be taken immediately. Indicates failure in a primary # system. MAV_SEVERITY_ERROR = 3 # Indicates an error in secondary/redundant systems. MAV_SEVERITY_WARNING = 4 # Indicates about a possible future error if this is not resolved within # a given timeframe. Example would be a low # battery warning. MAV_SEVERITY_NOTICE = 5 # An unusual event has occured, though not an error condition. This # should be investigated for the root cause. MAV_SEVERITY_INFO = 6 # Normal operational messages. Useful for logging. No action is required # for these messages. MAV_SEVERITY_DEBUG = 7 # Useful non-operational messages that can assist in debugging. These # should not occur during normal operation. MAV_SEVERITY_ENUM_END = 8 # # message IDs MAVLINK_MSG_ID_BAD_DATA = -1 MAVLINK_MSG_ID_HEARTBEAT = 0 MAVLINK_MSG_ID_SYS_STATUS = 1 MAVLINK_MSG_ID_SYSTEM_TIME = 2 MAVLINK_MSG_ID_PING = 4 MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL = 5 MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK = 6 MAVLINK_MSG_ID_AUTH_KEY = 7 MAVLINK_MSG_ID_SET_MODE = 11 MAVLINK_MSG_ID_PARAM_REQUEST_READ = 20 MAVLINK_MSG_ID_PARAM_REQUEST_LIST = 21 MAVLINK_MSG_ID_PARAM_VALUE = 22 MAVLINK_MSG_ID_PARAM_SET = 23 MAVLINK_MSG_ID_GPS_RAW_INT = 24 MAVLINK_MSG_ID_GPS_STATUS = 25 MAVLINK_MSG_ID_SCALED_IMU = 26 MAVLINK_MSG_ID_RAW_IMU = 27 MAVLINK_MSG_ID_RAW_PRESSURE = 28 MAVLINK_MSG_ID_SCALED_PRESSURE = 29 MAVLINK_MSG_ID_ATTITUDE = 30 MAVLINK_MSG_ID_ATTITUDE_QUATERNION = 31 MAVLINK_MSG_ID_LOCAL_POSITION_NED = 32 MAVLINK_MSG_ID_GLOBAL_POSITION_INT = 33 MAVLINK_MSG_ID_RC_CHANNELS_SCALED = 34 MAVLINK_MSG_ID_RC_CHANNELS_RAW = 35 MAVLINK_MSG_ID_SERVO_OUTPUT_RAW = 36 MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST = 37 MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST = 38 MAVLINK_MSG_ID_MISSION_ITEM = 39 MAVLINK_MSG_ID_MISSION_REQUEST = 40 MAVLINK_MSG_ID_MISSION_SET_CURRENT = 41 MAVLINK_MSG_ID_MISSION_CURRENT = 42 MAVLINK_MSG_ID_MISSION_REQUEST_LIST = 43 MAVLINK_MSG_ID_MISSION_COUNT = 44 MAVLINK_MSG_ID_MISSION_CLEAR_ALL = 45 MAVLINK_MSG_ID_MISSION_ITEM_REACHED = 46 MAVLINK_MSG_ID_MISSION_ACK = 47 MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN = 48 MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN = 49 MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT = 50 MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT = 51 MAVLINK_MSG_ID_GLOBAL_POSITION_SETPOINT_INT = 52 MAVLINK_MSG_ID_SET_GLOBAL_POSITION_SETPOINT_INT = 53 MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA = 54 MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA = 55 MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_THRUST = 56 MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_SPEED_THRUST = 57 MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT = 58 MAVLINK_MSG_ID_ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT = 59 MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT = 60 MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST = 61 MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT = 62 MAVLINK_MSG_ID_SET_QUAD_SWARM_LED_ROLL_PITCH_YAW_THRUST = 63 MAVLINK_MSG_ID_STATE_CORRECTION = 64 MAVLINK_MSG_ID_REQUEST_DATA_STREAM = 66 MAVLINK_MSG_ID_DATA_STREAM = 67 MAVLINK_MSG_ID_MANUAL_CONTROL = 69 MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE = 70 MAVLINK_MSG_ID_VFR_HUD = 74 MAVLINK_MSG_ID_COMMAND_LONG = 76 MAVLINK_MSG_ID_COMMAND_ACK = 77 MAVLINK_MSG_ID_ROLL_PITCH_YAW_RATES_THRUST_SETPOINT = 80 MAVLINK_MSG_ID_MANUAL_SETPOINT = 81 MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET = 89 MAVLINK_MSG_ID_HIL_STATE = 90 MAVLINK_MSG_ID_HIL_CONTROLS = 91 MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW = 92 MAVLINK_MSG_ID_OPTICAL_FLOW = 100 MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE = 101 MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE = 102 MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE = 103 MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE = 104 MAVLINK_MSG_ID_HIGHRES_IMU = 105 MAVLINK_MSG_ID_FILE_TRANSFER_START = 110 MAVLINK_MSG_ID_FILE_TRANSFER_DIR_LIST = 111 MAVLINK_MSG_ID_FILE_TRANSFER_RES = 112 MAVLINK_MSG_ID_BATTERY_STATUS = 147 MAVLINK_MSG_ID_SETPOINT_8DOF = 148 MAVLINK_MSG_ID_SETPOINT_6DOF = 149 MAVLINK_MSG_ID_MEMORY_VECT = 249 MAVLINK_MSG_ID_DEBUG_VECT = 250 MAVLINK_MSG_ID_NAMED_VALUE_FLOAT = 251 MAVLINK_MSG_ID_NAMED_VALUE_INT = 252 MAVLINK_MSG_ID_STATUSTEXT = 253 MAVLINK_MSG_ID_DEBUG = 254 class MAVLink_heartbeat_message(MAVLink_message): ''' The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). ''' def __init__(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HEARTBEAT, 'HEARTBEAT') self._fieldnames = ['type', 'autopilot', 'base_mode', 'custom_mode', 'system_status', 'mavlink_version'] self.type = type self.autopilot = autopilot self.base_mode = base_mode self.custom_mode = custom_mode self.system_status = system_status self.mavlink_version = mavlink_version def pack(self, mav): return MAVLink_message.pack(self, mav, 50, struct.pack('<IBBBBB', self.custom_mode, self.type, self.autopilot, self.base_mode, self.system_status, self.mavlink_version)) class MAVLink_sys_status_message(MAVLink_message): ''' The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows wether the system is currently active or not and if an emergency occured. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occured it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout. ''' def __init__(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SYS_STATUS, 'SYS_STATUS') self._fieldnames = ['onboard_control_sensors_present', 'onboard_control_sensors_enabled', 'onboard_control_sensors_health', 'load', 'voltage_battery', 'current_battery', 'battery_remaining', 'drop_rate_comm', 'errors_comm', 'errors_count1', 'errors_count2', 'errors_count3', 'errors_count4'] self.onboard_control_sensors_present = onboard_control_sensors_present self.onboard_control_sensors_enabled = onboard_control_sensors_enabled self.onboard_control_sensors_health = onboard_control_sensors_health self.load = load self.voltage_battery = voltage_battery self.current_battery = current_battery self.battery_remaining = battery_remaining self.drop_rate_comm = drop_rate_comm self.errors_comm = errors_comm self.errors_count1 = errors_count1 self.errors_count2 = errors_count2 self.errors_count3 = errors_count3 self.errors_count4 = errors_count4 def pack(self, mav): return MAVLink_message.pack(self, mav, 124, struct.pack('<IIIHHhHHHHHHb', self.onboard_control_sensors_present, self.onboard_control_sensors_enabled, self.onboard_control_sensors_health, self.load, self.voltage_battery, self.current_battery, self.drop_rate_comm, self.errors_comm, self.errors_count1, self.errors_count2, self.errors_count3, self.errors_count4, self.battery_remaining)) class MAVLink_system_time_message(MAVLink_message): ''' The system time is the time of the master clock, typically the computer clock of the main onboard computer. ''' def __init__(self, time_unix_usec, time_boot_ms): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SYSTEM_TIME, 'SYSTEM_TIME') self._fieldnames = ['time_unix_usec', 'time_boot_ms'] self.time_unix_usec = time_unix_usec self.time_boot_ms = time_boot_ms def pack(self, mav): return MAVLink_message.pack(self, mav, 137, struct.pack('<QI', self.time_unix_usec, self.time_boot_ms)) class MAVLink_ping_message(MAVLink_message): ''' A ping message either requesting or responding to a ping. This allows to measure the system latencies, including serial port, radio modem and UDP connections. ''' def __init__(self, time_usec, seq, target_system, target_component): MAVLink_message.__init__(self, MAVLINK_MSG_ID_PING, 'PING') self._fieldnames = ['time_usec', 'seq', 'target_system', 'target_component'] self.time_usec = time_usec self.seq = seq self.target_system = target_system self.target_component = target_component def pack(self, mav): return MAVLink_message.pack(self, mav, 237, struct.pack('<QIBB', self.time_usec, self.seq, self.target_system, self.target_component)) class MAVLink_change_operator_control_message(MAVLink_message): ''' Request to control this MAV ''' def __init__(self, target_system, control_request, version, passkey): MAVLink_message.__init__(self, MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL, 'CHANGE_OPERATOR_CONTROL') self._fieldnames = ['target_system', 'control_request', 'version', 'passkey'] self.target_system = target_system self.control_request = control_request self.version = version self.passkey = passkey def pack(self, mav): return MAVLink_message.pack(self, mav, 217, struct.pack('<BBB25s', self.target_system, self.control_request, self.version, self.passkey)) class MAVLink_change_operator_control_ack_message(MAVLink_message): ''' Accept / deny control of this MAV ''' def __init__(self, gcs_system_id, control_request, ack): MAVLink_message.__init__(self, MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK, 'CHANGE_OPERATOR_CONTROL_ACK') self._fieldnames = ['gcs_system_id', 'control_request', 'ack'] self.gcs_system_id = gcs_system_id self.control_request = control_request self.ack = ack def pack(self, mav): return MAVLink_message.pack(self, mav, 104, struct.pack('<BBB', self.gcs_system_id, self.control_request, self.ack)) class MAVLink_auth_key_message(MAVLink_message): ''' Emit an encrypted signature / key identifying this system. PLEASE NOTE: This protocol has been kept simple, so transmitting the key requires an encrypted channel for true safety. ''' def __init__(self, key): MAVLink_message.__init__(self, MAVLINK_MSG_ID_AUTH_KEY, 'AUTH_KEY') self._fieldnames = ['key'] self.key = key def pack(self, mav): return MAVLink_message.pack(self, mav, 119, struct.pack('<32s', self.key)) class MAVLink_set_mode_message(MAVLink_message): ''' Set the system mode, as defined by enum MAV_MODE. There is no target component id as the mode is by definition for the overall aircraft, not only for one component. ''' def __init__(self, target_system, base_mode, custom_mode): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_MODE, 'SET_MODE') self._fieldnames = ['target_system', 'base_mode', 'custom_mode'] self.target_system = target_system self.base_mode = base_mode self.custom_mode = custom_mode def pack(self, mav): return MAVLink_message.pack(self, mav, 89, struct.pack('<IBB', self.custom_mode, self.target_system, self.base_mode)) class MAVLink_param_request_read_message(MAVLink_message): ''' Request to read the onboard parameter with the param_id string id. Onboard parameters are stored as key[const char*] -> value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code. ''' def __init__(self, target_system, target_component, param_id, param_index): MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_REQUEST_READ, 'PARAM_REQUEST_READ') self._fieldnames = ['target_system', 'target_component', 'param_id', 'param_index'] self.target_system = target_system self.target_component = target_component self.param_id = param_id self.param_index = param_index def pack(self, mav): return MAVLink_message.pack(self, mav, 214, struct.pack('<hBB16s', self.param_index, self.target_system, self.target_component, self.param_id)) class MAVLink_param_request_list_message(MAVLink_message): ''' Request all parameters of this component. After his request, all parameters are emitted. ''' def __init__(self, target_system, target_component): MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_REQUEST_LIST, 'PARAM_REQUEST_LIST') self._fieldnames = ['target_system', 'target_component'] self.target_system = target_system self.target_component = target_component def pack(self, mav): return MAVLink_message.pack(self, mav, 159, struct.pack('<BB', self.target_system, self.target_component)) class MAVLink_param_value_message(MAVLink_message): ''' Emit the value of a onboard parameter. The inclusion of param_count and param_index in the message allows the recipient to keep track of received parameters and allows him to re-request missing parameters after a loss or timeout. ''' def __init__(self, param_id, param_value, param_type, param_count, param_index): MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_VALUE, 'PARAM_VALUE') self._fieldnames = ['param_id', 'param_value', 'param_type', 'param_count', 'param_index'] self.param_id = param_id self.param_value = param_value self.param_type = param_type self.param_count = param_count self.param_index = param_index def pack(self, mav): return MAVLink_message.pack(self, mav, 220, struct.pack('<fHH16sB', self.param_value, self.param_count, self.param_index, self.param_id, self.param_type)) class MAVLink_param_set_message(MAVLink_message): ''' Set a parameter value TEMPORARILY to RAM. It will be reset to default on system reboot. Send the ACTION MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents to EEPROM. IMPORTANT: The receiving component should acknowledge the new parameter value by sending a param_value message to all communication partners. This will also ensure that multiple GCS all have an up-to-date list of all parameters. If the sending GCS did not receive a PARAM_VALUE message within its timeout time, it should re-send the PARAM_SET message. ''' def __init__(self, target_system, target_component, param_id, param_value, param_type): MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_SET, 'PARAM_SET') self._fieldnames = ['target_system', 'target_component', 'param_id', 'param_value', 'param_type'] self.target_system = target_system self.target_component = target_component self.param_id = param_id self.param_value = param_value self.param_type = param_type def pack(self, mav): return MAVLink_message.pack(self, mav, 168, struct.pack('<fBB16sB', self.param_value, self.target_system, self.target_component, self.param_id, self.param_type)) class MAVLink_gps_raw_int_message(MAVLink_message): ''' The global position, as returned by the Global Positioning System (GPS). This is NOT the global position estimate of the system, but rather a RAW sensor value. See message GLOBAL_POSITION for the global position estimate. Coordinate frame is right-handed, Z-axis up (GPS frame). ''' def __init__(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GPS_RAW_INT, 'GPS_RAW_INT') self._fieldnames = ['time_usec', 'fix_type', 'lat', 'lon', 'alt', 'eph', 'epv', 'vel', 'cog', 'satellites_visible'] self.time_usec = time_usec self.fix_type = fix_type self.lat = lat self.lon = lon self.alt = alt self.eph = eph self.epv = epv self.vel = vel self.cog = cog self.satellites_visible = satellites_visible def pack(self, mav): return MAVLink_message.pack(self, mav, 24, struct.pack('<QiiiHHHHBB', self.time_usec, self.lat, self.lon, self.alt, self.eph, self.epv, self.vel, self.cog, self.fix_type, self.satellites_visible)) class MAVLink_gps_status_message(MAVLink_message): ''' The positioning status, as reported by GPS. This message is intended to display status information about each satellite visible to the receiver. See message GLOBAL_POSITION for the global position estimate. This message can contain information for up to 20 satellites. ''' def __init__(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GPS_STATUS, 'GPS_STATUS') self._fieldnames = ['satellites_visible', 'satellite_prn', 'satellite_used', 'satellite_elevation', 'satellite_azimuth', 'satellite_snr'] self.satellites_visible = satellites_visible self.satellite_prn = satellite_prn self.satellite_used = satellite_used self.satellite_elevation = satellite_elevation self.satellite_azimuth = satellite_azimuth self.satellite_snr = satellite_snr def pack(self, mav): return MAVLink_message.pack(self, mav, 23, struct.pack('<B20s20s20s20s20s', self.satellites_visible, self.satellite_prn, self.satellite_used, self.satellite_elevation, self.satellite_azimuth, self.satellite_snr)) class MAVLink_scaled_imu_message(MAVLink_message): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should contain the scaled values to the described units ''' def __init__(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SCALED_IMU, 'SCALED_IMU') self._fieldnames = ['time_boot_ms', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag'] self.time_boot_ms = time_boot_ms self.xacc = xacc self.yacc = yacc self.zacc = zacc self.xgyro = xgyro self.ygyro = ygyro self.zgyro = zgyro self.xmag = xmag self.ymag = ymag self.zmag = zmag def pack(self, mav): return MAVLink_message.pack(self, mav, 170, struct.pack('<Ihhhhhhhhh', self.time_boot_ms, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag)) class MAVLink_raw_imu_message(MAVLink_message): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should always contain the true raw values without any scaling to allow data capture and system debugging. ''' def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): MAVLink_message.__init__(self, MAVLINK_MSG_ID_RAW_IMU, 'RAW_IMU') self._fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag'] self.time_usec = time_usec self.xacc = xacc self.yacc = yacc self.zacc = zacc self.xgyro = xgyro self.ygyro = ygyro self.zgyro = zgyro self.xmag = xmag self.ymag = ymag self.zmag = zmag def pack(self, mav): return MAVLink_message.pack(self, mav, 144, struct.pack('<Qhhhhhhhhh', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag)) class MAVLink_raw_pressure_message(MAVLink_message): ''' The RAW pressure readings for the typical setup of one absolute pressure and one differential pressure sensor. The sensor values should be the raw, UNSCALED ADC values. ''' def __init__(self, time_usec, press_abs, press_diff1, press_diff2, temperature): MAVLink_message.__init__(self, MAVLINK_MSG_ID_RAW_PRESSURE, 'RAW_PRESSURE') self._fieldnames = ['time_usec', 'press_abs', 'press_diff1', 'press_diff2', 'temperature'] self.time_usec = time_usec self.press_abs = press_abs self.press_diff1 = press_diff1 self.press_diff2 = press_diff2 self.temperature = temperature def pack(self, mav): return MAVLink_message.pack(self, mav, 67, struct.pack('<Qhhhh', self.time_usec, self.press_abs, self.press_diff1, self.press_diff2, self.temperature)) class MAVLink_scaled_pressure_message(MAVLink_message): ''' The pressure readings for the typical setup of one absolute and differential pressure sensor. The units are as specified in each field. ''' def __init__(self, time_boot_ms, press_abs, press_diff, temperature): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SCALED_PRESSURE, 'SCALED_PRESSURE') self._fieldnames = ['time_boot_ms', 'press_abs', 'press_diff', 'temperature'] self.time_boot_ms = time_boot_ms self.press_abs = press_abs self.press_diff = press_diff self.temperature = temperature def pack(self, mav): return MAVLink_message.pack(self, mav, 115, struct.pack('<Iffh', self.time_boot_ms, self.press_abs, self.press_diff, self.temperature)) class MAVLink_attitude_message(MAVLink_message): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right). ''' def __init__(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed): MAVLink_message.__init__(self, MAVLINK_MSG_ID_ATTITUDE, 'ATTITUDE') self._fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed'] self.time_boot_ms = time_boot_ms self.roll = roll self.pitch = pitch self.yaw = yaw self.rollspeed = rollspeed self.pitchspeed = pitchspeed self.yawspeed = yawspeed def pack(self, mav): return MAVLink_message.pack(self, mav, 39, struct.pack('<Iffffff', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed)) class MAVLink_attitude_quaternion_message(MAVLink_message): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right), expressed as quaternion. ''' def __init__(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed): MAVLink_message.__init__(self, MAVLINK_MSG_ID_ATTITUDE_QUATERNION, 'ATTITUDE_QUATERNION') self._fieldnames = ['time_boot_ms', 'q1', 'q2', 'q3', 'q4', 'rollspeed', 'pitchspeed', 'yawspeed'] self.time_boot_ms = time_boot_ms self.q1 = q1 self.q2 = q2 self.q3 = q3 self.q4 = q4 self.rollspeed = rollspeed self.pitchspeed = pitchspeed self.yawspeed = yawspeed def pack(self, mav): return MAVLink_message.pack(self, mav, 246, struct.pack('<Ifffffff', self.time_boot_ms, self.q1, self.q2, self.q3, self.q4, self.rollspeed, self.pitchspeed, self.yawspeed)) class MAVLink_local_position_ned_message(MAVLink_message): ''' The filtered local position (e.g. fused computer vision and accelerometers). Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) ''' def __init__(self, time_boot_ms, x, y, z, vx, vy, vz): MAVLink_message.__init__(self, MAVLINK_MSG_ID_LOCAL_POSITION_NED, 'LOCAL_POSITION_NED') self._fieldnames = ['time_boot_ms', 'x', 'y', 'z', 'vx', 'vy', 'vz'] self.time_boot_ms = time_boot_ms self.x = x self.y = y self.z = z self.vx = vx self.vy = vy self.vz = vz def pack(self, mav): return MAVLink_message.pack(self, mav, 185, struct.pack('<Iffffff', self.time_boot_ms, self.x, self.y, self.z, self.vx, self.vy, self.vz)) class MAVLink_global_position_int_message(MAVLink_message): ''' The filtered global position (e.g. fused GPS and accelerometers). The position is in GPS-frame (right-handed, Z-up). It is designed as scaled integer message since the resolution of float is not sufficient. ''' def __init__(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_POSITION_INT, 'GLOBAL_POSITION_INT') self._fieldnames = ['time_boot_ms', 'lat', 'lon', 'alt', 'relative_alt', 'vx', 'vy', 'vz', 'hdg'] self.time_boot_ms = time_boot_ms self.lat = lat self.lon = lon self.alt = alt self.relative_alt = relative_alt self.vx = vx self.vy = vy self.vz = vz self.hdg = hdg def pack(self, mav): return MAVLink_message.pack(self, mav, 104, struct.pack('<IiiiihhhH', self.time_boot_ms, self.lat, self.lon, self.alt, self.relative_alt, self.vx, self.vy, self.vz, self.hdg)) class MAVLink_rc_channels_scaled_message(MAVLink_message): ''' The scaled values of the RC channels received. (-100%) -10000, (0%) 0, (100%) 10000. Channels that are inactive should be set to 65535. ''' def __init__(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi): MAVLink_message.__init__(self, MAVLINK_MSG_ID_RC_CHANNELS_SCALED, 'RC_CHANNELS_SCALED') self._fieldnames = ['time_boot_ms', 'port', 'chan1_scaled', 'chan2_scaled', 'chan3_scaled', 'chan4_scaled', 'chan5_scaled', 'chan6_scaled', 'chan7_scaled', 'chan8_scaled', 'rssi'] self.time_boot_ms = time_boot_ms self.port = port self.chan1_scaled = chan1_scaled self.chan2_scaled = chan2_scaled self.chan3_scaled = chan3_scaled self.chan4_scaled = chan4_scaled self.chan5_scaled = chan5_scaled self.chan6_scaled = chan6_scaled self.chan7_scaled = chan7_scaled self.chan8_scaled = chan8_scaled self.rssi = rssi def pack(self, mav): return MAVLink_message.pack(self, mav, 237, struct.pack('<IhhhhhhhhBB', self.time_boot_ms, self.chan1_scaled, self.chan2_scaled, self.chan3_scaled, self.chan4_scaled, self.chan5_scaled, self.chan6_scaled, self.chan7_scaled, self.chan8_scaled, self.port, self.rssi)) class MAVLink_rc_channels_raw_message(MAVLink_message): ''' The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. ''' def __init__(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi): MAVLink_message.__init__(self, MAVLINK_MSG_ID_RC_CHANNELS_RAW, 'RC_CHANNELS_RAW') self._fieldnames = ['time_boot_ms', 'port', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'rssi'] self.time_boot_ms = time_boot_ms self.port = port self.chan1_raw = chan1_raw self.chan2_raw = chan2_raw self.chan3_raw = chan3_raw self.chan4_raw = chan4_raw self.chan5_raw = chan5_raw self.chan6_raw = chan6_raw self.chan7_raw = chan7_raw self.chan8_raw = chan8_raw self.rssi = rssi def pack(self, mav): return MAVLink_message.pack(self, mav, 244, struct.pack('<IHHHHHHHHBB', self.time_boot_ms, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.port, self.rssi)) class MAVLink_servo_output_raw_message(MAVLink_message): ''' The RAW values of the servo outputs (for RC input from the remote, use the RC_CHANNELS messages). The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. ''' def __init__(self, time_boot_ms, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, 'SERVO_OUTPUT_RAW') self._fieldnames = ['time_boot_ms', 'port', 'servo1_raw', 'servo2_raw', 'servo3_raw', 'servo4_raw', 'servo5_raw', 'servo6_raw', 'servo7_raw', 'servo8_raw'] self.time_boot_ms = time_boot_ms self.port = port self.servo1_raw = servo1_raw self.servo2_raw = servo2_raw self.servo3_raw = servo3_raw self.servo4_raw = servo4_raw self.servo5_raw = servo5_raw self.servo6_raw = servo6_raw self.servo7_raw = servo7_raw self.servo8_raw = servo8_raw def pack(self, mav): return MAVLink_message.pack(self, mav, 242, struct.pack('<IHHHHHHHHB', self.time_boot_ms, self.servo1_raw, self.servo2_raw, self.servo3_raw, self.servo4_raw, self.servo5_raw, self.servo6_raw, self.servo7_raw, self.servo8_raw, self.port)) class MAVLink_mission_request_partial_list_message(MAVLink_message): ''' Request a partial list of mission items from the system/component. http://qgroundcontrol.org/mavlink/waypoint_protocol. If start and end index are the same, just send one waypoint. ''' def __init__(self, target_system, target_component, start_index, end_index): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST, 'MISSION_REQUEST_PARTIAL_LIST') self._fieldnames = ['target_system', 'target_component', 'start_index', 'end_index'] self.target_system = target_system self.target_component = target_component self.start_index = start_index self.end_index = end_index def pack(self, mav): return MAVLink_message.pack(self, mav, 212, struct.pack('<hhBB', self.start_index, self.end_index, self.target_system, self.target_component)) class MAVLink_mission_write_partial_list_message(MAVLink_message): ''' This message is sent to the MAV to write a partial list. If start index == end index, only one item will be transmitted / updated. If the start index is NOT 0 and above the current list size, this request should be REJECTED! ''' def __init__(self, target_system, target_component, start_index, end_index): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST, 'MISSION_WRITE_PARTIAL_LIST') self._fieldnames = ['target_system', 'target_component', 'start_index', 'end_index'] self.target_system = target_system self.target_component = target_component self.start_index = start_index self.end_index = end_index def pack(self, mav): return MAVLink_message.pack(self, mav, 9, struct.pack('<hhBB', self.start_index, self.end_index, self.target_system, self.target_component)) class MAVLink_mission_item_message(MAVLink_message): ''' Message encoding a mission item. This message is emitted to announce the presence of a mission item and to set a mission item on the system. The mission item can be either in x, y, z meters (type: LOCAL) or x:lat, y:lon, z:altitude. Local frame is Z-down, right handed (NED), global frame is Z-up, right handed (ENU). See also http://qgroundcontrol.org/mavlink/waypoint_protocol. ''' def __init__(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_ITEM, 'MISSION_ITEM') self._fieldnames = ['target_system', 'target_component', 'seq', 'frame', 'command', 'current', 'autocontinue', 'param1', 'param2', 'param3', 'param4', 'x', 'y', 'z'] self.target_system = target_system self.target_component = target_component self.seq = seq self.frame = frame self.command = command self.current = current self.autocontinue = autocontinue self.param1 = param1 self.param2 = param2 self.param3 = param3 self.param4 = param4 self.x = x self.y = y self.z = z def pack(self, mav): return MAVLink_message.pack(self, mav, 254, struct.pack('<fffffffHHBBBBB', self.param1, self.param2, self.param3, self.param4, self.x, self.y, self.z, self.seq, self.command, self.target_system, self.target_component, self.frame, self.current, self.autocontinue)) class MAVLink_mission_request_message(MAVLink_message): ''' Request the information of the mission item with the sequence number seq. The response of the system to this message should be a MISSION_ITEM message. http://qgroundcontrol.org/mavlink/waypoint_protocol ''' def __init__(self, target_system, target_component, seq): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_REQUEST, 'MISSION_REQUEST') self._fieldnames = ['target_system', 'target_component', 'seq'] self.target_system = target_system self.target_component = target_component self.seq = seq def pack(self, mav): return MAVLink_message.pack(self, mav, 230, struct.pack('<HBB', self.seq, self.target_system, self.target_component)) class MAVLink_mission_set_current_message(MAVLink_message): ''' Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in- between). ''' def __init__(self, target_system, target_component, seq): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_SET_CURRENT, 'MISSION_SET_CURRENT') self._fieldnames = ['target_system', 'target_component', 'seq'] self.target_system = target_system self.target_component = target_component self.seq = seq def pack(self, mav): return MAVLink_message.pack(self, mav, 28, struct.pack('<HBB', self.seq, self.target_system, self.target_component)) class MAVLink_mission_current_message(MAVLink_message): ''' Message that announces the sequence number of the current active mission item. The MAV will fly towards this mission item. ''' def __init__(self, seq): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_CURRENT, 'MISSION_CURRENT') self._fieldnames = ['seq'] self.seq = seq def pack(self, mav): return MAVLink_message.pack(self, mav, 28, struct.pack('<H', self.seq)) class MAVLink_mission_request_list_message(MAVLink_message): ''' Request the overall list of mission items from the system/component. ''' def __init__(self, target_system, target_component): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_REQUEST_LIST, 'MISSION_REQUEST_LIST') self._fieldnames = ['target_system', 'target_component'] self.target_system = target_system self.target_component = target_component def pack(self, mav): return MAVLink_message.pack(self, mav, 132, struct.pack('<BB', self.target_system, self.target_component)) class MAVLink_mission_count_message(MAVLink_message): ''' This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of MISSIONs. ''' def __init__(self, target_system, target_component, count): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_COUNT, 'MISSION_COUNT') self._fieldnames = ['target_system', 'target_component', 'count'] self.target_system = target_system self.target_component = target_component self.count = count def pack(self, mav): return MAVLink_message.pack(self, mav, 221, struct.pack('<HBB', self.count, self.target_system, self.target_component)) class MAVLink_mission_clear_all_message(MAVLink_message): ''' Delete all mission items at once. ''' def __init__(self, target_system, target_component): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_CLEAR_ALL, 'MISSION_CLEAR_ALL') self._fieldnames = ['target_system', 'target_component'] self.target_system = target_system self.target_component = target_component def pack(self, mav): return MAVLink_message.pack(self, mav, 232, struct.pack('<BB', self.target_system, self.target_component)) class MAVLink_mission_item_reached_message(MAVLink_message): ''' A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION. ''' def __init__(self, seq): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_ITEM_REACHED, 'MISSION_ITEM_REACHED') self._fieldnames = ['seq'] self.seq = seq def pack(self, mav): return MAVLink_message.pack(self, mav, 11, struct.pack('<H', self.seq)) class MAVLink_mission_ack_message(MAVLink_message): ''' Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero). ''' def __init__(self, target_system, target_component, type): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MISSION_ACK, 'MISSION_ACK') self._fieldnames = ['target_system', 'target_component', 'type'] self.target_system = target_system self.target_component = target_component self.type = type def pack(self, mav): return MAVLink_message.pack(self, mav, 153, struct.pack('<BBB', self.target_system, self.target_component, self.type)) class MAVLink_set_gps_global_origin_message(MAVLink_message): ''' As local waypoints exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor. ''' def __init__(self, target_system, latitude, longitude, altitude): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN, 'SET_GPS_GLOBAL_ORIGIN') self._fieldnames = ['target_system', 'latitude', 'longitude', 'altitude'] self.target_system = target_system self.latitude = latitude self.longitude = longitude self.altitude = altitude def pack(self, mav): return MAVLink_message.pack(self, mav, 41, struct.pack('<iiiB', self.latitude, self.longitude, self.altitude, self.target_system)) class MAVLink_gps_global_origin_message(MAVLink_message): ''' Once the MAV sets a new GPS-Local correspondence, this message announces the origin (0,0,0) position ''' def __init__(self, latitude, longitude, altitude): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN, 'GPS_GLOBAL_ORIGIN') self._fieldnames = ['latitude', 'longitude', 'altitude'] self.latitude = latitude self.longitude = longitude self.altitude = altitude def pack(self, mav): return MAVLink_message.pack(self, mav, 39, struct.pack('<iii', self.latitude, self.longitude, self.altitude)) class MAVLink_set_local_position_setpoint_message(MAVLink_message): ''' Set the setpoint for a local position controller. This is the position in local coordinates the MAV should fly to. This message is sent by the path/MISSION planner to the onboard position controller. As some MAVs have a degree of freedom in yaw (e.g. all helicopters/quadrotors), the desired yaw angle is part of the message. ''' def __init__(self, target_system, target_component, coordinate_frame, x, y, z, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT, 'SET_LOCAL_POSITION_SETPOINT') self._fieldnames = ['target_system', 'target_component', 'coordinate_frame', 'x', 'y', 'z', 'yaw'] self.target_system = target_system self.target_component = target_component self.coordinate_frame = coordinate_frame self.x = x self.y = y self.z = z self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 214, struct.pack('<ffffBBB', self.x, self.y, self.z, self.yaw, self.target_system, self.target_component, self.coordinate_frame)) class MAVLink_local_position_setpoint_message(MAVLink_message): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. ''' def __init__(self, coordinate_frame, x, y, z, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT, 'LOCAL_POSITION_SETPOINT') self._fieldnames = ['coordinate_frame', 'x', 'y', 'z', 'yaw'] self.coordinate_frame = coordinate_frame self.x = x self.y = y self.z = z self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 223, struct.pack('<ffffB', self.x, self.y, self.z, self.yaw, self.coordinate_frame)) class MAVLink_global_position_setpoint_int_message(MAVLink_message): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. ''' def __init__(self, coordinate_frame, latitude, longitude, altitude, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_POSITION_SETPOINT_INT, 'GLOBAL_POSITION_SETPOINT_INT') self._fieldnames = ['coordinate_frame', 'latitude', 'longitude', 'altitude', 'yaw'] self.coordinate_frame = coordinate_frame self.latitude = latitude self.longitude = longitude self.altitude = altitude self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 141, struct.pack('<iiihB', self.latitude, self.longitude, self.altitude, self.yaw, self.coordinate_frame)) class MAVLink_set_global_position_setpoint_int_message(MAVLink_message): ''' Set the current global position setpoint. ''' def __init__(self, coordinate_frame, latitude, longitude, altitude, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_GLOBAL_POSITION_SETPOINT_INT, 'SET_GLOBAL_POSITION_SETPOINT_INT') self._fieldnames = ['coordinate_frame', 'latitude', 'longitude', 'altitude', 'yaw'] self.coordinate_frame = coordinate_frame self.latitude = latitude self.longitude = longitude self.altitude = altitude self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 33, struct.pack('<iiihB', self.latitude, self.longitude, self.altitude, self.yaw, self.coordinate_frame)) class MAVLink_safety_set_allowed_area_message(MAVLink_message): ''' Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations. ''' def __init__(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA, 'SAFETY_SET_ALLOWED_AREA') self._fieldnames = ['target_system', 'target_component', 'frame', 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z'] self.target_system = target_system self.target_component = target_component self.frame = frame self.p1x = p1x self.p1y = p1y self.p1z = p1z self.p2x = p2x self.p2y = p2y self.p2z = p2z def pack(self, mav): return MAVLink_message.pack(self, mav, 15, struct.pack('<ffffffBBB', self.p1x, self.p1y, self.p1z, self.p2x, self.p2y, self.p2z, self.target_system, self.target_component, self.frame)) class MAVLink_safety_allowed_area_message(MAVLink_message): ''' Read out the safety zone the MAV currently assumes. ''' def __init__(self, frame, p1x, p1y, p1z, p2x, p2y, p2z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA, 'SAFETY_ALLOWED_AREA') self._fieldnames = ['frame', 'p1x', 'p1y', 'p1z', 'p2x', 'p2y', 'p2z'] self.frame = frame self.p1x = p1x self.p1y = p1y self.p1z = p1z self.p2x = p2x self.p2y = p2y self.p2z = p2z def pack(self, mav): return MAVLink_message.pack(self, mav, 3, struct.pack('<ffffffB', self.p1x, self.p1y, self.p1z, self.p2x, self.p2y, self.p2z, self.frame)) class MAVLink_set_roll_pitch_yaw_thrust_message(MAVLink_message): ''' Set roll, pitch and yaw. ''' def __init__(self, target_system, target_component, roll, pitch, yaw, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_THRUST, 'SET_ROLL_PITCH_YAW_THRUST') self._fieldnames = ['target_system', 'target_component', 'roll', 'pitch', 'yaw', 'thrust'] self.target_system = target_system self.target_component = target_component self.roll = roll self.pitch = pitch self.yaw = yaw self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 100, struct.pack('<ffffBB', self.roll, self.pitch, self.yaw, self.thrust, self.target_system, self.target_component)) class MAVLink_set_roll_pitch_yaw_speed_thrust_message(MAVLink_message): ''' Set roll, pitch and yaw. ''' def __init__(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_SPEED_THRUST, 'SET_ROLL_PITCH_YAW_SPEED_THRUST') self._fieldnames = ['target_system', 'target_component', 'roll_speed', 'pitch_speed', 'yaw_speed', 'thrust'] self.target_system = target_system self.target_component = target_component self.roll_speed = roll_speed self.pitch_speed = pitch_speed self.yaw_speed = yaw_speed self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 24, struct.pack('<ffffBB', self.roll_speed, self.pitch_speed, self.yaw_speed, self.thrust, self.target_system, self.target_component)) class MAVLink_roll_pitch_yaw_thrust_setpoint_message(MAVLink_message): ''' Setpoint in roll, pitch, yaw currently active on the system. ''' def __init__(self, time_boot_ms, roll, pitch, yaw, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT, 'ROLL_PITCH_YAW_THRUST_SETPOINT') self._fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'thrust'] self.time_boot_ms = time_boot_ms self.roll = roll self.pitch = pitch self.yaw = yaw self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 239, struct.pack('<Iffff', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.thrust)) class MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message(MAVLink_message): ''' Setpoint in rollspeed, pitchspeed, yawspeed currently active on the system. ''' def __init__(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT, 'ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT') self._fieldnames = ['time_boot_ms', 'roll_speed', 'pitch_speed', 'yaw_speed', 'thrust'] self.time_boot_ms = time_boot_ms self.roll_speed = roll_speed self.pitch_speed = pitch_speed self.yaw_speed = yaw_speed self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 238, struct.pack('<Iffff', self.time_boot_ms, self.roll_speed, self.pitch_speed, self.yaw_speed, self.thrust)) class MAVLink_set_quad_motors_setpoint_message(MAVLink_message): ''' Setpoint in the four motor speeds ''' def __init__(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT, 'SET_QUAD_MOTORS_SETPOINT') self._fieldnames = ['target_system', 'motor_front_nw', 'motor_right_ne', 'motor_back_se', 'motor_left_sw'] self.target_system = target_system self.motor_front_nw = motor_front_nw self.motor_right_ne = motor_right_ne self.motor_back_se = motor_back_se self.motor_left_sw = motor_left_sw def pack(self, mav): return MAVLink_message.pack(self, mav, 30, struct.pack('<HHHHB', self.motor_front_nw, self.motor_right_ne, self.motor_back_se, self.motor_left_sw, self.target_system)) class MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message(MAVLink_message): ''' Setpoint for up to four quadrotors in a group / wing ''' def __init__(self, group, mode, roll, pitch, yaw, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST, 'SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST') self._fieldnames = ['group', 'mode', 'roll', 'pitch', 'yaw', 'thrust'] self.group = group self.mode = mode self.roll = roll self.pitch = pitch self.yaw = yaw self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 240, struct.pack('<4h4h4h4HBB', self.roll, self.pitch, self.yaw, self.thrust, self.group, self.mode)) class MAVLink_nav_controller_output_message(MAVLink_message): ''' Outputs of the APM navigation controller. The primary use of this message is to check the response and signs of the controller before actual flight and to assist with tuning controller parameters. ''' def __init__(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error): MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT, 'NAV_CONTROLLER_OUTPUT') self._fieldnames = ['nav_roll', 'nav_pitch', 'nav_bearing', 'target_bearing', 'wp_dist', 'alt_error', 'aspd_error', 'xtrack_error'] self.nav_roll = nav_roll self.nav_pitch = nav_pitch self.nav_bearing = nav_bearing self.target_bearing = target_bearing self.wp_dist = wp_dist self.alt_error = alt_error self.aspd_error = aspd_error self.xtrack_error = xtrack_error def pack(self, mav): return MAVLink_message.pack(self, mav, 183, struct.pack('<fffffhhH', self.nav_roll, self.nav_pitch, self.alt_error, self.aspd_error, self.xtrack_error, self.nav_bearing, self.target_bearing, self.wp_dist)) class MAVLink_set_quad_swarm_led_roll_pitch_yaw_thrust_message(MAVLink_message): ''' Setpoint for up to four quadrotors in a group / wing ''' def __init__(self, group, mode, led_red, led_blue, led_green, roll, pitch, yaw, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SET_QUAD_SWARM_LED_ROLL_PITCH_YAW_THRUST, 'SET_QUAD_SWARM_LED_ROLL_PITCH_YAW_THRUST') self._fieldnames = ['group', 'mode', 'led_red', 'led_blue', 'led_green', 'roll', 'pitch', 'yaw', 'thrust'] self.group = group self.mode = mode self.led_red = led_red self.led_blue = led_blue self.led_green = led_green self.roll = roll self.pitch = pitch self.yaw = yaw self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 130, struct.pack('<4h4h4h4HBB4s4s4s', self.roll, self.pitch, self.yaw, self.thrust, self.group, self.mode, self.led_red, self.led_blue, self.led_green)) class MAVLink_state_correction_message(MAVLink_message): ''' Corrects the systems state by adding an error correction term to the position and velocity, and by rotating the attitude by a correction angle. ''' def __init__(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr): MAVLink_message.__init__(self, MAVLINK_MSG_ID_STATE_CORRECTION, 'STATE_CORRECTION') self._fieldnames = ['xErr', 'yErr', 'zErr', 'rollErr', 'pitchErr', 'yawErr', 'vxErr', 'vyErr', 'vzErr'] self.xErr = xErr self.yErr = yErr self.zErr = zErr self.rollErr = rollErr self.pitchErr = pitchErr self.yawErr = yawErr self.vxErr = vxErr self.vyErr = vyErr self.vzErr = vzErr def pack(self, mav): return MAVLink_message.pack(self, mav, 130, struct.pack('<fffffffff', self.xErr, self.yErr, self.zErr, self.rollErr, self.pitchErr, self.yawErr, self.vxErr, self.vyErr, self.vzErr)) class MAVLink_request_data_stream_message(MAVLink_message): ''' ''' def __init__(self, target_system, target_component, req_stream_id, req_message_rate, start_stop): MAVLink_message.__init__(self, MAVLINK_MSG_ID_REQUEST_DATA_STREAM, 'REQUEST_DATA_STREAM') self._fieldnames = ['target_system', 'target_component', 'req_stream_id', 'req_message_rate', 'start_stop'] self.target_system = target_system self.target_component = target_component self.req_stream_id = req_stream_id self.req_message_rate = req_message_rate self.start_stop = start_stop def pack(self, mav): return MAVLink_message.pack(self, mav, 148, struct.pack('<HBBBB', self.req_message_rate, self.target_system, self.target_component, self.req_stream_id, self.start_stop)) class MAVLink_data_stream_message(MAVLink_message): ''' ''' def __init__(self, stream_id, message_rate, on_off): MAVLink_message.__init__(self, MAVLINK_MSG_ID_DATA_STREAM, 'DATA_STREAM') self._fieldnames = ['stream_id', 'message_rate', 'on_off'] self.stream_id = stream_id self.message_rate = message_rate self.on_off = on_off def pack(self, mav): return MAVLink_message.pack(self, mav, 21, struct.pack('<HBB', self.message_rate, self.stream_id, self.on_off)) class MAVLink_manual_control_message(MAVLink_message): ''' This message provides an API for manually controlling the vehicle using standard joystick axes nomenclature, along with a joystick-like input device. Unused axes can be disabled an buttons are also transmit as boolean values of their ''' def __init__(self, target, x, y, z, r, buttons): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MANUAL_CONTROL, 'MANUAL_CONTROL') self._fieldnames = ['target', 'x', 'y', 'z', 'r', 'buttons'] self.target = target self.x = x self.y = y self.z = z self.r = r self.buttons = buttons def pack(self, mav): return MAVLink_message.pack(self, mav, 243, struct.pack('<hhhhHB', self.x, self.y, self.z, self.r, self.buttons, self.target)) class MAVLink_rc_channels_override_message(MAVLink_message): ''' The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of -1 means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. ''' def __init__(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE, 'RC_CHANNELS_OVERRIDE') self._fieldnames = ['target_system', 'target_component', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw'] self.target_system = target_system self.target_component = target_component self.chan1_raw = chan1_raw self.chan2_raw = chan2_raw self.chan3_raw = chan3_raw self.chan4_raw = chan4_raw self.chan5_raw = chan5_raw self.chan6_raw = chan6_raw self.chan7_raw = chan7_raw self.chan8_raw = chan8_raw def pack(self, mav): return MAVLink_message.pack(self, mav, 124, struct.pack('<HHHHHHHHBB', self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.target_system, self.target_component)) class MAVLink_vfr_hud_message(MAVLink_message): ''' Metrics typically displayed on a HUD for fixed wing aircraft ''' def __init__(self, airspeed, groundspeed, heading, throttle, alt, climb): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VFR_HUD, 'VFR_HUD') self._fieldnames = ['airspeed', 'groundspeed', 'heading', 'throttle', 'alt', 'climb'] self.airspeed = airspeed self.groundspeed = groundspeed self.heading = heading self.throttle = throttle self.alt = alt self.climb = climb def pack(self, mav): return MAVLink_message.pack(self, mav, 20, struct.pack('<ffffhH', self.airspeed, self.groundspeed, self.alt, self.climb, self.heading, self.throttle)) class MAVLink_command_long_message(MAVLink_message): ''' Send a command with up to four parameters to the MAV ''' def __init__(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7): MAVLink_message.__init__(self, MAVLINK_MSG_ID_COMMAND_LONG, 'COMMAND_LONG') self._fieldnames = ['target_system', 'target_component', 'command', 'confirmation', 'param1', 'param2', 'param3', 'param4', 'param5', 'param6', 'param7'] self.target_system = target_system self.target_component = target_component self.command = command self.confirmation = confirmation self.param1 = param1 self.param2 = param2 self.param3 = param3 self.param4 = param4 self.param5 = param5 self.param6 = param6 self.param7 = param7 def pack(self, mav): return MAVLink_message.pack(self, mav, 152, struct.pack('<fffffffHBBB', self.param1, self.param2, self.param3, self.param4, self.param5, self.param6, self.param7, self.command, self.target_system, self.target_component, self.confirmation)) class MAVLink_command_ack_message(MAVLink_message): ''' Report status of a command. Includes feedback wether the command was executed. ''' def __init__(self, command, result): MAVLink_message.__init__(self, MAVLINK_MSG_ID_COMMAND_ACK, 'COMMAND_ACK') self._fieldnames = ['command', 'result'] self.command = command self.result = result def pack(self, mav): return MAVLink_message.pack(self, mav, 143, struct.pack('<HB', self.command, self.result)) class MAVLink_roll_pitch_yaw_rates_thrust_setpoint_message(MAVLink_message): ''' Setpoint in roll, pitch, yaw rates and thrust currently active on the system. ''' def __init__(self, time_boot_ms, roll_rate, pitch_rate, yaw_rate, thrust): MAVLink_message.__init__(self, MAVLINK_MSG_ID_ROLL_PITCH_YAW_RATES_THRUST_SETPOINT, 'ROLL_PITCH_YAW_RATES_THRUST_SETPOINT') self._fieldnames = ['time_boot_ms', 'roll_rate', 'pitch_rate', 'yaw_rate', 'thrust'] self.time_boot_ms = time_boot_ms self.roll_rate = roll_rate self.pitch_rate = pitch_rate self.yaw_rate = yaw_rate self.thrust = thrust def pack(self, mav): return MAVLink_message.pack(self, mav, 127, struct.pack('<Iffff', self.time_boot_ms, self.roll_rate, self.pitch_rate, self.yaw_rate, self.thrust)) class MAVLink_manual_setpoint_message(MAVLink_message): ''' Setpoint in roll, pitch, yaw and thrust from the operator ''' def __init__(self, time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MANUAL_SETPOINT, 'MANUAL_SETPOINT') self._fieldnames = ['time_boot_ms', 'roll', 'pitch', 'yaw', 'thrust', 'mode_switch', 'manual_override_switch'] self.time_boot_ms = time_boot_ms self.roll = roll self.pitch = pitch self.yaw = yaw self.thrust = thrust self.mode_switch = mode_switch self.manual_override_switch = manual_override_switch def pack(self, mav): return MAVLink_message.pack(self, mav, 106, struct.pack('<IffffBB', self.time_boot_ms, self.roll, self.pitch, self.yaw, self.thrust, self.mode_switch, self.manual_override_switch)) class MAVLink_local_position_ned_system_global_offset_message(MAVLink_message): ''' The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages of MAV X and the global coordinate frame in NED coordinates. Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) ''' def __init__(self, time_boot_ms, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET, 'LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET') self._fieldnames = ['time_boot_ms', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.time_boot_ms = time_boot_ms self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 231, struct.pack('<Iffffff', self.time_boot_ms, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_hil_state_message(MAVLink_message): ''' Sent from simulation to autopilot. This packet is useful for high throughput applications such as hardware in the loop simulations. ''' def __init__(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_STATE, 'HIL_STATE') self._fieldnames = ['time_usec', 'roll', 'pitch', 'yaw', 'rollspeed', 'pitchspeed', 'yawspeed', 'lat', 'lon', 'alt', 'vx', 'vy', 'vz', 'xacc', 'yacc', 'zacc'] self.time_usec = time_usec self.roll = roll self.pitch = pitch self.yaw = yaw self.rollspeed = rollspeed self.pitchspeed = pitchspeed self.yawspeed = yawspeed self.lat = lat self.lon = lon self.alt = alt self.vx = vx self.vy = vy self.vz = vz self.xacc = xacc self.yacc = yacc self.zacc = zacc def pack(self, mav): return MAVLink_message.pack(self, mav, 183, struct.pack('<Qffffffiiihhhhhh', self.time_usec, self.roll, self.pitch, self.yaw, self.rollspeed, self.pitchspeed, self.yawspeed, self.lat, self.lon, self.alt, self.vx, self.vy, self.vz, self.xacc, self.yacc, self.zacc)) class MAVLink_hil_controls_message(MAVLink_message): ''' Sent from autopilot to simulation. Hardware in the loop control outputs ''' def __init__(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_CONTROLS, 'HIL_CONTROLS') self._fieldnames = ['time_usec', 'roll_ailerons', 'pitch_elevator', 'yaw_rudder', 'throttle', 'aux1', 'aux2', 'aux3', 'aux4', 'mode', 'nav_mode'] self.time_usec = time_usec self.roll_ailerons = roll_ailerons self.pitch_elevator = pitch_elevator self.yaw_rudder = yaw_rudder self.throttle = throttle self.aux1 = aux1 self.aux2 = aux2 self.aux3 = aux3 self.aux4 = aux4 self.mode = mode self.nav_mode = nav_mode def pack(self, mav): return MAVLink_message.pack(self, mav, 63, struct.pack('<QffffffffBB', self.time_usec, self.roll_ailerons, self.pitch_elevator, self.yaw_rudder, self.throttle, self.aux1, self.aux2, self.aux3, self.aux4, self.mode, self.nav_mode)) class MAVLink_hil_rc_inputs_raw_message(MAVLink_message): ''' Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. ''' def __init__(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW, 'HIL_RC_INPUTS_RAW') self._fieldnames = ['time_usec', 'chan1_raw', 'chan2_raw', 'chan3_raw', 'chan4_raw', 'chan5_raw', 'chan6_raw', 'chan7_raw', 'chan8_raw', 'chan9_raw', 'chan10_raw', 'chan11_raw', 'chan12_raw', 'rssi'] self.time_usec = time_usec self.chan1_raw = chan1_raw self.chan2_raw = chan2_raw self.chan3_raw = chan3_raw self.chan4_raw = chan4_raw self.chan5_raw = chan5_raw self.chan6_raw = chan6_raw self.chan7_raw = chan7_raw self.chan8_raw = chan8_raw self.chan9_raw = chan9_raw self.chan10_raw = chan10_raw self.chan11_raw = chan11_raw self.chan12_raw = chan12_raw self.rssi = rssi def pack(self, mav): return MAVLink_message.pack(self, mav, 54, struct.pack('<QHHHHHHHHHHHHB', self.time_usec, self.chan1_raw, self.chan2_raw, self.chan3_raw, self.chan4_raw, self.chan5_raw, self.chan6_raw, self.chan7_raw, self.chan8_raw, self.chan9_raw, self.chan10_raw, self.chan11_raw, self.chan12_raw, self.rssi)) class MAVLink_optical_flow_message(MAVLink_message): ''' Optical flow from a flow sensor (e.g. optical mouse sensor) ''' def __init__(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance): MAVLink_message.__init__(self, MAVLINK_MSG_ID_OPTICAL_FLOW, 'OPTICAL_FLOW') self._fieldnames = ['time_usec', 'sensor_id', 'flow_x', 'flow_y', 'flow_comp_m_x', 'flow_comp_m_y', 'quality', 'ground_distance'] self.time_usec = time_usec self.sensor_id = sensor_id self.flow_x = flow_x self.flow_y = flow_y self.flow_comp_m_x = flow_comp_m_x self.flow_comp_m_y = flow_comp_m_y self.quality = quality self.ground_distance = ground_distance def pack(self, mav): return MAVLink_message.pack(self, mav, 175, struct.pack('<QfffhhBB', self.time_usec, self.flow_comp_m_x, self.flow_comp_m_y, self.ground_distance, self.flow_x, self.flow_y, self.sensor_id, self.quality)) class MAVLink_global_vision_position_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE, 'GLOBAL_VISION_POSITION_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.usec = usec self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 102, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_vision_position_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE, 'VISION_POSITION_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.usec = usec self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 158, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_vision_speed_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE, 'VISION_SPEED_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z'] self.usec = usec self.x = x self.y = y self.z = z def pack(self, mav): return MAVLink_message.pack(self, mav, 208, struct.pack('<Qfff', self.usec, self.x, self.y, self.z)) class MAVLink_vicon_position_estimate_message(MAVLink_message): ''' ''' def __init__(self, usec, x, y, z, roll, pitch, yaw): MAVLink_message.__init__(self, MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE, 'VICON_POSITION_ESTIMATE') self._fieldnames = ['usec', 'x', 'y', 'z', 'roll', 'pitch', 'yaw'] self.usec = usec self.x = x self.y = y self.z = z self.roll = roll self.pitch = pitch self.yaw = yaw def pack(self, mav): return MAVLink_message.pack(self, mav, 56, struct.pack('<Qffffff', self.usec, self.x, self.y, self.z, self.roll, self.pitch, self.yaw)) class MAVLink_highres_imu_message(MAVLink_message): ''' The IMU readings in SI units in NED body frame ''' def __init__(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated): MAVLink_message.__init__(self, MAVLINK_MSG_ID_HIGHRES_IMU, 'HIGHRES_IMU') self._fieldnames = ['time_usec', 'xacc', 'yacc', 'zacc', 'xgyro', 'ygyro', 'zgyro', 'xmag', 'ymag', 'zmag', 'abs_pressure', 'diff_pressure', 'pressure_alt', 'temperature', 'fields_updated'] self.time_usec = time_usec self.xacc = xacc self.yacc = yacc self.zacc = zacc self.xgyro = xgyro self.ygyro = ygyro self.zgyro = zgyro self.xmag = xmag self.ymag = ymag self.zmag = zmag self.abs_pressure = abs_pressure self.diff_pressure = diff_pressure self.pressure_alt = pressure_alt self.temperature = temperature self.fields_updated = fields_updated def pack(self, mav): return MAVLink_message.pack(self, mav, 93, struct.pack('<QfffffffffffffH', self.time_usec, self.xacc, self.yacc, self.zacc, self.xgyro, self.ygyro, self.zgyro, self.xmag, self.ymag, self.zmag, self.abs_pressure, self.diff_pressure, self.pressure_alt, self.temperature, self.fields_updated)) class MAVLink_file_transfer_start_message(MAVLink_message): ''' Begin file transfer ''' def __init__(self, transfer_uid, dest_path, direction, file_size, flags): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FILE_TRANSFER_START, 'FILE_TRANSFER_START') self._fieldnames = ['transfer_uid', 'dest_path', 'direction', 'file_size', 'flags'] self.transfer_uid = transfer_uid self.dest_path = dest_path self.direction = direction self.file_size = file_size self.flags = flags def pack(self, mav): return MAVLink_message.pack(self, mav, 235, struct.pack('<QI240sBB', self.transfer_uid, self.file_size, self.dest_path, self.direction, self.flags)) class MAVLink_file_transfer_dir_list_message(MAVLink_message): ''' Get directory listing ''' def __init__(self, transfer_uid, dir_path, flags): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FILE_TRANSFER_DIR_LIST, 'FILE_TRANSFER_DIR_LIST') self._fieldnames = ['transfer_uid', 'dir_path', 'flags'] self.transfer_uid = transfer_uid self.dir_path = dir_path self.flags = flags def pack(self, mav): return MAVLink_message.pack(self, mav, 93, struct.pack('<Q240sB', self.transfer_uid, self.dir_path, self.flags)) class MAVLink_file_transfer_res_message(MAVLink_message): ''' File transfer result ''' def __init__(self, transfer_uid, result): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FILE_TRANSFER_RES, 'FILE_TRANSFER_RES') self._fieldnames = ['transfer_uid', 'result'] self.transfer_uid = transfer_uid self.result = result def pack(self, mav): return MAVLink_message.pack(self, mav, 124, struct.pack('<QB', self.transfer_uid, self.result)) class MAVLink_battery_status_message(MAVLink_message): ''' Transmitte battery informations for a accu pack. ''' def __init__(self, accu_id, voltage_cell_1, voltage_cell_2, voltage_cell_3, voltage_cell_4, voltage_cell_5, voltage_cell_6, current_battery, battery_remaining): MAVLink_message.__init__(self, MAVLINK_MSG_ID_BATTERY_STATUS, 'BATTERY_STATUS') self._fieldnames = ['accu_id', 'voltage_cell_1', 'voltage_cell_2', 'voltage_cell_3', 'voltage_cell_4', 'voltage_cell_5', 'voltage_cell_6', 'current_battery', 'battery_remaining'] self.accu_id = accu_id self.voltage_cell_1 = voltage_cell_1 self.voltage_cell_2 = voltage_cell_2 self.voltage_cell_3 = voltage_cell_3 self.voltage_cell_4 = voltage_cell_4 self.voltage_cell_5 = voltage_cell_5 self.voltage_cell_6 = voltage_cell_6 self.current_battery = current_battery self.battery_remaining = battery_remaining def pack(self, mav): return MAVLink_message.pack(self, mav, 42, struct.pack('<HHHHHHhBb', self.voltage_cell_1, self.voltage_cell_2, self.voltage_cell_3, self.voltage_cell_4, self.voltage_cell_5, self.voltage_cell_6, self.current_battery, self.accu_id, self.battery_remaining)) class MAVLink_setpoint_8dof_message(MAVLink_message): ''' Set the 8 DOF setpoint for a controller. ''' def __init__(self, target_system, val1, val2, val3, val4, val5, val6, val7, val8): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SETPOINT_8DOF, 'SETPOINT_8DOF') self._fieldnames = ['target_system', 'val1', 'val2', 'val3', 'val4', 'val5', 'val6', 'val7', 'val8'] self.target_system = target_system self.val1 = val1 self.val2 = val2 self.val3 = val3 self.val4 = val4 self.val5 = val5 self.val6 = val6 self.val7 = val7 self.val8 = val8 def pack(self, mav): return MAVLink_message.pack(self, mav, 241, struct.pack('<ffffffffB', self.val1, self.val2, self.val3, self.val4, self.val5, self.val6, self.val7, self.val8, self.target_system)) class MAVLink_setpoint_6dof_message(MAVLink_message): ''' Set the 6 DOF setpoint for a attitude and position controller. ''' def __init__(self, target_system, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_SETPOINT_6DOF, 'SETPOINT_6DOF') self._fieldnames = ['target_system', 'trans_x', 'trans_y', 'trans_z', 'rot_x', 'rot_y', 'rot_z'] self.target_system = target_system self.trans_x = trans_x self.trans_y = trans_y self.trans_z = trans_z self.rot_x = rot_x self.rot_y = rot_y self.rot_z = rot_z def pack(self, mav): return MAVLink_message.pack(self, mav, 15, struct.pack('<ffffffB', self.trans_x, self.trans_y, self.trans_z, self.rot_x, self.rot_y, self.rot_z, self.target_system)) class MAVLink_memory_vect_message(MAVLink_message): ''' Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. ''' def __init__(self, address, ver, type, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_MEMORY_VECT, 'MEMORY_VECT') self._fieldnames = ['address', 'ver', 'type', 'value'] self.address = address self.ver = ver self.type = type self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 204, struct.pack('<HBB32s', self.address, self.ver, self.type, self.value)) class MAVLink_debug_vect_message(MAVLink_message): ''' ''' def __init__(self, name, time_usec, x, y, z): MAVLink_message.__init__(self, MAVLINK_MSG_ID_DEBUG_VECT, 'DEBUG_VECT') self._fieldnames = ['name', 'time_usec', 'x', 'y', 'z'] self.name = name self.time_usec = time_usec self.x = x self.y = y self.z = z def pack(self, mav): return MAVLink_message.pack(self, mav, 49, struct.pack('<Qfff10s', self.time_usec, self.x, self.y, self.z, self.name)) class MAVLink_named_value_float_message(MAVLink_message): ''' Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. ''' def __init__(self, time_boot_ms, name, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, 'NAMED_VALUE_FLOAT') self._fieldnames = ['time_boot_ms', 'name', 'value'] self.time_boot_ms = time_boot_ms self.name = name self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 170, struct.pack('<If10s', self.time_boot_ms, self.value, self.name)) class MAVLink_named_value_int_message(MAVLink_message): ''' Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. ''' def __init__(self, time_boot_ms, name, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_NAMED_VALUE_INT, 'NAMED_VALUE_INT') self._fieldnames = ['time_boot_ms', 'name', 'value'] self.time_boot_ms = time_boot_ms self.name = name self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 44, struct.pack('<Ii10s', self.time_boot_ms, self.value, self.name)) class MAVLink_statustext_message(MAVLink_message): ''' Status text message. These messages are printed in yellow in the COMM console of QGroundControl. WARNING: They consume quite some bandwidth, so use only for important status and error messages. If implemented wisely, these messages are buffered on the MCU and sent only at a limited rate (e.g. 10 Hz). ''' def __init__(self, severity, text): MAVLink_message.__init__(self, MAVLINK_MSG_ID_STATUSTEXT, 'STATUSTEXT') self._fieldnames = ['severity', 'text'] self.severity = severity self.text = text def pack(self, mav): return MAVLink_message.pack(self, mav, 83, struct.pack('<B50s', self.severity, self.text)) class MAVLink_debug_message(MAVLink_message): ''' Send a debug value. The index is used to discriminate between values. These values show up in the plot of QGroundControl as DEBUG N. ''' def __init__(self, time_boot_ms, ind, value): MAVLink_message.__init__(self, MAVLINK_MSG_ID_DEBUG, 'DEBUG') self._fieldnames = ['time_boot_ms', 'ind', 'value'] self.time_boot_ms = time_boot_ms self.ind = ind self.value = value def pack(self, mav): return MAVLink_message.pack(self, mav, 46, struct.pack('<IfB', self.time_boot_ms, self.value, self.ind)) mavlink_map = { MAVLINK_MSG_ID_HEARTBEAT : ( '<IBBBBB', MAVLink_heartbeat_message, [1, 2, 3, 0, 4, 5], 50 ), MAVLINK_MSG_ID_SYS_STATUS : ( '<IIIHHhHHHHHHb', MAVLink_sys_status_message, [0, 1, 2, 3, 4, 5, 12, 6, 7, 8, 9, 10, 11], 124 ), MAVLINK_MSG_ID_SYSTEM_TIME : ( '<QI', MAVLink_system_time_message, [0, 1], 137 ), MAVLINK_MSG_ID_PING : ( '<QIBB', MAVLink_ping_message, [0, 1, 2, 3], 237 ), MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL : ( '<BBB25s', MAVLink_change_operator_control_message, [0, 1, 2, 3], 217 ), MAVLINK_MSG_ID_CHANGE_OPERATOR_CONTROL_ACK : ( '<BBB', MAVLink_change_operator_control_ack_message, [0, 1, 2], 104 ), MAVLINK_MSG_ID_AUTH_KEY : ( '<32s', MAVLink_auth_key_message, [0], 119 ), MAVLINK_MSG_ID_SET_MODE : ( '<IBB', MAVLink_set_mode_message, [1, 2, 0], 89 ), MAVLINK_MSG_ID_PARAM_REQUEST_READ : ( '<hBB16s', MAVLink_param_request_read_message, [1, 2, 3, 0], 214 ), MAVLINK_MSG_ID_PARAM_REQUEST_LIST : ( '<BB', MAVLink_param_request_list_message, [0, 1], 159 ), MAVLINK_MSG_ID_PARAM_VALUE : ( '<fHH16sB', MAVLink_param_value_message, [3, 0, 4, 1, 2], 220 ), MAVLINK_MSG_ID_PARAM_SET : ( '<fBB16sB', MAVLink_param_set_message, [1, 2, 3, 0, 4], 168 ), MAVLINK_MSG_ID_GPS_RAW_INT : ( '<QiiiHHHHBB', MAVLink_gps_raw_int_message, [0, 8, 1, 2, 3, 4, 5, 6, 7, 9], 24 ), MAVLINK_MSG_ID_GPS_STATUS : ( '<B20s20s20s20s20s', MAVLink_gps_status_message, [0, 1, 2, 3, 4, 5], 23 ), MAVLINK_MSG_ID_SCALED_IMU : ( '<Ihhhhhhhhh', MAVLink_scaled_imu_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 170 ), MAVLINK_MSG_ID_RAW_IMU : ( '<Qhhhhhhhhh', MAVLink_raw_imu_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 144 ), MAVLINK_MSG_ID_RAW_PRESSURE : ( '<Qhhhh', MAVLink_raw_pressure_message, [0, 1, 2, 3, 4], 67 ), MAVLINK_MSG_ID_SCALED_PRESSURE : ( '<Iffh', MAVLink_scaled_pressure_message, [0, 1, 2, 3], 115 ), MAVLINK_MSG_ID_ATTITUDE : ( '<Iffffff', MAVLink_attitude_message, [0, 1, 2, 3, 4, 5, 6], 39 ), MAVLINK_MSG_ID_ATTITUDE_QUATERNION : ( '<Ifffffff', MAVLink_attitude_quaternion_message, [0, 1, 2, 3, 4, 5, 6, 7], 246 ), MAVLINK_MSG_ID_LOCAL_POSITION_NED : ( '<Iffffff', MAVLink_local_position_ned_message, [0, 1, 2, 3, 4, 5, 6], 185 ), MAVLINK_MSG_ID_GLOBAL_POSITION_INT : ( '<IiiiihhhH', MAVLink_global_position_int_message, [0, 1, 2, 3, 4, 5, 6, 7, 8], 104 ), MAVLINK_MSG_ID_RC_CHANNELS_SCALED : ( '<IhhhhhhhhBB', MAVLink_rc_channels_scaled_message, [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10], 237 ), MAVLINK_MSG_ID_RC_CHANNELS_RAW : ( '<IHHHHHHHHBB', MAVLink_rc_channels_raw_message, [0, 9, 1, 2, 3, 4, 5, 6, 7, 8, 10], 244 ), MAVLINK_MSG_ID_SERVO_OUTPUT_RAW : ( '<IHHHHHHHHB', MAVLink_servo_output_raw_message, [0, 9, 1, 2, 3, 4, 5, 6, 7, 8], 242 ), MAVLINK_MSG_ID_MISSION_REQUEST_PARTIAL_LIST : ( '<hhBB', MAVLink_mission_request_partial_list_message, [2, 3, 0, 1], 212 ), MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST : ( '<hhBB', MAVLink_mission_write_partial_list_message, [2, 3, 0, 1], 9 ), MAVLINK_MSG_ID_MISSION_ITEM : ( '<fffffffHHBBBBB', MAVLink_mission_item_message, [9, 10, 7, 11, 8, 12, 13, 0, 1, 2, 3, 4, 5, 6], 254 ), MAVLINK_MSG_ID_MISSION_REQUEST : ( '<HBB', MAVLink_mission_request_message, [1, 2, 0], 230 ), MAVLINK_MSG_ID_MISSION_SET_CURRENT : ( '<HBB', MAVLink_mission_set_current_message, [1, 2, 0], 28 ), MAVLINK_MSG_ID_MISSION_CURRENT : ( '<H', MAVLink_mission_current_message, [0], 28 ), MAVLINK_MSG_ID_MISSION_REQUEST_LIST : ( '<BB', MAVLink_mission_request_list_message, [0, 1], 132 ), MAVLINK_MSG_ID_MISSION_COUNT : ( '<HBB', MAVLink_mission_count_message, [1, 2, 0], 221 ), MAVLINK_MSG_ID_MISSION_CLEAR_ALL : ( '<BB', MAVLink_mission_clear_all_message, [0, 1], 232 ), MAVLINK_MSG_ID_MISSION_ITEM_REACHED : ( '<H', MAVLink_mission_item_reached_message, [0], 11 ), MAVLINK_MSG_ID_MISSION_ACK : ( '<BBB', MAVLink_mission_ack_message, [0, 1, 2], 153 ), MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN : ( '<iiiB', MAVLink_set_gps_global_origin_message, [3, 0, 1, 2], 41 ), MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN : ( '<iii', MAVLink_gps_global_origin_message, [0, 1, 2], 39 ), MAVLINK_MSG_ID_SET_LOCAL_POSITION_SETPOINT : ( '<ffffBBB', MAVLink_set_local_position_setpoint_message, [4, 5, 6, 0, 1, 2, 3], 214 ), MAVLINK_MSG_ID_LOCAL_POSITION_SETPOINT : ( '<ffffB', MAVLink_local_position_setpoint_message, [4, 0, 1, 2, 3], 223 ), MAVLINK_MSG_ID_GLOBAL_POSITION_SETPOINT_INT : ( '<iiihB', MAVLink_global_position_setpoint_int_message, [4, 0, 1, 2, 3], 141 ), MAVLINK_MSG_ID_SET_GLOBAL_POSITION_SETPOINT_INT : ( '<iiihB', MAVLink_set_global_position_setpoint_int_message, [4, 0, 1, 2, 3], 33 ), MAVLINK_MSG_ID_SAFETY_SET_ALLOWED_AREA : ( '<ffffffBBB', MAVLink_safety_set_allowed_area_message, [6, 7, 8, 0, 1, 2, 3, 4, 5], 15 ), MAVLINK_MSG_ID_SAFETY_ALLOWED_AREA : ( '<ffffffB', MAVLink_safety_allowed_area_message, [6, 0, 1, 2, 3, 4, 5], 3 ), MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_THRUST : ( '<ffffBB', MAVLink_set_roll_pitch_yaw_thrust_message, [4, 5, 0, 1, 2, 3], 100 ), MAVLINK_MSG_ID_SET_ROLL_PITCH_YAW_SPEED_THRUST : ( '<ffffBB', MAVLink_set_roll_pitch_yaw_speed_thrust_message, [4, 5, 0, 1, 2, 3], 24 ), MAVLINK_MSG_ID_ROLL_PITCH_YAW_THRUST_SETPOINT : ( '<Iffff', MAVLink_roll_pitch_yaw_thrust_setpoint_message, [0, 1, 2, 3, 4], 239 ), MAVLINK_MSG_ID_ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT : ( '<Iffff', MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message, [0, 1, 2, 3, 4], 238 ), MAVLINK_MSG_ID_SET_QUAD_MOTORS_SETPOINT : ( '<HHHHB', MAVLink_set_quad_motors_setpoint_message, [4, 0, 1, 2, 3], 30 ), MAVLINK_MSG_ID_SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST : ( '<4h4h4h4HBB', MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message, [4, 5, 0, 1, 2, 3], 240 ), MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT : ( '<fffffhhH', MAVLink_nav_controller_output_message, [0, 1, 5, 6, 7, 2, 3, 4], 183 ), MAVLINK_MSG_ID_SET_QUAD_SWARM_LED_ROLL_PITCH_YAW_THRUST : ( '<4h4h4h4HBB4s4s4s', MAVLink_set_quad_swarm_led_roll_pitch_yaw_thrust_message, [4, 5, 6, 7, 8, 0, 1, 2, 3], 130 ), MAVLINK_MSG_ID_STATE_CORRECTION : ( '<fffffffff', MAVLink_state_correction_message, [0, 1, 2, 3, 4, 5, 6, 7, 8], 130 ), MAVLINK_MSG_ID_REQUEST_DATA_STREAM : ( '<HBBBB', MAVLink_request_data_stream_message, [1, 2, 3, 0, 4], 148 ), MAVLINK_MSG_ID_DATA_STREAM : ( '<HBB', MAVLink_data_stream_message, [1, 0, 2], 21 ), MAVLINK_MSG_ID_MANUAL_CONTROL : ( '<hhhhHB', MAVLink_manual_control_message, [5, 0, 1, 2, 3, 4], 243 ), MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE : ( '<HHHHHHHHBB', MAVLink_rc_channels_override_message, [8, 9, 0, 1, 2, 3, 4, 5, 6, 7], 124 ), MAVLINK_MSG_ID_VFR_HUD : ( '<ffffhH', MAVLink_vfr_hud_message, [0, 1, 4, 5, 2, 3], 20 ), MAVLINK_MSG_ID_COMMAND_LONG : ( '<fffffffHBBB', MAVLink_command_long_message, [8, 9, 7, 10, 0, 1, 2, 3, 4, 5, 6], 152 ), MAVLINK_MSG_ID_COMMAND_ACK : ( '<HB', MAVLink_command_ack_message, [0, 1], 143 ), MAVLINK_MSG_ID_ROLL_PITCH_YAW_RATES_THRUST_SETPOINT : ( '<Iffff', MAVLink_roll_pitch_yaw_rates_thrust_setpoint_message, [0, 1, 2, 3, 4], 127 ), MAVLINK_MSG_ID_MANUAL_SETPOINT : ( '<IffffBB', MAVLink_manual_setpoint_message, [0, 1, 2, 3, 4, 5, 6], 106 ), MAVLINK_MSG_ID_LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSET : ( '<Iffffff', MAVLink_local_position_ned_system_global_offset_message, [0, 1, 2, 3, 4, 5, 6], 231 ), MAVLINK_MSG_ID_HIL_STATE : ( '<Qffffffiiihhhhhh', MAVLink_hil_state_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 183 ), MAVLINK_MSG_ID_HIL_CONTROLS : ( '<QffffffffBB', MAVLink_hil_controls_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 63 ), MAVLINK_MSG_ID_HIL_RC_INPUTS_RAW : ( '<QHHHHHHHHHHHHB', MAVLink_hil_rc_inputs_raw_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 54 ), MAVLINK_MSG_ID_OPTICAL_FLOW : ( '<QfffhhBB', MAVLink_optical_flow_message, [0, 6, 4, 5, 1, 2, 7, 3], 175 ), MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE : ( '<Qffffff', MAVLink_global_vision_position_estimate_message, [0, 1, 2, 3, 4, 5, 6], 102 ), MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE : ( '<Qffffff', MAVLink_vision_position_estimate_message, [0, 1, 2, 3, 4, 5, 6], 158 ), MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE : ( '<Qfff', MAVLink_vision_speed_estimate_message, [0, 1, 2, 3], 208 ), MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE : ( '<Qffffff', MAVLink_vicon_position_estimate_message, [0, 1, 2, 3, 4, 5, 6], 56 ), MAVLINK_MSG_ID_HIGHRES_IMU : ( '<QfffffffffffffH', MAVLink_highres_imu_message, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], 93 ), MAVLINK_MSG_ID_FILE_TRANSFER_START : ( '<QI240sBB', MAVLink_file_transfer_start_message, [0, 2, 3, 1, 4], 235 ), MAVLINK_MSG_ID_FILE_TRANSFER_DIR_LIST : ( '<Q240sB', MAVLink_file_transfer_dir_list_message, [0, 1, 2], 93 ), MAVLINK_MSG_ID_FILE_TRANSFER_RES : ( '<QB', MAVLink_file_transfer_res_message, [0, 1], 124 ), MAVLINK_MSG_ID_BATTERY_STATUS : ( '<HHHHHHhBb', MAVLink_battery_status_message, [7, 0, 1, 2, 3, 4, 5, 6, 8], 42 ), MAVLINK_MSG_ID_SETPOINT_8DOF : ( '<ffffffffB', MAVLink_setpoint_8dof_message, [8, 0, 1, 2, 3, 4, 5, 6, 7], 241 ), MAVLINK_MSG_ID_SETPOINT_6DOF : ( '<ffffffB', MAVLink_setpoint_6dof_message, [6, 0, 1, 2, 3, 4, 5], 15 ), MAVLINK_MSG_ID_MEMORY_VECT : ( '<HBB32s', MAVLink_memory_vect_message, [0, 1, 2, 3], 204 ), MAVLINK_MSG_ID_DEBUG_VECT : ( '<Qfff10s', MAVLink_debug_vect_message, [4, 0, 1, 2, 3], 49 ), MAVLINK_MSG_ID_NAMED_VALUE_FLOAT : ( '<If10s', MAVLink_named_value_float_message, [0, 2, 1], 170 ), MAVLINK_MSG_ID_NAMED_VALUE_INT : ( '<Ii10s', MAVLink_named_value_int_message, [0, 2, 1], 44 ), MAVLINK_MSG_ID_STATUSTEXT : ( '<B50s', MAVLink_statustext_message, [0, 1], 83 ), MAVLINK_MSG_ID_DEBUG : ( '<IfB', MAVLink_debug_message, [0, 2, 1], 46 ), } class MAVError(Exception): '''MAVLink error class''' def __init__(self, msg): Exception.__init__(self, msg) self.message = msg class MAVString(str): '''NUL terminated string''' def __init__(self, s): str.__init__(self) def __str__(self): i = self.find(chr(0)) if i == -1: return self[:] return self[0:i] class MAVLink_bad_data(MAVLink_message): ''' a piece of bad data in a mavlink stream ''' def __init__(self, data, reason): MAVLink_message.__init__(self, MAVLINK_MSG_ID_BAD_DATA, 'BAD_DATA') self._fieldnames = ['data', 'reason'] self.data = data self.reason = reason self._msgbuf = data class MAVLink(object): '''MAVLink protocol handling class''' def __init__(self, file, srcSystem=0, srcComponent=0): self.seq = 0 self.file = file self.srcSystem = srcSystem self.srcComponent = srcComponent self.callback = None self.callback_args = None self.callback_kwargs = None self.buf = array.array('B') self.expected_length = 6 self.have_prefix_error = False self.robust_parsing = False self.protocol_marker = 254 self.little_endian = True self.crc_extra = True self.sort_fields = True self.total_packets_sent = 0 self.total_bytes_sent = 0 self.total_packets_received = 0 self.total_bytes_received = 0 self.total_receive_errors = 0 self.startup_time = time.time() def set_callback(self, callback, *args, **kwargs): self.callback = callback self.callback_args = args self.callback_kwargs = kwargs def send(self, mavmsg): '''send a MAVLink message''' buf = mavmsg.pack(self) self.file.write(buf) self.seq = (self.seq + 1) % 255 self.total_packets_sent += 1 self.total_bytes_sent += len(buf) def bytes_needed(self): '''return number of bytes needed for next parsing stage''' ret = self.expected_length - len(self.buf) if ret <= 0: return 1 return ret def parse_char(self, c): '''input some data bytes, possibly returning a new message''' if isinstance(c, str): self.buf.fromstring(c) else: self.buf.extend(c) self.total_bytes_received += len(c) if len(self.buf) >= 1 and self.buf[0] != 254: magic = self.buf[0] self.buf = self.buf[1:] if self.robust_parsing: m = MAVLink_bad_data(chr(magic), "Bad prefix") if self.callback: self.callback(m, *self.callback_args, **self.callback_kwargs) self.expected_length = 6 self.total_receive_errors += 1 return m if self.have_prefix_error: return None self.have_prefix_error = True self.total_receive_errors += 1 raise MAVError("invalid MAVLink prefix '%s'" % magic) self.have_prefix_error = False if len(self.buf) >= 2: (magic, self.expected_length) = struct.unpack('BB', self.buf[0:2]) self.expected_length += 8 if self.expected_length >= 8 and len(self.buf) >= self.expected_length: mbuf = self.buf[0:self.expected_length] self.buf = self.buf[self.expected_length:] self.expected_length = 6 if self.robust_parsing: try: m = self.decode(mbuf) self.total_packets_received += 1 except MAVError as reason: m = MAVLink_bad_data(mbuf, reason.message) self.total_receive_errors += 1 else: m = self.decode(mbuf) self.total_packets_received += 1 if self.callback: self.callback(m, *self.callback_args, **self.callback_kwargs) return m return None def parse_buffer(self, s): '''input some data bytes, possibly returning a list of new messages''' m = self.parse_char(s) if m is None: return None ret = [m] while True: m = self.parse_char("") if m is None: return ret ret.append(m) return ret def decode(self, msgbuf): '''decode a buffer as a MAVLink message''' # decode the header try: magic, mlen, seq, srcSystem, srcComponent, msgId = struct.unpack('cBBBBB', msgbuf[:6]) except struct.error as emsg: raise MAVError('Unable to unpack MAVLink header: %s' % emsg) if ord(magic) != 254: raise MAVError("invalid MAVLink prefix '%s'" % magic) if mlen != len(msgbuf)-8: raise MAVError('invalid MAVLink message length. Got %u expected %u, msgId=%u' % (len(msgbuf)-8, mlen, msgId)) if not msgId in mavlink_map: raise MAVError('unknown MAVLink message ID %u' % msgId) # decode the payload (fmt, type, order_map, crc_extra) = mavlink_map[msgId] # decode the checksum try: crc, = struct.unpack('<H', msgbuf[-2:]) except struct.error as emsg: raise MAVError('Unable to unpack MAVLink CRC: %s' % emsg) crc2 = mavutil.x25crc(msgbuf[1:-2]) if True: # using CRC extra crc2.accumulate(chr(crc_extra)) if crc != crc2.crc: raise MAVError('invalid MAVLink CRC in msgID %u 0x%04x should be 0x%04x' % (msgId, crc, crc2.crc)) try: t = struct.unpack(fmt, msgbuf[6:-2]) except struct.error as emsg: raise MAVError('Unable to unpack MAVLink payload type=%s fmt=%s payloadLength=%u: %s' % ( type, fmt, len(msgbuf[6:-2]), emsg)) tlist = list(t) # handle sorted fields if True: t = tlist[:] for i in range(0, len(tlist)): tlist[i] = t[order_map[i]] # terminate any strings for i in range(0, len(tlist)): if isinstance(tlist[i], str): tlist[i] = MAVString(tlist[i]) t = tuple(tlist) # construct the message object try: m = type(*t) except Exception as emsg: raise MAVError('Unable to instantiate MAVLink message of type %s : %s' % (type, emsg)) m._msgbuf = msgbuf m._payload = msgbuf[6:-2] m._crc = crc m._header = MAVLink_header(msgId, mlen, seq, srcSystem, srcComponent) return m def heartbeat_encode(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3): ''' The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t) autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t) base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t) custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t) system_status : System status flag, see MAV_STATE ENUM (uint8_t) mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t) ''' msg = MAVLink_heartbeat_message(type, autopilot, base_mode, custom_mode, system_status, mavlink_version) msg.pack(self) return msg def heartbeat_send(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3): ''' The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t) autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t) base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t) custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t) system_status : System status flag, see MAV_STATE ENUM (uint8_t) mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t) ''' return self.send(self.heartbeat_encode(type, autopilot, base_mode, custom_mode, system_status, mavlink_version)) def sys_status_encode(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4): ''' The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows wether the system is currently active or not and if an emergency occured. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occured it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout. onboard_control_sensors_present : Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_enabled : Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_health : Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) load : Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 (uint16_t) voltage_battery : Battery voltage, in millivolts (1 = 1 millivolt) (uint16_t) current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t) battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery (int8_t) drop_rate_comm : Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_count1 : Autopilot-specific errors (uint16_t) errors_count2 : Autopilot-specific errors (uint16_t) errors_count3 : Autopilot-specific errors (uint16_t) errors_count4 : Autopilot-specific errors (uint16_t) ''' msg = MAVLink_sys_status_message(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4) msg.pack(self) return msg def sys_status_send(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4): ''' The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows wether the system is currently active or not and if an emergency occured. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occured it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout. onboard_control_sensors_present : Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_enabled : Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_health : Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) load : Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 (uint16_t) voltage_battery : Battery voltage, in millivolts (1 = 1 millivolt) (uint16_t) current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t) battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery (int8_t) drop_rate_comm : Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_count1 : Autopilot-specific errors (uint16_t) errors_count2 : Autopilot-specific errors (uint16_t) errors_count3 : Autopilot-specific errors (uint16_t) errors_count4 : Autopilot-specific errors (uint16_t) ''' return self.send(self.sys_status_encode(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4)) def system_time_encode(self, time_unix_usec, time_boot_ms): ''' The system time is the time of the master clock, typically the computer clock of the main onboard computer. time_unix_usec : Timestamp of the master clock in microseconds since UNIX epoch. (uint64_t) time_boot_ms : Timestamp of the component clock since boot time in milliseconds. (uint32_t) ''' msg = MAVLink_system_time_message(time_unix_usec, time_boot_ms) msg.pack(self) return msg def system_time_send(self, time_unix_usec, time_boot_ms): ''' The system time is the time of the master clock, typically the computer clock of the main onboard computer. time_unix_usec : Timestamp of the master clock in microseconds since UNIX epoch. (uint64_t) time_boot_ms : Timestamp of the component clock since boot time in milliseconds. (uint32_t) ''' return self.send(self.system_time_encode(time_unix_usec, time_boot_ms)) def ping_encode(self, time_usec, seq, target_system, target_component): ''' A ping message either requesting or responding to a ping. This allows to measure the system latencies, including serial port, radio modem and UDP connections. time_usec : Unix timestamp in microseconds (uint64_t) seq : PING sequence (uint32_t) target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) ''' msg = MAVLink_ping_message(time_usec, seq, target_system, target_component) msg.pack(self) return msg def ping_send(self, time_usec, seq, target_system, target_component): ''' A ping message either requesting or responding to a ping. This allows to measure the system latencies, including serial port, radio modem and UDP connections. time_usec : Unix timestamp in microseconds (uint64_t) seq : PING sequence (uint32_t) target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) ''' return self.send(self.ping_encode(time_usec, seq, target_system, target_component)) def change_operator_control_encode(self, target_system, control_request, version, passkey): ''' Request to control this MAV target_system : System the GCS requests control for (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t) passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char) ''' msg = MAVLink_change_operator_control_message(target_system, control_request, version, passkey) msg.pack(self) return msg def change_operator_control_send(self, target_system, control_request, version, passkey): ''' Request to control this MAV target_system : System the GCS requests control for (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t) passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char) ''' return self.send(self.change_operator_control_encode(target_system, control_request, version, passkey)) def change_operator_control_ack_encode(self, gcs_system_id, control_request, ack): ''' Accept / deny control of this MAV gcs_system_id : ID of the GCS this message (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t) ''' msg = MAVLink_change_operator_control_ack_message(gcs_system_id, control_request, ack) msg.pack(self) return msg def change_operator_control_ack_send(self, gcs_system_id, control_request, ack): ''' Accept / deny control of this MAV gcs_system_id : ID of the GCS this message (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t) ''' return self.send(self.change_operator_control_ack_encode(gcs_system_id, control_request, ack)) def auth_key_encode(self, key): ''' Emit an encrypted signature / key identifying this system. PLEASE NOTE: This protocol has been kept simple, so transmitting the key requires an encrypted channel for true safety. key : key (char) ''' msg = MAVLink_auth_key_message(key) msg.pack(self) return msg def auth_key_send(self, key): ''' Emit an encrypted signature / key identifying this system. PLEASE NOTE: This protocol has been kept simple, so transmitting the key requires an encrypted channel for true safety. key : key (char) ''' return self.send(self.auth_key_encode(key)) def set_mode_encode(self, target_system, base_mode, custom_mode): ''' Set the system mode, as defined by enum MAV_MODE. There is no target component id as the mode is by definition for the overall aircraft, not only for one component. target_system : The system setting the mode (uint8_t) base_mode : The new base mode (uint8_t) custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t) ''' msg = MAVLink_set_mode_message(target_system, base_mode, custom_mode) msg.pack(self) return msg def set_mode_send(self, target_system, base_mode, custom_mode): ''' Set the system mode, as defined by enum MAV_MODE. There is no target component id as the mode is by definition for the overall aircraft, not only for one component. target_system : The system setting the mode (uint8_t) base_mode : The new base mode (uint8_t) custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t) ''' return self.send(self.set_mode_encode(target_system, base_mode, custom_mode)) def param_request_read_encode(self, target_system, target_component, param_id, param_index): ''' Request to read the onboard parameter with the param_id string id. Onboard parameters are stored as key[const char*] -> value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char) param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will be ignored) (int16_t) ''' msg = MAVLink_param_request_read_message(target_system, target_component, param_id, param_index) msg.pack(self) return msg def param_request_read_send(self, target_system, target_component, param_id, param_index): ''' Request to read the onboard parameter with the param_id string id. Onboard parameters are stored as key[const char*] -> value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char) param_index : Parameter index. Send -1 to use the param ID field as identifier (else the param id will be ignored) (int16_t) ''' return self.send(self.param_request_read_encode(target_system, target_component, param_id, param_index)) def param_request_list_encode(self, target_system, target_component): ''' Request all parameters of this component. After his request, all parameters are emitted. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' msg = MAVLink_param_request_list_message(target_system, target_component) msg.pack(self) return msg def param_request_list_send(self, target_system, target_component): ''' Request all parameters of this component. After his request, all parameters are emitted. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' return self.send(self.param_request_list_encode(target_system, target_component)) def param_value_encode(self, param_id, param_value, param_type, param_count, param_index): ''' Emit the value of a onboard parameter. The inclusion of param_count and param_index in the message allows the recipient to keep track of received parameters and allows him to re-request missing parameters after a loss or timeout. param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see the MAV_PARAM_TYPE enum for supported data types. (uint8_t) param_count : Total number of onboard parameters (uint16_t) param_index : Index of this onboard parameter (uint16_t) ''' msg = MAVLink_param_value_message(param_id, param_value, param_type, param_count, param_index) msg.pack(self) return msg def param_value_send(self, param_id, param_value, param_type, param_count, param_index): ''' Emit the value of a onboard parameter. The inclusion of param_count and param_index in the message allows the recipient to keep track of received parameters and allows him to re-request missing parameters after a loss or timeout. param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see the MAV_PARAM_TYPE enum for supported data types. (uint8_t) param_count : Total number of onboard parameters (uint16_t) param_index : Index of this onboard parameter (uint16_t) ''' return self.send(self.param_value_encode(param_id, param_value, param_type, param_count, param_index)) def param_set_encode(self, target_system, target_component, param_id, param_value, param_type): ''' Set a parameter value TEMPORARILY to RAM. It will be reset to default on system reboot. Send the ACTION MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents to EEPROM. IMPORTANT: The receiving component should acknowledge the new parameter value by sending a param_value message to all communication partners. This will also ensure that multiple GCS all have an up-to-date list of all parameters. If the sending GCS did not receive a PARAM_VALUE message within its timeout time, it should re-send the PARAM_SET message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see the MAV_PARAM_TYPE enum for supported data types. (uint8_t) ''' msg = MAVLink_param_set_message(target_system, target_component, param_id, param_value, param_type) msg.pack(self) return msg def param_set_send(self, target_system, target_component, param_id, param_value, param_type): ''' Set a parameter value TEMPORARILY to RAM. It will be reset to default on system reboot. Send the ACTION MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents to EEPROM. IMPORTANT: The receiving component should acknowledge the new parameter value by sending a param_value message to all communication partners. This will also ensure that multiple GCS all have an up-to-date list of all parameters. If the sending GCS did not receive a PARAM_VALUE message within its timeout time, it should re-send the PARAM_SET message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id, terminated by NULL if the length is less than 16 human-readable chars and WITHOUT null termination (NULL) byte if the length is exactly 16 chars - applications have to provide 16+1 bytes storage if the ID is stored as string (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see the MAV_PARAM_TYPE enum for supported data types. (uint8_t) ''' return self.send(self.param_set_encode(target_system, target_component, param_id, param_value, param_type)) def gps_raw_int_encode(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible): ''' The global position, as returned by the Global Positioning System (GPS). This is NOT the global position estimate of the system, but rather a RAW sensor value. See message GLOBAL_POSITION for the global position estimate. Coordinate frame is right-handed, Z-axis up (GPS frame). time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t) lat : Latitude in 1E7 degrees (int32_t) lon : Longitude in 1E7 degrees (int32_t) alt : Altitude in 1E3 meters (millimeters) above MSL (int32_t) eph : GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) epv : GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) vel : GPS ground speed (m/s * 100). If unknown, set to: 65535 (uint16_t) cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t) ''' msg = MAVLink_gps_raw_int_message(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible) msg.pack(self) return msg def gps_raw_int_send(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible): ''' The global position, as returned by the Global Positioning System (GPS). This is NOT the global position estimate of the system, but rather a RAW sensor value. See message GLOBAL_POSITION for the global position estimate. Coordinate frame is right-handed, Z-axis up (GPS frame). time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t) lat : Latitude in 1E7 degrees (int32_t) lon : Longitude in 1E7 degrees (int32_t) alt : Altitude in 1E3 meters (millimeters) above MSL (int32_t) eph : GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) epv : GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) vel : GPS ground speed (m/s * 100). If unknown, set to: 65535 (uint16_t) cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t) ''' return self.send(self.gps_raw_int_encode(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible)) def gps_status_encode(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr): ''' The positioning status, as reported by GPS. This message is intended to display status information about each satellite visible to the receiver. See message GLOBAL_POSITION for the global position estimate. This message can contain information for up to 20 satellites. satellites_visible : Number of satellites visible (uint8_t) satellite_prn : Global satellite ID (uint8_t) satellite_used : 0: Satellite not used, 1: used for localization (uint8_t) satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t) satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t) satellite_snr : Signal to noise ratio of satellite (uint8_t) ''' msg = MAVLink_gps_status_message(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr) msg.pack(self) return msg def gps_status_send(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr): ''' The positioning status, as reported by GPS. This message is intended to display status information about each satellite visible to the receiver. See message GLOBAL_POSITION for the global position estimate. This message can contain information for up to 20 satellites. satellites_visible : Number of satellites visible (uint8_t) satellite_prn : Global satellite ID (uint8_t) satellite_used : 0: Satellite not used, 1: used for localization (uint8_t) satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t) satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t) satellite_snr : Signal to noise ratio of satellite (uint8_t) ''' return self.send(self.gps_status_encode(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr)) def scaled_imu_encode(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should contain the scaled values to the described units time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) xgyro : Angular speed around X axis (millirad /sec) (int16_t) ygyro : Angular speed around Y axis (millirad /sec) (int16_t) zgyro : Angular speed around Z axis (millirad /sec) (int16_t) xmag : X Magnetic field (milli tesla) (int16_t) ymag : Y Magnetic field (milli tesla) (int16_t) zmag : Z Magnetic field (milli tesla) (int16_t) ''' msg = MAVLink_scaled_imu_message(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag) msg.pack(self) return msg def scaled_imu_send(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should contain the scaled values to the described units time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) xgyro : Angular speed around X axis (millirad /sec) (int16_t) ygyro : Angular speed around Y axis (millirad /sec) (int16_t) zgyro : Angular speed around Z axis (millirad /sec) (int16_t) xmag : X Magnetic field (milli tesla) (int16_t) ymag : Y Magnetic field (milli tesla) (int16_t) zmag : Z Magnetic field (milli tesla) (int16_t) ''' return self.send(self.scaled_imu_encode(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)) def raw_imu_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should always contain the true raw values without any scaling to allow data capture and system debugging. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) xacc : X acceleration (raw) (int16_t) yacc : Y acceleration (raw) (int16_t) zacc : Z acceleration (raw) (int16_t) xgyro : Angular speed around X axis (raw) (int16_t) ygyro : Angular speed around Y axis (raw) (int16_t) zgyro : Angular speed around Z axis (raw) (int16_t) xmag : X Magnetic field (raw) (int16_t) ymag : Y Magnetic field (raw) (int16_t) zmag : Z Magnetic field (raw) (int16_t) ''' msg = MAVLink_raw_imu_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag) msg.pack(self) return msg def raw_imu_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should always contain the true raw values without any scaling to allow data capture and system debugging. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) xacc : X acceleration (raw) (int16_t) yacc : Y acceleration (raw) (int16_t) zacc : Z acceleration (raw) (int16_t) xgyro : Angular speed around X axis (raw) (int16_t) ygyro : Angular speed around Y axis (raw) (int16_t) zgyro : Angular speed around Z axis (raw) (int16_t) xmag : X Magnetic field (raw) (int16_t) ymag : Y Magnetic field (raw) (int16_t) zmag : Z Magnetic field (raw) (int16_t) ''' return self.send(self.raw_imu_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)) def raw_pressure_encode(self, time_usec, press_abs, press_diff1, press_diff2, temperature): ''' The RAW pressure readings for the typical setup of one absolute pressure and one differential pressure sensor. The sensor values should be the raw, UNSCALED ADC values. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) press_abs : Absolute pressure (raw) (int16_t) press_diff1 : Differential pressure 1 (raw) (int16_t) press_diff2 : Differential pressure 2 (raw) (int16_t) temperature : Raw Temperature measurement (raw) (int16_t) ''' msg = MAVLink_raw_pressure_message(time_usec, press_abs, press_diff1, press_diff2, temperature) msg.pack(self) return msg def raw_pressure_send(self, time_usec, press_abs, press_diff1, press_diff2, temperature): ''' The RAW pressure readings for the typical setup of one absolute pressure and one differential pressure sensor. The sensor values should be the raw, UNSCALED ADC values. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) press_abs : Absolute pressure (raw) (int16_t) press_diff1 : Differential pressure 1 (raw) (int16_t) press_diff2 : Differential pressure 2 (raw) (int16_t) temperature : Raw Temperature measurement (raw) (int16_t) ''' return self.send(self.raw_pressure_encode(time_usec, press_abs, press_diff1, press_diff2, temperature)) def scaled_pressure_encode(self, time_boot_ms, press_abs, press_diff, temperature): ''' The pressure readings for the typical setup of one absolute and differential pressure sensor. The units are as specified in each field. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) press_abs : Absolute pressure (hectopascal) (float) press_diff : Differential pressure 1 (hectopascal) (float) temperature : Temperature measurement (0.01 degrees celsius) (int16_t) ''' msg = MAVLink_scaled_pressure_message(time_boot_ms, press_abs, press_diff, temperature) msg.pack(self) return msg def scaled_pressure_send(self, time_boot_ms, press_abs, press_diff, temperature): ''' The pressure readings for the typical setup of one absolute and differential pressure sensor. The units are as specified in each field. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) press_abs : Absolute pressure (hectopascal) (float) press_diff : Differential pressure 1 (hectopascal) (float) temperature : Temperature measurement (0.01 degrees celsius) (int16_t) ''' return self.send(self.scaled_pressure_encode(time_boot_ms, press_abs, press_diff, temperature)) def attitude_encode(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right). time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) roll : Roll angle (rad, -pi..+pi) (float) pitch : Pitch angle (rad, -pi..+pi) (float) yaw : Yaw angle (rad, -pi..+pi) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' msg = MAVLink_attitude_message(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed) msg.pack(self) return msg def attitude_send(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right). time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) roll : Roll angle (rad, -pi..+pi) (float) pitch : Pitch angle (rad, -pi..+pi) (float) yaw : Yaw angle (rad, -pi..+pi) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' return self.send(self.attitude_encode(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed)) def attitude_quaternion_encode(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right), expressed as quaternion. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) q1 : Quaternion component 1 (float) q2 : Quaternion component 2 (float) q3 : Quaternion component 3 (float) q4 : Quaternion component 4 (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' msg = MAVLink_attitude_quaternion_message(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed) msg.pack(self) return msg def attitude_quaternion_send(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right), expressed as quaternion. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) q1 : Quaternion component 1 (float) q2 : Quaternion component 2 (float) q3 : Quaternion component 3 (float) q4 : Quaternion component 4 (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' return self.send(self.attitude_quaternion_encode(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed)) def local_position_ned_encode(self, time_boot_ms, x, y, z, vx, vy, vz): ''' The filtered local position (e.g. fused computer vision and accelerometers). Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) vx : X Speed (float) vy : Y Speed (float) vz : Z Speed (float) ''' msg = MAVLink_local_position_ned_message(time_boot_ms, x, y, z, vx, vy, vz) msg.pack(self) return msg def local_position_ned_send(self, time_boot_ms, x, y, z, vx, vy, vz): ''' The filtered local position (e.g. fused computer vision and accelerometers). Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) vx : X Speed (float) vy : Y Speed (float) vz : Z Speed (float) ''' return self.send(self.local_position_ned_encode(time_boot_ms, x, y, z, vx, vy, vz)) def global_position_int_encode(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg): ''' The filtered global position (e.g. fused GPS and accelerometers). The position is in GPS-frame (right-handed, Z-up). It is designed as scaled integer message since the resolution of float is not sufficient. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters), above MSL (int32_t) relative_alt : Altitude above ground in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) hdg : Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) ''' msg = MAVLink_global_position_int_message(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg) msg.pack(self) return msg def global_position_int_send(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg): ''' The filtered global position (e.g. fused GPS and accelerometers). The position is in GPS-frame (right-handed, Z-up). It is designed as scaled integer message since the resolution of float is not sufficient. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters), above MSL (int32_t) relative_alt : Altitude above ground in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) hdg : Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) ''' return self.send(self.global_position_int_encode(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg)) def rc_channels_scaled_encode(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi): ''' The scaled values of the RC channels received. (-100%) -10000, (0%) 0, (100%) 10000. Channels that are inactive should be set to 65535. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t) chan1_scaled : RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan2_scaled : RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan3_scaled : RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan4_scaled : RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan5_scaled : RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan6_scaled : RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan7_scaled : RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan8_scaled : RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) rssi : Receive signal strength indicator, 0: 0%, 100: 100%, 255: invalid/unknown. (uint8_t) ''' msg = MAVLink_rc_channels_scaled_message(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi) msg.pack(self) return msg def rc_channels_scaled_send(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi): ''' The scaled values of the RC channels received. (-100%) -10000, (0%) 0, (100%) 10000. Channels that are inactive should be set to 65535. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t) chan1_scaled : RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan2_scaled : RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan3_scaled : RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan4_scaled : RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan5_scaled : RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan6_scaled : RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan7_scaled : RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) chan8_scaled : RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000, (invalid) 32767. (int16_t) rssi : Receive signal strength indicator, 0: 0%, 100: 100%, 255: invalid/unknown. (uint8_t) ''' return self.send(self.rc_channels_scaled_encode(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi)) def rc_channels_raw_encode(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi): ''' The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t) chan1_raw : RC channel 1 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan2_raw : RC channel 2 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan3_raw : RC channel 3 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan4_raw : RC channel 4 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan5_raw : RC channel 5 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan6_raw : RC channel 6 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan7_raw : RC channel 7 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan8_raw : RC channel 8 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 100: 100%, 255: invalid/unknown. (uint8_t) ''' msg = MAVLink_rc_channels_raw_message(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi) msg.pack(self) return msg def rc_channels_raw_send(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi): ''' The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows for more than 8 servos. (uint8_t) chan1_raw : RC channel 1 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan2_raw : RC channel 2 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan3_raw : RC channel 3 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan4_raw : RC channel 4 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan5_raw : RC channel 5 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan6_raw : RC channel 6 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan7_raw : RC channel 7 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) chan8_raw : RC channel 8 value, in microseconds. A value of 65535 implies the channel is unused. (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 100: 100%, 255: invalid/unknown. (uint8_t) ''' return self.send(self.rc_channels_raw_encode(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi)) def servo_output_raw_encode(self, time_boot_ms, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw): ''' The RAW values of the servo outputs (for RC input from the remote, use the RC_CHANNELS messages). The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. time_boot_ms : Timestamp (microseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) servo1_raw : Servo output 1 value, in microseconds (uint16_t) servo2_raw : Servo output 2 value, in microseconds (uint16_t) servo3_raw : Servo output 3 value, in microseconds (uint16_t) servo4_raw : Servo output 4 value, in microseconds (uint16_t) servo5_raw : Servo output 5 value, in microseconds (uint16_t) servo6_raw : Servo output 6 value, in microseconds (uint16_t) servo7_raw : Servo output 7 value, in microseconds (uint16_t) servo8_raw : Servo output 8 value, in microseconds (uint16_t) ''' msg = MAVLink_servo_output_raw_message(time_boot_ms, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw) msg.pack(self) return msg def servo_output_raw_send(self, time_boot_ms, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw): ''' The RAW values of the servo outputs (for RC input from the remote, use the RC_CHANNELS messages). The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. time_boot_ms : Timestamp (microseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) servo1_raw : Servo output 1 value, in microseconds (uint16_t) servo2_raw : Servo output 2 value, in microseconds (uint16_t) servo3_raw : Servo output 3 value, in microseconds (uint16_t) servo4_raw : Servo output 4 value, in microseconds (uint16_t) servo5_raw : Servo output 5 value, in microseconds (uint16_t) servo6_raw : Servo output 6 value, in microseconds (uint16_t) servo7_raw : Servo output 7 value, in microseconds (uint16_t) servo8_raw : Servo output 8 value, in microseconds (uint16_t) ''' return self.send(self.servo_output_raw_encode(time_boot_ms, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw)) def mission_request_partial_list_encode(self, target_system, target_component, start_index, end_index): ''' Request a partial list of mission items from the system/component. http://qgroundcontrol.org/mavlink/waypoint_protocol. If start and end index are the same, just send one waypoint. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default (int16_t) end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t) ''' msg = MAVLink_mission_request_partial_list_message(target_system, target_component, start_index, end_index) msg.pack(self) return msg def mission_request_partial_list_send(self, target_system, target_component, start_index, end_index): ''' Request a partial list of mission items from the system/component. http://qgroundcontrol.org/mavlink/waypoint_protocol. If start and end index are the same, just send one waypoint. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default (int16_t) end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t) ''' return self.send(self.mission_request_partial_list_encode(target_system, target_component, start_index, end_index)) def mission_write_partial_list_encode(self, target_system, target_component, start_index, end_index): ''' This message is sent to the MAV to write a partial list. If start index == end index, only one item will be transmitted / updated. If the start index is NOT 0 and above the current list size, this request should be REJECTED! target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t) end_index : End index, equal or greater than start index. (int16_t) ''' msg = MAVLink_mission_write_partial_list_message(target_system, target_component, start_index, end_index) msg.pack(self) return msg def mission_write_partial_list_send(self, target_system, target_component, start_index, end_index): ''' This message is sent to the MAV to write a partial list. If start index == end index, only one item will be transmitted / updated. If the start index is NOT 0 and above the current list size, this request should be REJECTED! target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t) end_index : End index, equal or greater than start index. (int16_t) ''' return self.send(self.mission_write_partial_list_encode(target_system, target_component, start_index, end_index)) def mission_item_encode(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z): ''' Message encoding a mission item. This message is emitted to announce the presence of a mission item and to set a mission item on the system. The mission item can be either in x, y, z meters (type: LOCAL) or x:lat, y:lon, z:altitude. Local frame is Z-down, right handed (NED), global frame is Z-up, right handed (ENU). See also http://qgroundcontrol.org/mavlink/waypoint_protocol. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) frame : The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h (uint8_t) command : The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs (uint16_t) current : false:0, true:1 (uint8_t) autocontinue : autocontinue to next wp (uint8_t) param1 : PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters (float) param2 : PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds (float) param3 : PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise. (float) param4 : PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH (float) x : PARAM5 / local: x position, global: latitude (float) y : PARAM6 / y position: global: longitude (float) z : PARAM7 / z position: global: altitude (float) ''' msg = MAVLink_mission_item_message(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z) msg.pack(self) return msg def mission_item_send(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z): ''' Message encoding a mission item. This message is emitted to announce the presence of a mission item and to set a mission item on the system. The mission item can be either in x, y, z meters (type: LOCAL) or x:lat, y:lon, z:altitude. Local frame is Z-down, right handed (NED), global frame is Z-up, right handed (ENU). See also http://qgroundcontrol.org/mavlink/waypoint_protocol. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) frame : The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h (uint8_t) command : The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs (uint16_t) current : false:0, true:1 (uint8_t) autocontinue : autocontinue to next wp (uint8_t) param1 : PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters (float) param2 : PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds (float) param3 : PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise. (float) param4 : PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH (float) x : PARAM5 / local: x position, global: latitude (float) y : PARAM6 / y position: global: longitude (float) z : PARAM7 / z position: global: altitude (float) ''' return self.send(self.mission_item_encode(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z)) def mission_request_encode(self, target_system, target_component, seq): ''' Request the information of the mission item with the sequence number seq. The response of the system to this message should be a MISSION_ITEM message. http://qgroundcontrol.org/mavlink/waypoint_protocol target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' msg = MAVLink_mission_request_message(target_system, target_component, seq) msg.pack(self) return msg def mission_request_send(self, target_system, target_component, seq): ''' Request the information of the mission item with the sequence number seq. The response of the system to this message should be a MISSION_ITEM message. http://qgroundcontrol.org/mavlink/waypoint_protocol target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' return self.send(self.mission_request_encode(target_system, target_component, seq)) def mission_set_current_encode(self, target_system, target_component, seq): ''' Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in-between). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' msg = MAVLink_mission_set_current_message(target_system, target_component, seq) msg.pack(self) return msg def mission_set_current_send(self, target_system, target_component, seq): ''' Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in-between). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' return self.send(self.mission_set_current_encode(target_system, target_component, seq)) def mission_current_encode(self, seq): ''' Message that announces the sequence number of the current active mission item. The MAV will fly towards this mission item. seq : Sequence (uint16_t) ''' msg = MAVLink_mission_current_message(seq) msg.pack(self) return msg def mission_current_send(self, seq): ''' Message that announces the sequence number of the current active mission item. The MAV will fly towards this mission item. seq : Sequence (uint16_t) ''' return self.send(self.mission_current_encode(seq)) def mission_request_list_encode(self, target_system, target_component): ''' Request the overall list of mission items from the system/component. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' msg = MAVLink_mission_request_list_message(target_system, target_component) msg.pack(self) return msg def mission_request_list_send(self, target_system, target_component): ''' Request the overall list of mission items from the system/component. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' return self.send(self.mission_request_list_encode(target_system, target_component)) def mission_count_encode(self, target_system, target_component, count): ''' This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of MISSIONs. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) count : Number of mission items in the sequence (uint16_t) ''' msg = MAVLink_mission_count_message(target_system, target_component, count) msg.pack(self) return msg def mission_count_send(self, target_system, target_component, count): ''' This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of MISSIONs. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) count : Number of mission items in the sequence (uint16_t) ''' return self.send(self.mission_count_encode(target_system, target_component, count)) def mission_clear_all_encode(self, target_system, target_component): ''' Delete all mission items at once. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' msg = MAVLink_mission_clear_all_message(target_system, target_component) msg.pack(self) return msg def mission_clear_all_send(self, target_system, target_component): ''' Delete all mission items at once. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' return self.send(self.mission_clear_all_encode(target_system, target_component)) def mission_item_reached_encode(self, seq): ''' A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION. seq : Sequence (uint16_t) ''' msg = MAVLink_mission_item_reached_message(seq) msg.pack(self) return msg def mission_item_reached_send(self, seq): ''' A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION. seq : Sequence (uint16_t) ''' return self.send(self.mission_item_reached_encode(seq)) def mission_ack_encode(self, target_system, target_component, type): ''' Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) type : See MAV_MISSION_RESULT enum (uint8_t) ''' msg = MAVLink_mission_ack_message(target_system, target_component, type) msg.pack(self) return msg def mission_ack_send(self, target_system, target_component, type): ''' Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) type : See MAV_MISSION_RESULT enum (uint8_t) ''' return self.send(self.mission_ack_encode(target_system, target_component, type)) def set_gps_global_origin_encode(self, target_system, latitude, longitude, altitude): ''' As local waypoints exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor. target_system : System ID (uint8_t) latitude : global position * 1E7 (int32_t) longitude : global position * 1E7 (int32_t) altitude : global position * 1000 (int32_t) ''' msg = MAVLink_set_gps_global_origin_message(target_system, latitude, longitude, altitude) msg.pack(self) return msg def set_gps_global_origin_send(self, target_system, latitude, longitude, altitude): ''' As local waypoints exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor. target_system : System ID (uint8_t) latitude : global position * 1E7 (int32_t) longitude : global position * 1E7 (int32_t) altitude : global position * 1000 (int32_t) ''' return self.send(self.set_gps_global_origin_encode(target_system, latitude, longitude, altitude)) def gps_global_origin_encode(self, latitude, longitude, altitude): ''' Once the MAV sets a new GPS-Local correspondence, this message announces the origin (0,0,0) position latitude : Latitude (WGS84), expressed as * 1E7 (int32_t) longitude : Longitude (WGS84), expressed as * 1E7 (int32_t) altitude : Altitude(WGS84), expressed as * 1000 (int32_t) ''' msg = MAVLink_gps_global_origin_message(latitude, longitude, altitude) msg.pack(self) return msg def gps_global_origin_send(self, latitude, longitude, altitude): ''' Once the MAV sets a new GPS-Local correspondence, this message announces the origin (0,0,0) position latitude : Latitude (WGS84), expressed as * 1E7 (int32_t) longitude : Longitude (WGS84), expressed as * 1E7 (int32_t) altitude : Altitude(WGS84), expressed as * 1000 (int32_t) ''' return self.send(self.gps_global_origin_encode(latitude, longitude, altitude)) def set_local_position_setpoint_encode(self, target_system, target_component, coordinate_frame, x, y, z, yaw): ''' Set the setpoint for a local position controller. This is the position in local coordinates the MAV should fly to. This message is sent by the path/MISSION planner to the onboard position controller. As some MAVs have a degree of freedom in yaw (e.g. all helicopters/quadrotors), the desired yaw angle is part of the message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' msg = MAVLink_set_local_position_setpoint_message(target_system, target_component, coordinate_frame, x, y, z, yaw) msg.pack(self) return msg def set_local_position_setpoint_send(self, target_system, target_component, coordinate_frame, x, y, z, yaw): ''' Set the setpoint for a local position controller. This is the position in local coordinates the MAV should fly to. This message is sent by the path/MISSION planner to the onboard position controller. As some MAVs have a degree of freedom in yaw (e.g. all helicopters/quadrotors), the desired yaw angle is part of the message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' return self.send(self.set_local_position_setpoint_encode(target_system, target_component, coordinate_frame, x, y, z, yaw)) def local_position_setpoint_encode(self, coordinate_frame, x, y, z, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' msg = MAVLink_local_position_setpoint_message(coordinate_frame, x, y, z, yaw) msg.pack(self) return msg def local_position_setpoint_send(self, coordinate_frame, x, y, z, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' return self.send(self.local_position_setpoint_encode(coordinate_frame, x, y, z, yaw)) def global_position_setpoint_int_encode(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' msg = MAVLink_global_position_setpoint_int_message(coordinate_frame, latitude, longitude, altitude, yaw) msg.pack(self) return msg def global_position_setpoint_int_send(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' return self.send(self.global_position_setpoint_int_encode(coordinate_frame, latitude, longitude, altitude, yaw)) def set_global_position_setpoint_int_encode(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Set the current global position setpoint. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' msg = MAVLink_set_global_position_setpoint_int_message(coordinate_frame, latitude, longitude, altitude, yaw) msg.pack(self) return msg def set_global_position_setpoint_int_send(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Set the current global position setpoint. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' return self.send(self.set_global_position_setpoint_int_encode(coordinate_frame, latitude, longitude, altitude, yaw)) def safety_set_allowed_area_encode(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' msg = MAVLink_safety_set_allowed_area_message(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z) msg.pack(self) return msg def safety_set_allowed_area_send(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' return self.send(self.safety_set_allowed_area_encode(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z)) def safety_allowed_area_encode(self, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Read out the safety zone the MAV currently assumes. frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' msg = MAVLink_safety_allowed_area_message(frame, p1x, p1y, p1z, p2x, p2y, p2z) msg.pack(self) return msg def safety_allowed_area_send(self, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Read out the safety zone the MAV currently assumes. frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' return self.send(self.safety_allowed_area_encode(frame, p1x, p1y, p1z, p2x, p2y, p2z)) def set_roll_pitch_yaw_thrust_encode(self, target_system, target_component, roll, pitch, yaw, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_set_roll_pitch_yaw_thrust_message(target_system, target_component, roll, pitch, yaw, thrust) msg.pack(self) return msg def set_roll_pitch_yaw_thrust_send(self, target_system, target_component, roll, pitch, yaw, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.set_roll_pitch_yaw_thrust_encode(target_system, target_component, roll, pitch, yaw, thrust)) def set_roll_pitch_yaw_speed_thrust_encode(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_set_roll_pitch_yaw_speed_thrust_message(target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust) msg.pack(self) return msg def set_roll_pitch_yaw_speed_thrust_send(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.set_roll_pitch_yaw_speed_thrust_encode(target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust)) def roll_pitch_yaw_thrust_setpoint_encode(self, time_boot_ms, roll, pitch, yaw, thrust): ''' Setpoint in roll, pitch, yaw currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_roll_pitch_yaw_thrust_setpoint_message(time_boot_ms, roll, pitch, yaw, thrust) msg.pack(self) return msg def roll_pitch_yaw_thrust_setpoint_send(self, time_boot_ms, roll, pitch, yaw, thrust): ''' Setpoint in roll, pitch, yaw currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.roll_pitch_yaw_thrust_setpoint_encode(time_boot_ms, roll, pitch, yaw, thrust)) def roll_pitch_yaw_speed_thrust_setpoint_encode(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust): ''' Setpoint in rollspeed, pitchspeed, yawspeed currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message(time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust) msg.pack(self) return msg def roll_pitch_yaw_speed_thrust_setpoint_send(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust): ''' Setpoint in rollspeed, pitchspeed, yawspeed currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.roll_pitch_yaw_speed_thrust_setpoint_encode(time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust)) def set_quad_motors_setpoint_encode(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw): ''' Setpoint in the four motor speeds target_system : System ID of the system that should set these motor commands (uint8_t) motor_front_nw : Front motor in + configuration, front left motor in x configuration (uint16_t) motor_right_ne : Right motor in + configuration, front right motor in x configuration (uint16_t) motor_back_se : Back motor in + configuration, back right motor in x configuration (uint16_t) motor_left_sw : Left motor in + configuration, back left motor in x configuration (uint16_t) ''' msg = MAVLink_set_quad_motors_setpoint_message(target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw) msg.pack(self) return msg def set_quad_motors_setpoint_send(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw): ''' Setpoint in the four motor speeds target_system : System ID of the system that should set these motor commands (uint8_t) motor_front_nw : Front motor in + configuration, front left motor in x configuration (uint16_t) motor_right_ne : Right motor in + configuration, front right motor in x configuration (uint16_t) motor_back_se : Back motor in + configuration, back right motor in x configuration (uint16_t) motor_left_sw : Left motor in + configuration, back left motor in x configuration (uint16_t) ''' return self.send(self.set_quad_motors_setpoint_encode(target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw)) def set_quad_swarm_roll_pitch_yaw_thrust_encode(self, group, mode, roll, pitch, yaw, thrust): ''' Setpoint for up to four quadrotors in a group / wing group : ID of the quadrotor group (0 - 255, up to 256 groups supported) (uint8_t) mode : ID of the flight mode (0 - 255, up to 256 modes supported) (uint8_t) roll : Desired roll angle in radians +-PI (+-32767) (int16_t) pitch : Desired pitch angle in radians +-PI (+-32767) (int16_t) yaw : Desired yaw angle in radians, scaled to int16 +-PI (+-32767) (int16_t) thrust : Collective thrust, scaled to uint16 (0..65535) (uint16_t) ''' msg = MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message(group, mode, roll, pitch, yaw, thrust) msg.pack(self) return msg def set_quad_swarm_roll_pitch_yaw_thrust_send(self, group, mode, roll, pitch, yaw, thrust): ''' Setpoint for up to four quadrotors in a group / wing group : ID of the quadrotor group (0 - 255, up to 256 groups supported) (uint8_t) mode : ID of the flight mode (0 - 255, up to 256 modes supported) (uint8_t) roll : Desired roll angle in radians +-PI (+-32767) (int16_t) pitch : Desired pitch angle in radians +-PI (+-32767) (int16_t) yaw : Desired yaw angle in radians, scaled to int16 +-PI (+-32767) (int16_t) thrust : Collective thrust, scaled to uint16 (0..65535) (uint16_t) ''' return self.send(self.set_quad_swarm_roll_pitch_yaw_thrust_encode(group, mode, roll, pitch, yaw, thrust)) def nav_controller_output_encode(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error): ''' Outputs of the APM navigation controller. The primary use of this message is to check the response and signs of the controller before actual flight and to assist with tuning controller parameters. nav_roll : Current desired roll in degrees (float) nav_pitch : Current desired pitch in degrees (float) nav_bearing : Current desired heading in degrees (int16_t) target_bearing : Bearing to current MISSION/target in degrees (int16_t) wp_dist : Distance to active MISSION in meters (uint16_t) alt_error : Current altitude error in meters (float) aspd_error : Current airspeed error in meters/second (float) xtrack_error : Current crosstrack error on x-y plane in meters (float) ''' msg = MAVLink_nav_controller_output_message(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error) msg.pack(self) return msg def nav_controller_output_send(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error): ''' Outputs of the APM navigation controller. The primary use of this message is to check the response and signs of the controller before actual flight and to assist with tuning controller parameters. nav_roll : Current desired roll in degrees (float) nav_pitch : Current desired pitch in degrees (float) nav_bearing : Current desired heading in degrees (int16_t) target_bearing : Bearing to current MISSION/target in degrees (int16_t) wp_dist : Distance to active MISSION in meters (uint16_t) alt_error : Current altitude error in meters (float) aspd_error : Current airspeed error in meters/second (float) xtrack_error : Current crosstrack error on x-y plane in meters (float) ''' return self.send(self.nav_controller_output_encode(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error)) def set_quad_swarm_led_roll_pitch_yaw_thrust_encode(self, group, mode, led_red, led_blue, led_green, roll, pitch, yaw, thrust): ''' Setpoint for up to four quadrotors in a group / wing group : ID of the quadrotor group (0 - 255, up to 256 groups supported) (uint8_t) mode : ID of the flight mode (0 - 255, up to 256 modes supported) (uint8_t) led_red : RGB red channel (0-255) (uint8_t) led_blue : RGB green channel (0-255) (uint8_t) led_green : RGB blue channel (0-255) (uint8_t) roll : Desired roll angle in radians +-PI (+-32767) (int16_t) pitch : Desired pitch angle in radians +-PI (+-32767) (int16_t) yaw : Desired yaw angle in radians, scaled to int16 +-PI (+-32767) (int16_t) thrust : Collective thrust, scaled to uint16 (0..65535) (uint16_t) ''' msg = MAVLink_set_quad_swarm_led_roll_pitch_yaw_thrust_message(group, mode, led_red, led_blue, led_green, roll, pitch, yaw, thrust) msg.pack(self) return msg def set_quad_swarm_led_roll_pitch_yaw_thrust_send(self, group, mode, led_red, led_blue, led_green, roll, pitch, yaw, thrust): ''' Setpoint for up to four quadrotors in a group / wing group : ID of the quadrotor group (0 - 255, up to 256 groups supported) (uint8_t) mode : ID of the flight mode (0 - 255, up to 256 modes supported) (uint8_t) led_red : RGB red channel (0-255) (uint8_t) led_blue : RGB green channel (0-255) (uint8_t) led_green : RGB blue channel (0-255) (uint8_t) roll : Desired roll angle in radians +-PI (+-32767) (int16_t) pitch : Desired pitch angle in radians +-PI (+-32767) (int16_t) yaw : Desired yaw angle in radians, scaled to int16 +-PI (+-32767) (int16_t) thrust : Collective thrust, scaled to uint16 (0..65535) (uint16_t) ''' return self.send(self.set_quad_swarm_led_roll_pitch_yaw_thrust_encode(group, mode, led_red, led_blue, led_green, roll, pitch, yaw, thrust)) def state_correction_encode(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr): ''' Corrects the systems state by adding an error correction term to the position and velocity, and by rotating the attitude by a correction angle. xErr : x position error (float) yErr : y position error (float) zErr : z position error (float) rollErr : roll error (radians) (float) pitchErr : pitch error (radians) (float) yawErr : yaw error (radians) (float) vxErr : x velocity (float) vyErr : y velocity (float) vzErr : z velocity (float) ''' msg = MAVLink_state_correction_message(xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr) msg.pack(self) return msg def state_correction_send(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr): ''' Corrects the systems state by adding an error correction term to the position and velocity, and by rotating the attitude by a correction angle. xErr : x position error (float) yErr : y position error (float) zErr : z position error (float) rollErr : roll error (radians) (float) pitchErr : pitch error (radians) (float) yawErr : yaw error (radians) (float) vxErr : x velocity (float) vyErr : y velocity (float) vzErr : z velocity (float) ''' return self.send(self.state_correction_encode(xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr)) def request_data_stream_encode(self, target_system, target_component, req_stream_id, req_message_rate, start_stop): ''' target_system : The target requested to send the message stream. (uint8_t) target_component : The target requested to send the message stream. (uint8_t) req_stream_id : The ID of the requested data stream (uint8_t) req_message_rate : The requested interval between two messages of this type (uint16_t) start_stop : 1 to start sending, 0 to stop sending. (uint8_t) ''' msg = MAVLink_request_data_stream_message(target_system, target_component, req_stream_id, req_message_rate, start_stop) msg.pack(self) return msg def request_data_stream_send(self, target_system, target_component, req_stream_id, req_message_rate, start_stop): ''' target_system : The target requested to send the message stream. (uint8_t) target_component : The target requested to send the message stream. (uint8_t) req_stream_id : The ID of the requested data stream (uint8_t) req_message_rate : The requested interval between two messages of this type (uint16_t) start_stop : 1 to start sending, 0 to stop sending. (uint8_t) ''' return self.send(self.request_data_stream_encode(target_system, target_component, req_stream_id, req_message_rate, start_stop)) def data_stream_encode(self, stream_id, message_rate, on_off): ''' stream_id : The ID of the requested data stream (uint8_t) message_rate : The requested interval between two messages of this type (uint16_t) on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t) ''' msg = MAVLink_data_stream_message(stream_id, message_rate, on_off) msg.pack(self) return msg def data_stream_send(self, stream_id, message_rate, on_off): ''' stream_id : The ID of the requested data stream (uint8_t) message_rate : The requested interval between two messages of this type (uint16_t) on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t) ''' return self.send(self.data_stream_encode(stream_id, message_rate, on_off)) def manual_control_encode(self, target, x, y, z, r, buttons): ''' This message provides an API for manually controlling the vehicle using standard joystick axes nomenclature, along with a joystick-like input device. Unused axes can be disabled an buttons are also transmit as boolean values of their target : The system to be controlled. (uint8_t) x : X-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to forward(1000)-backward(-1000) movement on a joystick and the pitch of a vehicle. (int16_t) y : Y-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to left(-1000)-right(1000) movement on a joystick and the roll of a vehicle. (int16_t) z : Z-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a separate slider movement with maximum being 1000 and minimum being -1000 on a joystick and the thrust of a vehicle. (int16_t) r : R-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a twisting of the joystick, with counter-clockwise being 1000 and clockwise being -1000, and the yaw of a vehicle. (int16_t) buttons : A bitfield corresponding to the joystick buttons' current state, 1 for pressed, 0 for released. The lowest bit corresponds to Button 1. (uint16_t) ''' msg = MAVLink_manual_control_message(target, x, y, z, r, buttons) msg.pack(self) return msg def manual_control_send(self, target, x, y, z, r, buttons): ''' This message provides an API for manually controlling the vehicle using standard joystick axes nomenclature, along with a joystick-like input device. Unused axes can be disabled an buttons are also transmit as boolean values of their target : The system to be controlled. (uint8_t) x : X-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to forward(1000)-backward(-1000) movement on a joystick and the pitch of a vehicle. (int16_t) y : Y-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to left(-1000)-right(1000) movement on a joystick and the roll of a vehicle. (int16_t) z : Z-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a separate slider movement with maximum being 1000 and minimum being -1000 on a joystick and the thrust of a vehicle. (int16_t) r : R-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a twisting of the joystick, with counter-clockwise being 1000 and clockwise being -1000, and the yaw of a vehicle. (int16_t) buttons : A bitfield corresponding to the joystick buttons' current state, 1 for pressed, 0 for released. The lowest bit corresponds to Button 1. (uint16_t) ''' return self.send(self.manual_control_encode(target, x, y, z, r, buttons)) def rc_channels_override_encode(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw): ''' The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of -1 means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) ''' msg = MAVLink_rc_channels_override_message(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw) msg.pack(self) return msg def rc_channels_override_send(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw): ''' The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of -1 means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) ''' return self.send(self.rc_channels_override_encode(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw)) def vfr_hud_encode(self, airspeed, groundspeed, heading, throttle, alt, climb): ''' Metrics typically displayed on a HUD for fixed wing aircraft airspeed : Current airspeed in m/s (float) groundspeed : Current ground speed in m/s (float) heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t) throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t) alt : Current altitude (MSL), in meters (float) climb : Current climb rate in meters/second (float) ''' msg = MAVLink_vfr_hud_message(airspeed, groundspeed, heading, throttle, alt, climb) msg.pack(self) return msg def vfr_hud_send(self, airspeed, groundspeed, heading, throttle, alt, climb): ''' Metrics typically displayed on a HUD for fixed wing aircraft airspeed : Current airspeed in m/s (float) groundspeed : Current ground speed in m/s (float) heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t) throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t) alt : Current altitude (MSL), in meters (float) climb : Current climb rate in meters/second (float) ''' return self.send(self.vfr_hud_encode(airspeed, groundspeed, heading, throttle, alt, climb)) def command_long_encode(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7): ''' Send a command with up to four parameters to the MAV target_system : System which should execute the command (uint8_t) target_component : Component which should execute the command, 0 for all components (uint8_t) command : Command ID, as defined by MAV_CMD enum. (uint16_t) confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t) param1 : Parameter 1, as defined by MAV_CMD enum. (float) param2 : Parameter 2, as defined by MAV_CMD enum. (float) param3 : Parameter 3, as defined by MAV_CMD enum. (float) param4 : Parameter 4, as defined by MAV_CMD enum. (float) param5 : Parameter 5, as defined by MAV_CMD enum. (float) param6 : Parameter 6, as defined by MAV_CMD enum. (float) param7 : Parameter 7, as defined by MAV_CMD enum. (float) ''' msg = MAVLink_command_long_message(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7) msg.pack(self) return msg def command_long_send(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7): ''' Send a command with up to four parameters to the MAV target_system : System which should execute the command (uint8_t) target_component : Component which should execute the command, 0 for all components (uint8_t) command : Command ID, as defined by MAV_CMD enum. (uint16_t) confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t) param1 : Parameter 1, as defined by MAV_CMD enum. (float) param2 : Parameter 2, as defined by MAV_CMD enum. (float) param3 : Parameter 3, as defined by MAV_CMD enum. (float) param4 : Parameter 4, as defined by MAV_CMD enum. (float) param5 : Parameter 5, as defined by MAV_CMD enum. (float) param6 : Parameter 6, as defined by MAV_CMD enum. (float) param7 : Parameter 7, as defined by MAV_CMD enum. (float) ''' return self.send(self.command_long_encode(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7)) def command_ack_encode(self, command, result): ''' Report status of a command. Includes feedback wether the command was executed. command : Command ID, as defined by MAV_CMD enum. (uint16_t) result : See MAV_RESULT enum (uint8_t) ''' msg = MAVLink_command_ack_message(command, result) msg.pack(self) return msg def command_ack_send(self, command, result): ''' Report status of a command. Includes feedback wether the command was executed. command : Command ID, as defined by MAV_CMD enum. (uint16_t) result : See MAV_RESULT enum (uint8_t) ''' return self.send(self.command_ack_encode(command, result)) def roll_pitch_yaw_rates_thrust_setpoint_encode(self, time_boot_ms, roll_rate, pitch_rate, yaw_rate, thrust): ''' Setpoint in roll, pitch, yaw rates and thrust currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll_rate : Desired roll rate in radians per second (float) pitch_rate : Desired pitch rate in radians per second (float) yaw_rate : Desired yaw rate in radians per second (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_roll_pitch_yaw_rates_thrust_setpoint_message(time_boot_ms, roll_rate, pitch_rate, yaw_rate, thrust) msg.pack(self) return msg def roll_pitch_yaw_rates_thrust_setpoint_send(self, time_boot_ms, roll_rate, pitch_rate, yaw_rate, thrust): ''' Setpoint in roll, pitch, yaw rates and thrust currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll_rate : Desired roll rate in radians per second (float) pitch_rate : Desired pitch rate in radians per second (float) yaw_rate : Desired yaw rate in radians per second (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.roll_pitch_yaw_rates_thrust_setpoint_encode(time_boot_ms, roll_rate, pitch_rate, yaw_rate, thrust)) def manual_setpoint_encode(self, time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch): ''' Setpoint in roll, pitch, yaw and thrust from the operator time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll : Desired roll rate in radians per second (float) pitch : Desired pitch rate in radians per second (float) yaw : Desired yaw rate in radians per second (float) thrust : Collective thrust, normalized to 0 .. 1 (float) mode_switch : Flight mode switch position, 0.. 255 (uint8_t) manual_override_switch : Override mode switch position, 0.. 255 (uint8_t) ''' msg = MAVLink_manual_setpoint_message(time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch) msg.pack(self) return msg def manual_setpoint_send(self, time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch): ''' Setpoint in roll, pitch, yaw and thrust from the operator time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll : Desired roll rate in radians per second (float) pitch : Desired pitch rate in radians per second (float) yaw : Desired yaw rate in radians per second (float) thrust : Collective thrust, normalized to 0 .. 1 (float) mode_switch : Flight mode switch position, 0.. 255 (uint8_t) manual_override_switch : Override mode switch position, 0.. 255 (uint8_t) ''' return self.send(self.manual_setpoint_encode(time_boot_ms, roll, pitch, yaw, thrust, mode_switch, manual_override_switch)) def local_position_ned_system_global_offset_encode(self, time_boot_ms, x, y, z, roll, pitch, yaw): ''' The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages of MAV X and the global coordinate frame in NED coordinates. Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) roll : Roll (float) pitch : Pitch (float) yaw : Yaw (float) ''' msg = MAVLink_local_position_ned_system_global_offset_message(time_boot_ms, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def local_position_ned_system_global_offset_send(self, time_boot_ms, x, y, z, roll, pitch, yaw): ''' The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages of MAV X and the global coordinate frame in NED coordinates. Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) roll : Roll (float) pitch : Pitch (float) yaw : Yaw (float) ''' return self.send(self.local_position_ned_system_global_offset_encode(time_boot_ms, x, y, z, roll, pitch, yaw)) def hil_state_encode(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc): ''' Sent from simulation to autopilot. This packet is useful for high throughput applications such as hardware in the loop simulations. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) ''' msg = MAVLink_hil_state_message(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc) msg.pack(self) return msg def hil_state_send(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc): ''' Sent from simulation to autopilot. This packet is useful for high throughput applications such as hardware in the loop simulations. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) ''' return self.send(self.hil_state_encode(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc)) def hil_controls_encode(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode): ''' Sent from autopilot to simulation. Hardware in the loop control outputs time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll_ailerons : Control output -1 .. 1 (float) pitch_elevator : Control output -1 .. 1 (float) yaw_rudder : Control output -1 .. 1 (float) throttle : Throttle 0 .. 1 (float) aux1 : Aux 1, -1 .. 1 (float) aux2 : Aux 2, -1 .. 1 (float) aux3 : Aux 3, -1 .. 1 (float) aux4 : Aux 4, -1 .. 1 (float) mode : System mode (MAV_MODE) (uint8_t) nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t) ''' msg = MAVLink_hil_controls_message(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode) msg.pack(self) return msg def hil_controls_send(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode): ''' Sent from autopilot to simulation. Hardware in the loop control outputs time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll_ailerons : Control output -1 .. 1 (float) pitch_elevator : Control output -1 .. 1 (float) yaw_rudder : Control output -1 .. 1 (float) throttle : Throttle 0 .. 1 (float) aux1 : Aux 1, -1 .. 1 (float) aux2 : Aux 2, -1 .. 1 (float) aux3 : Aux 3, -1 .. 1 (float) aux4 : Aux 4, -1 .. 1 (float) mode : System mode (MAV_MODE) (uint8_t) nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t) ''' return self.send(self.hil_controls_encode(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode)) def hil_rc_inputs_raw_encode(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi): ''' Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) chan9_raw : RC channel 9 value, in microseconds (uint16_t) chan10_raw : RC channel 10 value, in microseconds (uint16_t) chan11_raw : RC channel 11 value, in microseconds (uint16_t) chan12_raw : RC channel 12 value, in microseconds (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' msg = MAVLink_hil_rc_inputs_raw_message(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi) msg.pack(self) return msg def hil_rc_inputs_raw_send(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi): ''' Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) chan9_raw : RC channel 9 value, in microseconds (uint16_t) chan10_raw : RC channel 10 value, in microseconds (uint16_t) chan11_raw : RC channel 11 value, in microseconds (uint16_t) chan12_raw : RC channel 12 value, in microseconds (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' return self.send(self.hil_rc_inputs_raw_encode(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi)) def optical_flow_encode(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance): ''' Optical flow from a flow sensor (e.g. optical mouse sensor) time_usec : Timestamp (UNIX) (uint64_t) sensor_id : Sensor ID (uint8_t) flow_x : Flow in pixels in x-sensor direction (int16_t) flow_y : Flow in pixels in y-sensor direction (int16_t) flow_comp_m_x : Flow in meters in x-sensor direction, angular-speed compensated (float) flow_comp_m_y : Flow in meters in y-sensor direction, angular-speed compensated (float) quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t) ground_distance : Ground distance in meters. Positive value: distance known. Negative value: Unknown distance (float) ''' msg = MAVLink_optical_flow_message(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance) msg.pack(self) return msg def optical_flow_send(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance): ''' Optical flow from a flow sensor (e.g. optical mouse sensor) time_usec : Timestamp (UNIX) (uint64_t) sensor_id : Sensor ID (uint8_t) flow_x : Flow in pixels in x-sensor direction (int16_t) flow_y : Flow in pixels in y-sensor direction (int16_t) flow_comp_m_x : Flow in meters in x-sensor direction, angular-speed compensated (float) flow_comp_m_y : Flow in meters in y-sensor direction, angular-speed compensated (float) quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t) ground_distance : Ground distance in meters. Positive value: distance known. Negative value: Unknown distance (float) ''' return self.send(self.optical_flow_encode(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance)) def global_vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' msg = MAVLink_global_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def global_vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' return self.send(self.global_vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw)) def vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' msg = MAVLink_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' return self.send(self.vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw)) def vision_speed_estimate_encode(self, usec, x, y, z): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X speed (float) y : Global Y speed (float) z : Global Z speed (float) ''' msg = MAVLink_vision_speed_estimate_message(usec, x, y, z) msg.pack(self) return msg def vision_speed_estimate_send(self, usec, x, y, z): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X speed (float) y : Global Y speed (float) z : Global Z speed (float) ''' return self.send(self.vision_speed_estimate_encode(usec, x, y, z)) def vicon_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' msg = MAVLink_vicon_position_estimate_message(usec, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def vicon_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' return self.send(self.vicon_position_estimate_encode(usec, x, y, z, roll, pitch, yaw)) def highres_imu_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated): ''' The IMU readings in SI units in NED body frame time_usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) xacc : X acceleration (m/s^2) (float) yacc : Y acceleration (m/s^2) (float) zacc : Z acceleration (m/s^2) (float) xgyro : Angular speed around X axis (rad / sec) (float) ygyro : Angular speed around Y axis (rad / sec) (float) zgyro : Angular speed around Z axis (rad / sec) (float) xmag : X Magnetic field (Gauss) (float) ymag : Y Magnetic field (Gauss) (float) zmag : Z Magnetic field (Gauss) (float) abs_pressure : Absolute pressure in millibar (float) diff_pressure : Differential pressure in millibar (float) pressure_alt : Altitude calculated from pressure (float) temperature : Temperature in degrees celsius (float) fields_updated : Bitmask for fields that have updated since last message, bit 0 = xacc, bit 12: temperature (uint16_t) ''' msg = MAVLink_highres_imu_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated) msg.pack(self) return msg def highres_imu_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated): ''' The IMU readings in SI units in NED body frame time_usec : Timestamp (microseconds, synced to UNIX time or since system boot) (uint64_t) xacc : X acceleration (m/s^2) (float) yacc : Y acceleration (m/s^2) (float) zacc : Z acceleration (m/s^2) (float) xgyro : Angular speed around X axis (rad / sec) (float) ygyro : Angular speed around Y axis (rad / sec) (float) zgyro : Angular speed around Z axis (rad / sec) (float) xmag : X Magnetic field (Gauss) (float) ymag : Y Magnetic field (Gauss) (float) zmag : Z Magnetic field (Gauss) (float) abs_pressure : Absolute pressure in millibar (float) diff_pressure : Differential pressure in millibar (float) pressure_alt : Altitude calculated from pressure (float) temperature : Temperature in degrees celsius (float) fields_updated : Bitmask for fields that have updated since last message, bit 0 = xacc, bit 12: temperature (uint16_t) ''' return self.send(self.highres_imu_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag, abs_pressure, diff_pressure, pressure_alt, temperature, fields_updated)) def file_transfer_start_encode(self, transfer_uid, dest_path, direction, file_size, flags): ''' Begin file transfer transfer_uid : Unique transfer ID (uint64_t) dest_path : Destination path (char) direction : Transfer direction: 0: from requester, 1: to requester (uint8_t) file_size : File size in bytes (uint32_t) flags : RESERVED (uint8_t) ''' msg = MAVLink_file_transfer_start_message(transfer_uid, dest_path, direction, file_size, flags) msg.pack(self) return msg def file_transfer_start_send(self, transfer_uid, dest_path, direction, file_size, flags): ''' Begin file transfer transfer_uid : Unique transfer ID (uint64_t) dest_path : Destination path (char) direction : Transfer direction: 0: from requester, 1: to requester (uint8_t) file_size : File size in bytes (uint32_t) flags : RESERVED (uint8_t) ''' return self.send(self.file_transfer_start_encode(transfer_uid, dest_path, direction, file_size, flags)) def file_transfer_dir_list_encode(self, transfer_uid, dir_path, flags): ''' Get directory listing transfer_uid : Unique transfer ID (uint64_t) dir_path : Directory path to list (char) flags : RESERVED (uint8_t) ''' msg = MAVLink_file_transfer_dir_list_message(transfer_uid, dir_path, flags) msg.pack(self) return msg def file_transfer_dir_list_send(self, transfer_uid, dir_path, flags): ''' Get directory listing transfer_uid : Unique transfer ID (uint64_t) dir_path : Directory path to list (char) flags : RESERVED (uint8_t) ''' return self.send(self.file_transfer_dir_list_encode(transfer_uid, dir_path, flags)) def file_transfer_res_encode(self, transfer_uid, result): ''' File transfer result transfer_uid : Unique transfer ID (uint64_t) result : 0: OK, 1: not permitted, 2: bad path / file name, 3: no space left on device (uint8_t) ''' msg = MAVLink_file_transfer_res_message(transfer_uid, result) msg.pack(self) return msg def file_transfer_res_send(self, transfer_uid, result): ''' File transfer result transfer_uid : Unique transfer ID (uint64_t) result : 0: OK, 1: not permitted, 2: bad path / file name, 3: no space left on device (uint8_t) ''' return self.send(self.file_transfer_res_encode(transfer_uid, result)) def battery_status_encode(self, accu_id, voltage_cell_1, voltage_cell_2, voltage_cell_3, voltage_cell_4, voltage_cell_5, voltage_cell_6, current_battery, battery_remaining): ''' Transmitte battery informations for a accu pack. accu_id : Accupack ID (uint8_t) voltage_cell_1 : Battery voltage of cell 1, in millivolts (1 = 1 millivolt) (uint16_t) voltage_cell_2 : Battery voltage of cell 2, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_3 : Battery voltage of cell 3, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_4 : Battery voltage of cell 4, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_5 : Battery voltage of cell 5, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_6 : Battery voltage of cell 6, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t) battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot does not estimate the remaining battery (int8_t) ''' msg = MAVLink_battery_status_message(accu_id, voltage_cell_1, voltage_cell_2, voltage_cell_3, voltage_cell_4, voltage_cell_5, voltage_cell_6, current_battery, battery_remaining) msg.pack(self) return msg def battery_status_send(self, accu_id, voltage_cell_1, voltage_cell_2, voltage_cell_3, voltage_cell_4, voltage_cell_5, voltage_cell_6, current_battery, battery_remaining): ''' Transmitte battery informations for a accu pack. accu_id : Accupack ID (uint8_t) voltage_cell_1 : Battery voltage of cell 1, in millivolts (1 = 1 millivolt) (uint16_t) voltage_cell_2 : Battery voltage of cell 2, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_3 : Battery voltage of cell 3, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_4 : Battery voltage of cell 4, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_5 : Battery voltage of cell 5, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) voltage_cell_6 : Battery voltage of cell 6, in millivolts (1 = 1 millivolt), -1: no cell (uint16_t) current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t) battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot does not estimate the remaining battery (int8_t) ''' return self.send(self.battery_status_encode(accu_id, voltage_cell_1, voltage_cell_2, voltage_cell_3, voltage_cell_4, voltage_cell_5, voltage_cell_6, current_battery, battery_remaining)) def setpoint_8dof_encode(self, target_system, val1, val2, val3, val4, val5, val6, val7, val8): ''' Set the 8 DOF setpoint for a controller. target_system : System ID (uint8_t) val1 : Value 1 (float) val2 : Value 2 (float) val3 : Value 3 (float) val4 : Value 4 (float) val5 : Value 5 (float) val6 : Value 6 (float) val7 : Value 7 (float) val8 : Value 8 (float) ''' msg = MAVLink_setpoint_8dof_message(target_system, val1, val2, val3, val4, val5, val6, val7, val8) msg.pack(self) return msg def setpoint_8dof_send(self, target_system, val1, val2, val3, val4, val5, val6, val7, val8): ''' Set the 8 DOF setpoint for a controller. target_system : System ID (uint8_t) val1 : Value 1 (float) val2 : Value 2 (float) val3 : Value 3 (float) val4 : Value 4 (float) val5 : Value 5 (float) val6 : Value 6 (float) val7 : Value 7 (float) val8 : Value 8 (float) ''' return self.send(self.setpoint_8dof_encode(target_system, val1, val2, val3, val4, val5, val6, val7, val8)) def setpoint_6dof_encode(self, target_system, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z): ''' Set the 6 DOF setpoint for a attitude and position controller. target_system : System ID (uint8_t) trans_x : Translational Component in x (float) trans_y : Translational Component in y (float) trans_z : Translational Component in z (float) rot_x : Rotational Component in x (float) rot_y : Rotational Component in y (float) rot_z : Rotational Component in z (float) ''' msg = MAVLink_setpoint_6dof_message(target_system, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z) msg.pack(self) return msg def setpoint_6dof_send(self, target_system, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z): ''' Set the 6 DOF setpoint for a attitude and position controller. target_system : System ID (uint8_t) trans_x : Translational Component in x (float) trans_y : Translational Component in y (float) trans_z : Translational Component in z (float) rot_x : Rotational Component in x (float) rot_y : Rotational Component in y (float) rot_z : Rotational Component in z (float) ''' return self.send(self.setpoint_6dof_encode(target_system, trans_x, trans_y, trans_z, rot_x, rot_y, rot_z)) def memory_vect_encode(self, address, ver, type, value): ''' Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. address : Starting address of the debug variables (uint16_t) ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t) type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t) value : Memory contents at specified address (int8_t) ''' msg = MAVLink_memory_vect_message(address, ver, type, value) msg.pack(self) return msg def memory_vect_send(self, address, ver, type, value): ''' Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. address : Starting address of the debug variables (uint16_t) ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t) type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t) value : Memory contents at specified address (int8_t) ''' return self.send(self.memory_vect_encode(address, ver, type, value)) def debug_vect_encode(self, name, time_usec, x, y, z): ''' name : Name (char) time_usec : Timestamp (uint64_t) x : x (float) y : y (float) z : z (float) ''' msg = MAVLink_debug_vect_message(name, time_usec, x, y, z) msg.pack(self) return msg def debug_vect_send(self, name, time_usec, x, y, z): ''' name : Name (char) time_usec : Timestamp (uint64_t) x : x (float) y : y (float) z : z (float) ''' return self.send(self.debug_vect_encode(name, time_usec, x, y, z)) def named_value_float_encode(self, time_boot_ms, name, value): ''' Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Floating point value (float) ''' msg = MAVLink_named_value_float_message(time_boot_ms, name, value) msg.pack(self) return msg def named_value_float_send(self, time_boot_ms, name, value): ''' Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Floating point value (float) ''' return self.send(self.named_value_float_encode(time_boot_ms, name, value)) def named_value_int_encode(self, time_boot_ms, name, value): ''' Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Signed integer value (int32_t) ''' msg = MAVLink_named_value_int_message(time_boot_ms, name, value) msg.pack(self) return msg def named_value_int_send(self, time_boot_ms, name, value): ''' Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Signed integer value (int32_t) ''' return self.send(self.named_value_int_encode(time_boot_ms, name, value)) def statustext_encode(self, severity, text): ''' Status text message. These messages are printed in yellow in the COMM console of QGroundControl. WARNING: They consume quite some bandwidth, so use only for important status and error messages. If implemented wisely, these messages are buffered on the MCU and sent only at a limited rate (e.g. 10 Hz). severity : Severity of status. Relies on the definitions within RFC-5424. See enum MAV_SEVERITY. (uint8_t) text : Status text message, without null termination character (char) ''' msg = MAVLink_statustext_message(severity, text) msg.pack(self) return msg def statustext_send(self, severity, text): ''' Status text message. These messages are printed in yellow in the COMM console of QGroundControl. WARNING: They consume quite some bandwidth, so use only for important status and error messages. If implemented wisely, these messages are buffered on the MCU and sent only at a limited rate (e.g. 10 Hz). severity : Severity of status. Relies on the definitions within RFC-5424. See enum MAV_SEVERITY. (uint8_t) text : Status text message, without null termination character (char) ''' return self.send(self.statustext_encode(severity, text)) def debug_encode(self, time_boot_ms, ind, value): ''' Send a debug value. The index is used to discriminate between values. These values show up in the plot of QGroundControl as DEBUG N. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) ind : index of debug variable (uint8_t) value : DEBUG value (float) ''' msg = MAVLink_debug_message(time_boot_ms, ind, value) msg.pack(self) return msg def debug_send(self, time_boot_ms, ind, value): ''' Send a debug value. The index is used to discriminate between values. These values show up in the plot of QGroundControl as DEBUG N. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) ind : index of debug variable (uint8_t) value : DEBUG value (float) ''' return self.send(self.debug_encode(time_boot_ms, ind, value))