/**************************************************************************** * * Copyright (c) 2021 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #include "autopilot_tester.h" #include "math_helpers.h" #include #include #include #include std::string connection_url {"udp://"}; std::optional speed_factor {std::nullopt}; AutopilotTester::AutopilotTester() : _real_time_report_thread([this]() { report_speed_factor(); }) { } AutopilotTester::~AutopilotTester() { _should_exit = true; _real_time_report_thread.join(); } void AutopilotTester::connect(const std::string uri) { ConnectionResult ret = _mavsdk.add_any_connection(uri); REQUIRE(ret == ConnectionResult::Success); std::cout << time_str() << "Waiting for system connect" << std::endl; REQUIRE(poll_condition_with_timeout( [this]() { return _mavsdk.systems().size() > 0; }, std::chrono::seconds(25))); auto system = _mavsdk.systems().at(0); _action.reset(new Action(system)); _failure.reset(new Failure(system)); _info.reset(new Info(system)); _manual_control.reset(new ManualControl(system)); _mission.reset(new Mission(system)); _mission_raw.reset(new MissionRaw(system)); _offboard.reset(new Offboard(system)); _param.reset(new Param(system)); _telemetry.reset(new Telemetry(system)); } void AutopilotTester::wait_until_ready() { std::cout << time_str() << "Waiting for system to be ready" << std::endl; CHECK(poll_condition_with_timeout( [this]() { return _telemetry->health_all_ok(); }, std::chrono::seconds(30))); // FIXME: workaround to prevent race between PX4 switching to Hold mode // and us trying to arm and take off. If PX4 is not in Hold mode yet, // our arming presumably triggers a failsafe in manual mode. std::this_thread::sleep_for(std::chrono::seconds(1)); } void AutopilotTester::wait_until_ready_local_position_only() { std::cout << time_str() << "Waiting for system to be ready" << std::endl; CHECK(poll_condition_with_timeout( [this]() { return (_telemetry->health().is_gyrometer_calibration_ok && _telemetry->health().is_accelerometer_calibration_ok && _telemetry->health().is_magnetometer_calibration_ok && _telemetry->health().is_local_position_ok); }, std::chrono::seconds(20))); } void AutopilotTester::store_home() { request_ground_truth(); std::cout << time_str() << "Waiting to get home position" << std::endl; CHECK(poll_condition_with_timeout( [this]() { _home = _telemetry->ground_truth(); return std::isfinite(_home.latitude_deg) && std::isfinite(_home.longitude_deg); }, std::chrono::seconds(10))); } void AutopilotTester::check_home_within(float acceptance_radius_m) { CHECK(ground_truth_horizontal_position_close_to(_home, acceptance_radius_m)); } void AutopilotTester::check_home_not_within(float min_distance_m) { CHECK(ground_truth_horizontal_position_far_from(_home, min_distance_m)); } void AutopilotTester::set_takeoff_altitude(const float altitude_m) { CHECK(Action::Result::Success == _action->set_takeoff_altitude(altitude_m)); const auto result = _action->get_takeoff_altitude(); CHECK(result.first == Action::Result::Success); CHECK(result.second == Approx(altitude_m)); } void AutopilotTester::set_height_source(AutopilotTester::HeightSource height_source) { switch (height_source) { case HeightSource::Baro: CHECK(_param->set_param_int("EKF2_HGT_MODE", 0) == Param::Result::Success); break; case HeightSource::Gps: CHECK(_param->set_param_int("EKF2_HGT_MODE", 1) == Param::Result::Success); } } void AutopilotTester::set_rc_loss_exception(AutopilotTester::RcLossException mask) { switch (mask) { case RcLossException::Mission: CHECK(_param->set_param_int("COM_RCL_EXCEPT", 1 << 0) == Param::Result::Success); break; case RcLossException::Hold: CHECK(_param->set_param_int("COM_RCL_EXCEPT", 1 << 1) == Param::Result::Success); break; case RcLossException::Offboard: CHECK(_param->set_param_int("COM_RCL_EXCEPT", 1 << 2) == Param::Result::Success); } } void AutopilotTester::arm() { const auto result = _action->arm(); REQUIRE(result == Action::Result::Success); } void AutopilotTester::takeoff() { const auto result = _action->takeoff(); REQUIRE(result == Action::Result::Success); } void AutopilotTester::land() { const auto result = _action->land(); REQUIRE(result == Action::Result::Success); } void AutopilotTester::transition_to_fixedwing() { const auto result = _action->transition_to_fixedwing(); REQUIRE(result == Action::Result::Success); } void AutopilotTester::transition_to_multicopter() { const auto result = _action->transition_to_multicopter(); REQUIRE(result == Action::Result::Success); } void AutopilotTester::wait_until_disarmed(std::chrono::seconds timeout_duration) { REQUIRE(poll_condition_with_timeout( [this]() { return !_telemetry->armed(); }, timeout_duration)); } void AutopilotTester::wait_until_hovering() { wait_for_landed_state(Telemetry::LandedState::InAir, std::chrono::seconds(30)); } void AutopilotTester::prepare_square_mission(MissionOptions mission_options) { const auto ct = get_coordinate_transformation(); Mission::MissionPlan mission_plan {}; mission_plan.mission_items.push_back(create_mission_item({mission_options.leg_length_m, 0.}, mission_options, ct)); mission_plan.mission_items.push_back(create_mission_item({mission_options.leg_length_m, mission_options.leg_length_m}, mission_options, ct)); mission_plan.mission_items.push_back(create_mission_item({0., mission_options.leg_length_m}, mission_options, ct)); _mission->set_return_to_launch_after_mission(mission_options.rtl_at_end); REQUIRE(_mission->upload_mission(mission_plan) == Mission::Result::Success); } void AutopilotTester::prepare_straight_mission(MissionOptions mission_options) { const auto ct = get_coordinate_transformation(); Mission::MissionPlan mission_plan {}; mission_plan.mission_items.push_back(create_mission_item({0, 0.}, mission_options, ct)); mission_plan.mission_items.push_back(create_mission_item({mission_options.leg_length_m, 0}, mission_options, ct)); mission_plan.mission_items.push_back(create_mission_item({2 * mission_options.leg_length_m, 0}, mission_options, ct)); mission_plan.mission_items.push_back(create_mission_item({3 * mission_options.leg_length_m, 0}, mission_options, ct)); mission_plan.mission_items.push_back(create_mission_item({4 * mission_options.leg_length_m, 0}, mission_options, ct)); _mission->set_return_to_launch_after_mission(mission_options.rtl_at_end); REQUIRE(_mission->upload_mission(mission_plan) == Mission::Result::Success); } void AutopilotTester::execute_mission() { std::promise prom; auto fut = prom.get_future(); REQUIRE(poll_condition_with_timeout( [this]() { return _mission->start_mission() == Mission::Result::Success; }, std::chrono::seconds(3))); // TODO: Adapt time limit based on mission size, flight speed, sim speed factor, etc. wait_for_mission_finished(std::chrono::seconds(60)); } void AutopilotTester::execute_mission_and_lose_gps() { CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success); start_and_wait_for_first_mission_item(); CHECK(_failure->inject(Failure::FailureUnit::SensorGps, Failure::FailureType::Off, 0) == Failure::Result::Success); // We expect that a blind land is performed. wait_for_flight_mode(Telemetry::FlightMode::Land, std::chrono::seconds(30)); } void AutopilotTester::execute_mission_and_lose_mag() { CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success); start_and_wait_for_first_mission_item(); CHECK(_failure->inject(Failure::FailureUnit::SensorMag, Failure::FailureType::Off, 0) == Failure::Result::Success); // We except the mission to continue without mag just fine. REQUIRE(poll_condition_with_timeout( [this]() { auto progress = _mission->mission_progress(); return progress.current == progress.total; }, std::chrono::seconds(90))); } void AutopilotTester::execute_mission_and_lose_baro() { CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success); start_and_wait_for_first_mission_item(); CHECK(_failure->inject(Failure::FailureUnit::SensorBaro, Failure::FailureType::Off, 0) == Failure::Result::Success); // We except the mission to continue without baro just fine. REQUIRE(poll_condition_with_timeout( [this]() { auto progress = _mission->mission_progress(); return progress.current == progress.total; }, std::chrono::seconds(90))); } void AutopilotTester::execute_mission_and_get_baro_stuck() { CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success); start_and_wait_for_first_mission_item(); CHECK(_failure->inject(Failure::FailureUnit::SensorBaro, Failure::FailureType::Stuck, 0) == Failure::Result::Success); // We except the mission to continue with a stuck baro just fine. REQUIRE(poll_condition_with_timeout( [this]() { auto progress = _mission->mission_progress(); return progress.current == progress.total; }, std::chrono::seconds(90))); } void AutopilotTester::execute_mission_and_get_mag_stuck() { CHECK(_param->set_param_int("SYS_FAILURE_EN", 1) == Param::Result::Success); start_and_wait_for_first_mission_item(); CHECK(_failure->inject(Failure::FailureUnit::SensorMag, Failure::FailureType::Stuck, 0) == Failure::Result::Success); // We except the mission to continue with a stuck mag just fine. REQUIRE(poll_condition_with_timeout( [this]() { auto progress = _mission->mission_progress(); return progress.current == progress.total; }, std::chrono::seconds(120))); } CoordinateTransformation AutopilotTester::get_coordinate_transformation() { const auto home = _telemetry->home(); CHECK(std::isfinite(home.latitude_deg)); CHECK(std::isfinite(home.longitude_deg)); return CoordinateTransformation({home.latitude_deg, home.longitude_deg}); } Mission::MissionItem AutopilotTester::create_mission_item( const CoordinateTransformation::LocalCoordinate &local_coordinate, const MissionOptions &mission_options, const CoordinateTransformation &ct) { auto mission_item = Mission::MissionItem{}; const auto pos_north = ct.global_from_local(local_coordinate); mission_item.latitude_deg = pos_north.latitude_deg; mission_item.longitude_deg = pos_north.longitude_deg; mission_item.relative_altitude_m = mission_options.relative_altitude_m; mission_item.is_fly_through = mission_options.fly_through; return mission_item; } void AutopilotTester::load_qgc_mission_raw_and_move_here(const std::string &plan_file) { auto import_result = _mission_raw->import_qgroundcontrol_mission(plan_file); REQUIRE(import_result.first == MissionRaw::Result::Success); move_mission_raw_here(import_result.second.mission_items); REQUIRE(_mission_raw->upload_mission(import_result.second.mission_items) == MissionRaw::Result::Success); } void AutopilotTester::execute_mission_raw() { REQUIRE(_mission->start_mission() == Mission::Result::Success); // TODO: Adapt time limit based on mission size, flight speed, sim speed factor, etc. wait_for_mission_raw_finished(std::chrono::seconds(120)); } void AutopilotTester::execute_rtl() { REQUIRE(Action::Result::Success == _action->return_to_launch()); } void AutopilotTester::offboard_goto(const Offboard::PositionNedYaw &target, float acceptance_radius_m, std::chrono::seconds timeout_duration) { _offboard->set_position_ned(target); REQUIRE(_offboard->start() == Offboard::Result::Success); CHECK(poll_condition_with_timeout( [ = ]() { return estimated_position_close_to(target, acceptance_radius_m); }, timeout_duration)); std::cout << time_str() << "Target position reached" << std::endl; } void AutopilotTester::check_mission_item_speed_above(int item_index, float min_speed_m_s) { _telemetry->set_rate_velocity_ned(10); _telemetry->subscribe_velocity_ned([item_index, min_speed_m_s, this](Telemetry::VelocityNed velocity) { float horizontal = std::hypot(velocity.north_m_s, velocity.east_m_s); auto progress = _mission->mission_progress(); if (progress.current == item_index) { CHECK(horizontal > min_speed_m_s); } }); } void AutopilotTester::fly_forward_in_posctl() { const unsigned manual_control_rate_hz = 50; // Send something to make sure RC is available. for (unsigned i = 0; i < 1 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); } CHECK(_manual_control->start_position_control() == ManualControl::Result::Success); // Climb up for 20 seconds for (unsigned i = 0; i < 20 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 1.f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); } // Fly forward for 60 seconds for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.5f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); } // Descend until disarmed for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.0f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); if (!_telemetry->in_air()) { break; } } } void AutopilotTester::fly_forward_in_altctl() { const unsigned manual_control_rate_hz = 50; // Send something to make sure RC is available. for (unsigned i = 0; i < 1 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); } CHECK(_manual_control->start_altitude_control() == ManualControl::Result::Success); // Climb up for 20 seconds for (unsigned i = 0; i < 20 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 1.f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); } // Fly forward for 60 seconds for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.5f, 0.f, 0.5f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); } // Descend until disarmed for (unsigned i = 0; i < 60 * manual_control_rate_hz; ++i) { CHECK(_manual_control->set_manual_control_input(0.f, 0.f, 0.0f, 0.f) == ManualControl::Result::Success); sleep_for(std::chrono::milliseconds(1000 / manual_control_rate_hz)); if (!_telemetry->in_air()) { break; } } } void AutopilotTester::check_tracks_mission(float corridor_radius_m) { auto mission = _mission->download_mission(); CHECK(mission.first == Mission::Result::Success); std::vector mission_items = mission.second.mission_items; auto ct = get_coordinate_transformation(); _telemetry->set_rate_position_velocity_ned(5); _telemetry->subscribe_position_velocity_ned([ct, mission_items, corridor_radius_m, this](Telemetry::PositionVelocityNed position_velocity_ned) { auto progress = _mission->mission_progress(); if (progress.current > 0 && progress.current < progress.total) { // Get shortest distance of current position to 3D line between previous and next waypoint std::array current { position_velocity_ned.position.north_m, position_velocity_ned.position.east_m, position_velocity_ned.position.down_m }; std::array wp_prev = get_local_mission_item(mission_items[progress.current - 1], ct); std::array wp_next = get_local_mission_item(mission_items[progress.current], ct); float distance_to_trajectory = point_to_line_distance(current, wp_prev, wp_next); CHECK(distance_to_trajectory < corridor_radius_m); } }); } void AutopilotTester::offboard_land() { Offboard::VelocityNedYaw land_velocity; land_velocity.north_m_s = 0.0f; land_velocity.east_m_s = 0.0f; land_velocity.down_m_s = 1.0f; land_velocity.yaw_deg = 0.0f; _offboard->set_velocity_ned(land_velocity); } bool AutopilotTester::estimated_position_close_to(const Offboard::PositionNedYaw &target_pos, float acceptance_radius_m) { Telemetry::PositionNed est_pos = _telemetry->position_velocity_ned().position; const float distance_m = std::sqrt(sq(est_pos.north_m - target_pos.north_m) + sq(est_pos.east_m - target_pos.east_m) + sq(est_pos.down_m - target_pos.down_m)); const bool pass = distance_m < acceptance_radius_m; if (!pass) { std::cout << time_str() << "distance: " << distance_m << ", " << "acceptance: " << acceptance_radius_m << std::endl; } return pass; } bool AutopilotTester::estimated_horizontal_position_close_to(const Offboard::PositionNedYaw &target_pos, float acceptance_radius_m) { Telemetry::PositionNed est_pos = _telemetry->position_velocity_ned().position; return sq(est_pos.north_m - target_pos.north_m) + sq(est_pos.east_m - target_pos.east_m) < sq(acceptance_radius_m); } void AutopilotTester::request_ground_truth() { CHECK(_telemetry->set_rate_ground_truth(15) == Telemetry::Result::Success); } bool AutopilotTester::ground_truth_horizontal_position_close_to(const Telemetry::GroundTruth &target_pos, float acceptance_radius_m) { CHECK(std::isfinite(target_pos.latitude_deg)); CHECK(std::isfinite(target_pos.longitude_deg)); using GlobalCoordinate = CoordinateTransformation::GlobalCoordinate; using LocalCoordinate = CoordinateTransformation::LocalCoordinate; CoordinateTransformation ct(GlobalCoordinate{target_pos.latitude_deg, target_pos.longitude_deg}); Telemetry::GroundTruth current_pos = _telemetry->ground_truth(); CHECK(std::isfinite(current_pos.latitude_deg)); CHECK(std::isfinite(current_pos.longitude_deg)); GlobalCoordinate global_current; global_current.latitude_deg = current_pos.latitude_deg; global_current.longitude_deg = current_pos.longitude_deg; LocalCoordinate local_pos = ct.local_from_global(global_current); const double distance_m = sqrt(sq(local_pos.north_m) + sq(local_pos.east_m)); const bool pass = distance_m < acceptance_radius_m; if (!pass) { std::cout << time_str() << "target_pos.lat: " << target_pos.latitude_deg << std::endl; std::cout << time_str() << "target_pos.lon: " << target_pos.longitude_deg << std::endl; std::cout << time_str() << "current.lat: " << current_pos.latitude_deg << std::endl; std::cout << time_str() << "current.lon: " << current_pos.longitude_deg << std::endl; std::cout << time_str() << "Distance: " << distance_m << std::endl; std::cout << time_str() << "Acceptance radius: " << acceptance_radius_m << std::endl; } return pass; } bool AutopilotTester::ground_truth_horizontal_position_far_from(const Telemetry::GroundTruth &target_pos, float min_distance_m) { CHECK(std::isfinite(target_pos.latitude_deg)); CHECK(std::isfinite(target_pos.longitude_deg)); using GlobalCoordinate = CoordinateTransformation::GlobalCoordinate; using LocalCoordinate = CoordinateTransformation::LocalCoordinate; CoordinateTransformation ct(GlobalCoordinate{target_pos.latitude_deg, target_pos.longitude_deg}); Telemetry::GroundTruth current_pos = _telemetry->ground_truth(); CHECK(std::isfinite(current_pos.latitude_deg)); CHECK(std::isfinite(current_pos.longitude_deg)); GlobalCoordinate global_current; global_current.latitude_deg = current_pos.latitude_deg; global_current.longitude_deg = current_pos.longitude_deg; LocalCoordinate local_pos = ct.local_from_global(global_current); const double distance_m = sqrt(sq(local_pos.north_m) + sq(local_pos.east_m)); const bool pass = distance_m > min_distance_m; if (!pass) { std::cout << time_str() << "target_pos.lat: " << target_pos.latitude_deg << std::endl; std::cout << time_str() << "target_pos.lon: " << target_pos.longitude_deg << std::endl; std::cout << time_str() << "current.lat: " << current_pos.latitude_deg << std::endl; std::cout << time_str() << "current.lon: " << current_pos.longitude_deg << std::endl; std::cout << time_str() << "Distance: " << distance_m << std::endl; std::cout << time_str() << "Min distance: " << min_distance_m << std::endl; } return pass; } void AutopilotTester::start_and_wait_for_first_mission_item() { auto prom = std::promise {}; auto fut = prom.get_future(); _mission->subscribe_mission_progress([&prom, this](Mission::MissionProgress progress) { std::cout << time_str() << "Progress: " << progress.current << "/" << progress.total << std::endl; if (progress.current >= 1) { _mission->subscribe_mission_progress(nullptr); prom.set_value(); } }); REQUIRE(_mission->start_mission() == Mission::Result::Success); REQUIRE(fut.wait_for(std::chrono::seconds(60)) == std::future_status::ready); } void AutopilotTester::wait_for_flight_mode(Telemetry::FlightMode flight_mode, std::chrono::seconds timeout) { auto prom = std::promise {}; auto fut = prom.get_future(); _telemetry->subscribe_flight_mode([&prom, flight_mode, this](Telemetry::FlightMode new_flight_mode) { if (new_flight_mode == flight_mode) { _telemetry->subscribe_flight_mode(nullptr); prom.set_value(); } }); REQUIRE(fut.wait_for(timeout) == std::future_status::ready); } void AutopilotTester::wait_for_landed_state(Telemetry::LandedState landed_state, std::chrono::seconds timeout) { auto prom = std::promise {}; auto fut = prom.get_future(); _telemetry->subscribe_landed_state([&prom, landed_state, this](Telemetry::LandedState new_landed_state) { if (new_landed_state == landed_state) { _telemetry->subscribe_landed_state(nullptr); prom.set_value(); } }); REQUIRE(fut.wait_for(timeout) == std::future_status::ready); } void AutopilotTester::wait_for_mission_finished(std::chrono::seconds timeout) { auto prom = std::promise {}; auto fut = prom.get_future(); _mission->subscribe_mission_progress([&prom, this](Mission::MissionProgress progress) { if (progress.current == progress.total) { _mission->subscribe_mission_progress(nullptr); prom.set_value(); } }); REQUIRE(fut.wait_for(timeout) == std::future_status::ready); } void AutopilotTester::wait_for_mission_raw_finished(std::chrono::seconds timeout) { auto prom = std::promise {}; auto fut = prom.get_future(); _mission_raw->subscribe_mission_progress([&prom, this](MissionRaw::MissionProgress progress) { if (progress.current == progress.total) { _mission_raw->subscribe_mission_progress(nullptr); prom.set_value(); } }); REQUIRE(fut.wait_for(timeout) == std::future_status::ready); } void AutopilotTester::move_mission_raw_here(std::vector &mission_items) { const auto position = _telemetry->position(); REQUIRE(std::isfinite(position.latitude_deg)); REQUIRE(std::isfinite(position.longitude_deg)); auto offset_x = mission_items[0].x - static_cast(1e7 * position.latitude_deg); auto offset_y = mission_items[0].y - static_cast(1e7 * position.longitude_deg); for (auto &item : mission_items) { if (item.frame == 3) { // MAV_FRAME_GLOBAL_RELATIVE_ALT item.x -= offset_x; } item.y -= offset_y; } } void AutopilotTester::report_speed_factor() { // We check the exit flag more often than the speed factor. unsigned counter = 0; while (!_should_exit) { if (counter++ % 10 == 0) { if (_info != nullptr) { std::cout << "Current speed factor: " << _info->get_speed_factor().second ; if (speed_factor.has_value()) { std::cout << " (set: " << speed_factor.value() << ')'; } std::cout << std::endl; } } std::this_thread::sleep_for(std::chrono::milliseconds(100)); } }