/**************************************************************************** * * Copyright (c) 2018 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file gps_yaw_fusion.cpp * Definition of functions required to use yaw obtained from GPS dual antenna measurements. * Equations generated using EKF/python/ekf_derivation/main.py * * @author Paul Riseborough * */ #include "ekf.h" #include #include #include void Ekf::fuseGpsYaw() { // assign intermediate state variables const float &q0 = _state.quat_nominal(0); const float &q1 = _state.quat_nominal(1); const float &q2 = _state.quat_nominal(2); const float &q3 = _state.quat_nominal(3); // calculate the observed yaw angle of antenna array, converting a from body to antenna yaw measurement const float measured_hdg = wrap_pi(_gps_sample_delayed.yaw + _gps_yaw_offset); // define the predicted antenna array vector and rotate into earth frame const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f}; const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf; // check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) { return; } // calculate predicted antenna yaw angle const float predicted_hdg = atan2f(ant_vec_ef(1),ant_vec_ef(0)); // using magnetic heading process noise // TODO extend interface to use yaw uncertainty provided by GPS if available const float R_YAW = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); // calculate intermediate variables const float HK0 = sinf(_gps_yaw_offset); const float HK1 = q0*q3; const float HK2 = q1*q2; const float HK3 = 2*HK0*(HK1 - HK2); const float HK4 = cosf(_gps_yaw_offset); const float HK5 = ecl::powf(q1, 2); const float HK6 = ecl::powf(q2, 2); const float HK7 = ecl::powf(q0, 2) - ecl::powf(q3, 2); const float HK8 = HK4*(HK5 - HK6 + HK7); const float HK9 = HK3 - HK8; if (fabsf(HK9) < 1e-3f) { return; } const float HK10 = 1.0F/HK9; const float HK11 = HK4*q0; const float HK12 = HK0*q3; const float HK13 = HK0*(-HK5 + HK6 + HK7) + 2*HK4*(HK1 + HK2); const float HK14 = HK10*HK13; const float HK15 = HK0*q0 + HK4*q3; const float HK16 = HK10*(HK14*(HK11 - HK12) + HK15); const float HK17 = ecl::powf(HK13, 2)/ecl::powf(HK9, 2) + 1; if (fabsf(HK17) < 1e-3f) { return; } const float HK18 = 2/HK17; // const float HK19 = 1.0F/(-HK3 + HK8); const float HK19_inverse = -HK3 + HK8; if (fabsf(HK19_inverse) < 1e-6f) { return; } const float HK19 = 1.0F/HK19_inverse; const float HK20 = HK4*q1; const float HK21 = HK0*q2; const float HK22 = HK13*HK19; const float HK23 = HK0*q1 - HK4*q2; const float HK24 = HK19*(HK22*(HK20 + HK21) + HK23); const float HK25 = HK19*(-HK20 - HK21 + HK22*HK23); const float HK26 = HK10*(-HK11 + HK12 + HK14*HK15); const float HK27 = -HK16*P(0,0) - HK24*P(0,1) - HK25*P(0,2) + HK26*P(0,3); const float HK28 = -HK16*P(0,1) - HK24*P(1,1) - HK25*P(1,2) + HK26*P(1,3); const float HK29 = 4/ecl::powf(HK17, 2); const float HK30 = -HK16*P(0,2) - HK24*P(1,2) - HK25*P(2,2) + HK26*P(2,3); const float HK31 = -HK16*P(0,3) - HK24*P(1,3) - HK25*P(2,3) + HK26*P(3,3); // const float HK32 = HK18/(-HK16*HK27*HK29 - HK24*HK28*HK29 - HK25*HK29*HK30 + HK26*HK29*HK31 + R_YAW); // check if the innovation variance calculation is badly conditioned _heading_innov_var = (-HK16*HK27*HK29 - HK24*HK28*HK29 - HK25*HK29*HK30 + HK26*HK29*HK31 + R_YAW); if (_heading_innov_var < R_YAW) { // the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned _fault_status.flags.bad_hdg = true; // we reinitialise the covariance matrix and abort this fusion step initialiseCovariance(); ECL_ERR_TIMESTAMPED("GPS yaw numerical error - covariance reset"); return; } _fault_status.flags.bad_hdg = false; const float HK32 = HK18/_heading_innov_var; // calculate the innovation and define the innovation gate const float innov_gate = math::max(_params.heading_innov_gate, 1.0f); _heading_innov = predicted_hdg - measured_hdg; // wrap the innovation to the interval between +-pi _heading_innov = wrap_pi(_heading_innov); // innovation test ratio _yaw_test_ratio = sq(_heading_innov) / (sq(innov_gate) * _heading_innov_var); // we are no longer using 3-axis fusion so set the reported test levels to zero _mag_test_ratio.setZero(); if (_yaw_test_ratio > 1.0f) { _innov_check_fail_status.flags.reject_yaw = true; // if we are in air we don't want to fuse the measurement // we allow to use it when on the ground because the large innovation could be caused // by interference or a large initial gyro bias if (_control_status.flags.in_air) { return; } else { // constrain the innovation to the maximum set by the gate const float gate_limit = sqrtf((sq(innov_gate) * _heading_innov_var)); _heading_innov = math::constrain(_heading_innov, -gate_limit, gate_limit); } } else { _innov_check_fail_status.flags.reject_yaw = false; } // calculate observation jacobian // Observation jacobian and Kalman gain vectors SparseVector24f<0,1,2,3> Hfusion; Hfusion.at<0>() = -HK16*HK18; Hfusion.at<1>() = -HK18*HK24; Hfusion.at<2>() = -HK18*HK25; Hfusion.at<3>() = HK18*HK26; // calculate the Kalman gains // only calculate gains for states we are using Vector24f Kfusion; Kfusion(0) = HK27*HK32; Kfusion(1) = HK28*HK32; Kfusion(2) = HK30*HK32; Kfusion(3) = HK31*HK32; for (unsigned row = 4; row <= 23; row++) { Kfusion(row) = HK32*(-HK16*P(0,row) - HK24*P(1,row) - HK25*P(2,row) + HK26*P(3,row)); } const bool is_fused = measurementUpdate(Kfusion, Hfusion, _heading_innov); _fault_status.flags.bad_hdg = !is_fused; if (is_fused) { _time_last_gps_yaw_fuse = _time_last_imu; } } bool Ekf::resetYawToGps() { // define the predicted antenna array vector and rotate into earth frame const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f}; const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf; // check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) { return false; } // GPS yaw measurement is alreday compensated for antenna offset in the driver const float measured_yaw = _gps_sample_delayed.yaw; const float yaw_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); resetQuatStateYaw(measured_yaw, yaw_variance, true); _time_last_gps_yaw_fuse = _time_last_imu; return true; }