/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file heading_fusion.cpp * Magnetometer fusion methods. * Equations generated using EKF/python/ekf_derivation/main.py * * @author Roman Bast * @author Paul Riseborough * */ #include "ekf.h" #include #include void Ekf::fuseMag() { // assign intermediate variables const float &q0 = _state.quat_nominal(0); const float &q1 = _state.quat_nominal(1); const float &q2 = _state.quat_nominal(2); const float &q3 = _state.quat_nominal(3); const float &magN = _state.mag_I(0); const float &magE = _state.mag_I(1); const float &magD = _state.mag_I(2); // XYZ Measurement uncertainty. Need to consider timing errors for fast rotations const float R_MAG = sq(fmaxf(_params.mag_noise, 0.0f)); // calculate intermediate variables used for X axis innovation variance, observation Jacobians and Kalman gains const char* numerical_error_covariance_reset_string = "numerical error - covariance reset"; const float HKX0 = -magD*q2 + magE*q3 + magN*q0; const float HKX1 = magD*q3 + magE*q2 + magN*q1; const float HKX2 = magE*q1; const float HKX3 = magD*q0; const float HKX4 = magN*q2; const float HKX5 = magD*q1 + magE*q0 - magN*q3; const float HKX6 = ecl::powf(q0, 2) + ecl::powf(q1, 2) - ecl::powf(q2, 2) - ecl::powf(q3, 2); const float HKX7 = q0*q3 + q1*q2; const float HKX8 = q1*q3; const float HKX9 = q0*q2; const float HKX10 = 2*HKX7; const float HKX11 = -2*HKX8 + 2*HKX9; const float HKX12 = 2*HKX1; const float HKX13 = 2*HKX0; const float HKX14 = -2*HKX2 + 2*HKX3 + 2*HKX4; const float HKX15 = 2*HKX5; const float HKX16 = HKX10*P(0,17) - HKX11*P(0,18) + HKX12*P(0,1) + HKX13*P(0,0) - HKX14*P(0,2) + HKX15*P(0,3) + HKX6*P(0,16) + P(0,19); const float HKX17 = HKX10*P(16,17) - HKX11*P(16,18) + HKX12*P(1,16) + HKX13*P(0,16) - HKX14*P(2,16) + HKX15*P(3,16) + HKX6*P(16,16) + P(16,19); const float HKX18 = HKX10*P(17,18) - HKX11*P(18,18) + HKX12*P(1,18) + HKX13*P(0,18) - HKX14*P(2,18) + HKX15*P(3,18) + HKX6*P(16,18) + P(18,19); const float HKX19 = HKX10*P(2,17) - HKX11*P(2,18) + HKX12*P(1,2) + HKX13*P(0,2) - HKX14*P(2,2) + HKX15*P(2,3) + HKX6*P(2,16) + P(2,19); const float HKX20 = HKX10*P(17,17) - HKX11*P(17,18) + HKX12*P(1,17) + HKX13*P(0,17) - HKX14*P(2,17) + HKX15*P(3,17) + HKX6*P(16,17) + P(17,19); const float HKX21 = HKX10*P(3,17) - HKX11*P(3,18) + HKX12*P(1,3) + HKX13*P(0,3) - HKX14*P(2,3) + HKX15*P(3,3) + HKX6*P(3,16) + P(3,19); const float HKX22 = HKX10*P(1,17) - HKX11*P(1,18) + HKX12*P(1,1) + HKX13*P(0,1) - HKX14*P(1,2) + HKX15*P(1,3) + HKX6*P(1,16) + P(1,19); const float HKX23 = HKX10*P(17,19) - HKX11*P(18,19) + HKX12*P(1,19) + HKX13*P(0,19) - HKX14*P(2,19) + HKX15*P(3,19) + HKX6*P(16,19) + P(19,19); _mag_innov_var(0) = HKX10*HKX20 - HKX11*HKX18 + HKX12*HKX22 + HKX13*HKX16 - HKX14*HKX19 + HKX15*HKX21 + HKX17*HKX6 + HKX23 + R_MAG; if (_mag_innov_var(0) < R_MAG) { // the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned _fault_status.flags.bad_mag_x = true; // we need to re-initialise covariances and abort this fusion step resetMagRelatedCovariances(); ECL_ERR("magX %s", numerical_error_covariance_reset_string); return; } _fault_status.flags.bad_mag_x = false; const float HKX24 = 1.0F/_mag_innov_var(0); // intermediate variables for calculation of innovations variances for Y and Z axes // don't calculate all terms needed for observation jacobians and Kalman gains because // these will have to be recalculated when the X and Y axes are fused const float IV0 = q0*q1; const float IV1 = q2*q3; const float IV2 = 2*IV0 + 2*IV1; const float IV3 = 2*q0*q3 - 2*q1*q2; const float IV4 = 2*magD*q3 + 2*magE*q2 + 2*magN*q1; const float IV5 = 2*magD*q1 + 2*magE*q0 - 2*magN*q3; const float IV6 = 2*magD*q0 - 2*magE*q1 + 2*magN*q2; const float IV7 = -2*magD*q2 + 2*magE*q3 + 2*magN*q0; const float IV8 = ecl::powf(q2, 2); const float IV9 = ecl::powf(q3, 2); const float IV10 = ecl::powf(q0, 2) - ecl::powf(q1, 2); const float IV11 = IV10 + IV8 - IV9; const float IV12 = IV7*P(2,3); const float IV13 = IV5*P(0,1); const float IV14 = IV6*P(0,1); const float IV15 = IV4*P(2,3); const float IV16 = 2*q0*q2 + 2*q1*q3; const float IV17 = 2*IV0 - 2*IV1; const float IV18 = IV10 - IV8 + IV9; _mag_innov_var(1) = IV11*P(17,20) + IV11*(IV11*P(17,17) + IV2*P(17,18) - IV3*P(16,17) + IV4*P(2,17) + IV5*P(0,17) + IV6*P(1,17) - IV7*P(3,17) + P(17,20)) + IV2*P(18,20) + IV2*(IV11*P(17,18) + IV2*P(18,18) - IV3*P(16,18) + IV4*P(2,18) + IV5*P(0,18) + IV6*P(1,18) - IV7*P(3,18) + P(18,20)) - IV3*P(16,20) - IV3*(IV11*P(16,17) + IV2*P(16,18) - IV3*P(16,16) + IV4*P(2,16) + IV5*P(0,16) + IV6*P(1,16) - IV7*P(3,16) + P(16,20)) + IV4*P(2,20) + IV4*(IV11*P(2,17) - IV12 + IV2*P(2,18) - IV3*P(2,16) + IV4*P(2,2) + IV5*P(0,2) + IV6*P(1,2) + P(2,20)) + IV5*P(0,20) + IV5*(IV11*P(0,17) + IV14 + IV2*P(0,18) - IV3*P(0,16) + IV4*P(0,2) + IV5*P(0,0) - IV7*P(0,3) + P(0,20)) + IV6*P(1,20) + IV6*(IV11*P(1,17) + IV13 + IV2*P(1,18) - IV3*P(1,16) + IV4*P(1,2) + IV6*P(1,1) - IV7*P(1,3) + P(1,20)) - IV7*P(3,20) - IV7*(IV11*P(3,17) + IV15 + IV2*P(3,18) - IV3*P(3,16) + IV5*P(0,3) + IV6*P(1,3) - IV7*P(3,3) + P(3,20)) + P(20,20) + R_MAG; _mag_innov_var(2) = IV16*P(16,21) + IV16*(IV16*P(16,16) - IV17*P(16,17) + IV18*P(16,18) + IV4*P(3,16) - IV5*P(1,16) + IV6*P(0,16) + IV7*P(2,16) + P(16,21)) - IV17*P(17,21) - IV17*(IV16*P(16,17) - IV17*P(17,17) + IV18*P(17,18) + IV4*P(3,17) - IV5*P(1,17) + IV6*P(0,17) + IV7*P(2,17) + P(17,21)) + IV18*P(18,21) + IV18*(IV16*P(16,18) - IV17*P(17,18) + IV18*P(18,18) + IV4*P(3,18) - IV5*P(1,18) + IV6*P(0,18) + IV7*P(2,18) + P(18,21)) + IV4*P(3,21) + IV4*(IV12 + IV16*P(3,16) - IV17*P(3,17) + IV18*P(3,18) + IV4*P(3,3) - IV5*P(1,3) + IV6*P(0,3) + P(3,21)) - IV5*P(1,21) - IV5*(IV14 + IV16*P(1,16) - IV17*P(1,17) + IV18*P(1,18) + IV4*P(1,3) - IV5*P(1,1) + IV7*P(1,2) + P(1,21)) + IV6*P(0,21) + IV6*(-IV13 + IV16*P(0,16) - IV17*P(0,17) + IV18*P(0,18) + IV4*P(0,3) + IV6*P(0,0) + IV7*P(0,2) + P(0,21)) + IV7*P(2,21) + IV7*(IV15 + IV16*P(2,16) - IV17*P(2,17) + IV18*P(2,18) - IV5*P(1,2) + IV6*P(0,2) + IV7*P(2,2) + P(2,21)) + P(21,21) + R_MAG; // chedk innovation variances for being badly conditioned if (_mag_innov_var(1) < R_MAG) { // the innovation variance contribution from the state covariances is negtive which means the covariance matrix is badly conditioned _fault_status.flags.bad_mag_y = true; // we need to re-initialise covariances and abort this fusion step resetMagRelatedCovariances(); ECL_ERR("magY %s", numerical_error_covariance_reset_string); return; } _fault_status.flags.bad_mag_y = false; if (_mag_innov_var(2) < R_MAG) { // the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned _fault_status.flags.bad_mag_z = true; // we need to re-initialise covariances and abort this fusion step resetMagRelatedCovariances(); ECL_ERR("magZ %s", numerical_error_covariance_reset_string); return; } _fault_status.flags.bad_mag_z = false; // rotate magnetometer earth field state into body frame const Dcmf R_to_body = quatToInverseRotMat(_state.quat_nominal); const Vector3f mag_I_rot = R_to_body * _state.mag_I; // compute magnetometer innovations _mag_innov = mag_I_rot + _state.mag_B - _mag_sample_delayed.mag; // do not use the synthesized measurement for the magnetomter Z component for 3D fusion if (_control_status.flags.synthetic_mag_z) { _mag_innov(2) = 0.0f; } // Perform an innovation consistency check and report the result bool all_innovation_checks_passed = true; for (uint8_t index = 0; index <= 2; index++) { _mag_test_ratio(index) = sq(_mag_innov(index)) / (sq(math::max(_params.mag_innov_gate, 1.0f)) * _mag_innov_var(index)); if (_mag_test_ratio(index) > 1.0f) { all_innovation_checks_passed = false; _innov_check_fail_status.value |= (1 << (index + 3)); } else { _innov_check_fail_status.value &= ~(1 << (index + 3)); } } // we are no longer using heading fusion so set the reported test level to zero _yaw_test_ratio = 0.0f; // if any axis fails, abort the mag fusion if (!all_innovation_checks_passed) { return; } // For the first few seconds after in-flight alignment we allow the magnetic field state estimates to stabilise // before they are used to constrain heading drift const bool update_all_states = ((_imu_sample_delayed.time_us - _flt_mag_align_start_time) > (uint64_t)5e6); // Observation jacobian and Kalman gain vectors SparseVector24f<0,1,2,3,16,17,18,19,20,21> Hfusion; Vector24f Kfusion; // update the states and covariance using sequential fusion of the magnetometer components for (uint8_t index = 0; index <= 2; index++) { // Calculate Kalman gains and observation jacobians if (index == 0) { // Calculate X axis observation jacobians Hfusion.at<0>() = 2*HKX0; Hfusion.at<1>() = 2*HKX1; Hfusion.at<2>() = 2*HKX2 - 2*HKX3 - 2*HKX4; Hfusion.at<3>() = 2*HKX5; Hfusion.at<16>() = HKX6; Hfusion.at<17>() = 2*HKX7; Hfusion.at<18>() = 2*HKX8 - 2*HKX9; Hfusion.at<19>() = 1; // Calculate X axis Kalman gains if (update_all_states) { Kfusion(0) = HKX16*HKX24; Kfusion(1) = HKX22*HKX24; Kfusion(2) = HKX19*HKX24; Kfusion(3) = HKX21*HKX24; for (unsigned row = 4; row <= 15; row++) { Kfusion(row) = HKX24*(HKX10*P(row,17) - HKX11*P(row,18) + HKX12*P(1,row) + HKX13*P(0,row) - HKX14*P(2,row) + HKX15*P(3,row) + HKX6*P(row,16) + P(row,19)); } for (unsigned row = 22; row <= 23; row++) { Kfusion(row) = HKX24*(HKX10*P(17,row) - HKX11*P(18,row) + HKX12*P(1,row) + HKX13*P(0,row) - HKX14*P(2,row) + HKX15*P(3,row) + HKX6*P(16,row) + P(19,row)); } } Kfusion(16) = HKX17*HKX24; Kfusion(17) = HKX20*HKX24; Kfusion(18) = HKX18*HKX24; Kfusion(19) = HKX23*HKX24; for (unsigned row = 20; row <= 21; row++) { Kfusion(row) = HKX24*(HKX10*P(17,row) - HKX11*P(18,row) + HKX12*P(1,row) + HKX13*P(0,row) - HKX14*P(2,row) + HKX15*P(3,row) + HKX6*P(16,row) + P(19,row)); } } else if (index == 1) { // recalculate innovation variance becasue states and covariances have changed due to previous fusion const float HKY0 = magD*q1 + magE*q0 - magN*q3; const float HKY1 = magD*q0 - magE*q1 + magN*q2; const float HKY2 = magD*q3 + magE*q2 + magN*q1; const float HKY3 = magD*q2; const float HKY4 = magE*q3; const float HKY5 = magN*q0; const float HKY6 = q1*q2; const float HKY7 = q0*q3; const float HKY8 = ecl::powf(q0, 2) - ecl::powf(q1, 2) + ecl::powf(q2, 2) - ecl::powf(q3, 2); const float HKY9 = q0*q1 + q2*q3; const float HKY10 = 2*HKY9; const float HKY11 = -2*HKY6 + 2*HKY7; const float HKY12 = 2*HKY2; const float HKY13 = 2*HKY0; const float HKY14 = 2*HKY1; const float HKY15 = -2*HKY3 + 2*HKY4 + 2*HKY5; const float HKY16 = HKY10*P(0,18) - HKY11*P(0,16) + HKY12*P(0,2) + HKY13*P(0,0) + HKY14*P(0,1) - HKY15*P(0,3) + HKY8*P(0,17) + P(0,20); const float HKY17 = HKY10*P(17,18) - HKY11*P(16,17) + HKY12*P(2,17) + HKY13*P(0,17) + HKY14*P(1,17) - HKY15*P(3,17) + HKY8*P(17,17) + P(17,20); const float HKY18 = HKY10*P(16,18) - HKY11*P(16,16) + HKY12*P(2,16) + HKY13*P(0,16) + HKY14*P(1,16) - HKY15*P(3,16) + HKY8*P(16,17) + P(16,20); const float HKY19 = HKY10*P(3,18) - HKY11*P(3,16) + HKY12*P(2,3) + HKY13*P(0,3) + HKY14*P(1,3) - HKY15*P(3,3) + HKY8*P(3,17) + P(3,20); const float HKY20 = HKY10*P(18,18) - HKY11*P(16,18) + HKY12*P(2,18) + HKY13*P(0,18) + HKY14*P(1,18) - HKY15*P(3,18) + HKY8*P(17,18) + P(18,20); const float HKY21 = HKY10*P(1,18) - HKY11*P(1,16) + HKY12*P(1,2) + HKY13*P(0,1) + HKY14*P(1,1) - HKY15*P(1,3) + HKY8*P(1,17) + P(1,20); const float HKY22 = HKY10*P(2,18) - HKY11*P(2,16) + HKY12*P(2,2) + HKY13*P(0,2) + HKY14*P(1,2) - HKY15*P(2,3) + HKY8*P(2,17) + P(2,20); const float HKY23 = HKY10*P(18,20) - HKY11*P(16,20) + HKY12*P(2,20) + HKY13*P(0,20) + HKY14*P(1,20) - HKY15*P(3,20) + HKY8*P(17,20) + P(20,20); _mag_innov_var(1) = (HKY10*HKY20 - HKY11*HKY18 + HKY12*HKY22 + HKY13*HKY16 + HKY14*HKY21 - HKY15*HKY19 + HKY17*HKY8 + HKY23 + R_MAG); if (_mag_innov_var(1) < R_MAG) { // the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned _fault_status.flags.bad_mag_y = true; // we need to re-initialise covariances and abort this fusion step resetMagRelatedCovariances(); ECL_ERR("magY %s", numerical_error_covariance_reset_string); return; } const float HKY24 = 1.0F/_mag_innov_var(1); // Calculate Y axis observation jacobians Hfusion.setZero(); Hfusion.at<0>() = 2*HKY0; Hfusion.at<1>() = 2*HKY1; Hfusion.at<2>() = 2*HKY2; Hfusion.at<3>() = 2*HKY3 - 2*HKY4 - 2*HKY5; Hfusion.at<16>() = 2*HKY6 - 2*HKY7; Hfusion.at<17>() = HKY8; Hfusion.at<18>() = 2*HKY9; Hfusion.at<20>() = 1; // Calculate Y axis Kalman gains if (update_all_states) { Kfusion(0) = HKY16*HKY24; Kfusion(1) = HKY21*HKY24; Kfusion(2) = HKY22*HKY24; Kfusion(3) = HKY19*HKY24; for (unsigned row = 4; row <= 15; row++) { Kfusion(row) = HKY24*(HKY10*P(row,18) - HKY11*P(row,16) + HKY12*P(2,row) + HKY13*P(0,row) + HKY14*P(1,row) - HKY15*P(3,row) + HKY8*P(row,17) + P(row,20)); } for (unsigned row = 22; row <= 23; row++) { Kfusion(row) = HKY24*(HKY10*P(18,row) - HKY11*P(16,row) + HKY12*P(2,row) + HKY13*P(0,row) + HKY14*P(1,row) - HKY15*P(3,row) + HKY8*P(17,row) + P(20,row)); } } Kfusion(16) = HKY18*HKY24; Kfusion(17) = HKY17*HKY24; Kfusion(18) = HKY20*HKY24; Kfusion(19) = HKY24*(HKY10*P(18,19) - HKY11*P(16,19) + HKY12*P(2,19) + HKY13*P(0,19) + HKY14*P(1,19) - HKY15*P(3,19) + HKY8*P(17,19) + P(19,20)); Kfusion(20) = HKY23*HKY24; Kfusion(21) = HKY24*(HKY10*P(18,21) - HKY11*P(16,21) + HKY12*P(2,21) + HKY13*P(0,21) + HKY14*P(1,21) - HKY15*P(3,21) + HKY8*P(17,21) + P(20,21)); } else if (index == 2) { // we do not fuse synthesized magnetomter measurements when doing 3D fusion if (_control_status.flags.synthetic_mag_z) { continue; } // recalculate innovation variance becasue states and covariances have changed due to previous fusion const float HKZ0 = magD*q0 - magE*q1 + magN*q2; const float HKZ1 = magN*q3; const float HKZ2 = magD*q1; const float HKZ3 = magE*q0; const float HKZ4 = -magD*q2 + magE*q3 + magN*q0; const float HKZ5 = magD*q3 + magE*q2 + magN*q1; const float HKZ6 = q0*q2 + q1*q3; const float HKZ7 = q2*q3; const float HKZ8 = q0*q1; const float HKZ9 = ecl::powf(q0, 2) - ecl::powf(q1, 2) - ecl::powf(q2, 2) + ecl::powf(q3, 2); const float HKZ10 = 2*HKZ6; const float HKZ11 = -2*HKZ7 + 2*HKZ8; const float HKZ12 = 2*HKZ5; const float HKZ13 = 2*HKZ0; const float HKZ14 = -2*HKZ1 + 2*HKZ2 + 2*HKZ3; const float HKZ15 = 2*HKZ4; const float HKZ16 = HKZ10*P(0,16) - HKZ11*P(0,17) + HKZ12*P(0,3) + HKZ13*P(0,0) - HKZ14*P(0,1) + HKZ15*P(0,2) + HKZ9*P(0,18) + P(0,21); const float HKZ17 = HKZ10*P(16,18) - HKZ11*P(17,18) + HKZ12*P(3,18) + HKZ13*P(0,18) - HKZ14*P(1,18) + HKZ15*P(2,18) + HKZ9*P(18,18) + P(18,21); const float HKZ18 = HKZ10*P(16,17) - HKZ11*P(17,17) + HKZ12*P(3,17) + HKZ13*P(0,17) - HKZ14*P(1,17) + HKZ15*P(2,17) + HKZ9*P(17,18) + P(17,21); const float HKZ19 = HKZ10*P(1,16) - HKZ11*P(1,17) + HKZ12*P(1,3) + HKZ13*P(0,1) - HKZ14*P(1,1) + HKZ15*P(1,2) + HKZ9*P(1,18) + P(1,21); const float HKZ20 = HKZ10*P(16,16) - HKZ11*P(16,17) + HKZ12*P(3,16) + HKZ13*P(0,16) - HKZ14*P(1,16) + HKZ15*P(2,16) + HKZ9*P(16,18) + P(16,21); const float HKZ21 = HKZ10*P(3,16) - HKZ11*P(3,17) + HKZ12*P(3,3) + HKZ13*P(0,3) - HKZ14*P(1,3) + HKZ15*P(2,3) + HKZ9*P(3,18) + P(3,21); const float HKZ22 = HKZ10*P(2,16) - HKZ11*P(2,17) + HKZ12*P(2,3) + HKZ13*P(0,2) - HKZ14*P(1,2) + HKZ15*P(2,2) + HKZ9*P(2,18) + P(2,21); const float HKZ23 = HKZ10*P(16,21) - HKZ11*P(17,21) + HKZ12*P(3,21) + HKZ13*P(0,21) - HKZ14*P(1,21) + HKZ15*P(2,21) + HKZ9*P(18,21) + P(21,21); _mag_innov_var(2) = (HKZ10*HKZ20 - HKZ11*HKZ18 + HKZ12*HKZ21 + HKZ13*HKZ16 - HKZ14*HKZ19 + HKZ15*HKZ22 + HKZ17*HKZ9 + HKZ23 + R_MAG); if (_mag_innov_var(2) < R_MAG) { // the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned _fault_status.flags.bad_mag_z = true; // we need to re-initialise covariances and abort this fusion step resetMagRelatedCovariances(); ECL_ERR("magZ %s", numerical_error_covariance_reset_string); return; } const float HKZ24 = 1.0F/_mag_innov_var(2); // calculate Z axis observation jacobians Hfusion.setZero(); Hfusion.at<0>() = 2*HKZ0; Hfusion.at<1>() = 2*HKZ1 - 2*HKZ2 - 2*HKZ3; Hfusion.at<2>() = 2*HKZ4; Hfusion.at<3>() = 2*HKZ5; Hfusion.at<16>() = 2*HKZ6; Hfusion.at<17>() = 2*HKZ7 - 2*HKZ8; Hfusion.at<18>() = HKZ9; Hfusion.at<21>() = 1; // Calculate Z axis Kalman gains if (update_all_states) { Kfusion(0) = HKZ16*HKZ24; Kfusion(1) = HKZ19*HKZ24; Kfusion(2) = HKZ22*HKZ24; Kfusion(3) = HKZ21*HKZ24; for (unsigned row = 4; row <= 15; row++) { Kfusion(row) = HKZ24*(HKZ10*P(row,16) - HKZ11*P(row,17) + HKZ12*P(3,row) + HKZ13*P(0,row) - HKZ14*P(1,row) + HKZ15*P(2,row) + HKZ9*P(row,18) + P(row,21)); } for (unsigned row = 22; row <= 23; row++) { Kfusion(row) = HKZ24*(HKZ10*P(16,row) - HKZ11*P(17,row) + HKZ12*P(3,row) + HKZ13*P(0,row) - HKZ14*P(1,row) + HKZ15*P(2,row) + HKZ9*P(18,row) + P(21,row)); } } Kfusion(16) = HKZ20*HKZ24; Kfusion(17) = HKZ18*HKZ24; Kfusion(18) = HKZ17*HKZ24; for (unsigned row = 19; row <= 20; row++) { Kfusion(row) = HKZ24*(HKZ10*P(16,row) - HKZ11*P(17,row) + HKZ12*P(3,row) + HKZ13*P(0,row) - HKZ14*P(1,row) + HKZ15*P(2,row) + HKZ9*P(18,row) + P(row,21)); } Kfusion(21) = HKZ23*HKZ24; } const bool is_fused = measurementUpdate(Kfusion, Hfusion, _mag_innov(index)); if (index == 0) { _fault_status.flags.bad_mag_x = !is_fused; } else if (index == 1) { _fault_status.flags.bad_mag_y = !is_fused; } else if (index == 2) { _fault_status.flags.bad_mag_z = !is_fused; } if (is_fused) { limitDeclination(); } } } void Ekf::fuseYaw321(float yaw, float yaw_variance, bool zero_innovation) { // assign intermediate state variables const float &q0 = _state.quat_nominal(0); const float &q1 = _state.quat_nominal(1); const float &q2 = _state.quat_nominal(2); const float &q3 = _state.quat_nominal(3); const float R_YAW = fmaxf(yaw_variance, 1.0e-4f); const float measurement = wrap_pi(yaw); // calculate 321 yaw observation matrix // choose A or B computational paths to avoid singularity in derivation at +-90 degrees yaw bool canUseA = false; const float SA0 = 2*q3; const float SA1 = 2*q2; const float SA2 = SA0*q0 + SA1*q1; const float SA3 = sq(q0) + sq(q1) - sq(q2) - sq(q3); float SA4, SA5_inv; if (sq(SA3) > 1e-6f) { SA4 = 1.0F/sq(SA3); SA5_inv = sq(SA2)*SA4 + 1; canUseA = fabsf(SA5_inv) > 1e-6f; } bool canUseB = false; const float SB0 = 2*q0; const float SB1 = 2*q1; const float SB2 = SB0*q3 + SB1*q2; const float SB4 = sq(q0) + sq(q1) - sq(q2) - sq(q3); float SB3, SB5_inv; if (sq(SB2) > 1e-6f) { SB3 = 1.0F/sq(SB2); SB5_inv = SB3*sq(SB4) + 1; canUseB = fabsf(SB5_inv) > 1e-6f; } Vector4f H_YAW; if (canUseA && (!canUseB || fabsf(SA5_inv) >= fabsf(SB5_inv))) { const float SA5 = 1.0F/SA5_inv; const float SA6 = 1.0F/SA3; const float SA7 = SA2*SA4; const float SA8 = 2*SA7; const float SA9 = 2*SA6; H_YAW(0) = SA5*(SA0*SA6 - SA8*q0); H_YAW(1) = SA5*(SA1*SA6 - SA8*q1); H_YAW(2) = SA5*(SA1*SA7 + SA9*q1); H_YAW(3) = SA5*(SA0*SA7 + SA9*q0); } else if (canUseB && (!canUseA || fabsf(SB5_inv) > fabsf(SA5_inv))) { const float SB5 = 1.0F/SB5_inv; const float SB6 = 1.0F/SB2; const float SB7 = SB3*SB4; const float SB8 = 2*SB7; const float SB9 = 2*SB6; H_YAW(0) = -SB5*(SB0*SB6 - SB8*q3); H_YAW(1) = -SB5*(SB1*SB6 - SB8*q2); H_YAW(2) = -SB5*(-SB1*SB7 - SB9*q2); H_YAW(3) = -SB5*(-SB0*SB7 - SB9*q3); } else { return; } // calculate the yaw innovation and wrap to the interval between +-pi float innovation; if (zero_innovation) { innovation = 0.0f; } else { innovation = wrap_pi(atan2f(_R_to_earth(1, 0), _R_to_earth(0, 0)) - measurement); } // define the innovation gate size float innov_gate = math::max(_params.heading_innov_gate, 1.0f); // Update the quaternion states and covariance matrix updateQuaternion(innovation, R_YAW, innov_gate, H_YAW); } void Ekf::fuseYaw312(float yaw, float yaw_variance, bool zero_innovation) { // assign intermediate state variables const float q0 = _state.quat_nominal(0); const float q1 = _state.quat_nominal(1); const float q2 = _state.quat_nominal(2); const float q3 = _state.quat_nominal(3); const float R_YAW = fmaxf(yaw_variance, 1.0e-4f); const float measurement = wrap_pi(yaw); // calculate 312 yaw observation matrix // choose A or B computational paths to avoid singularity in derivation at +-90 degrees yaw bool canUseA = false; const float SA0 = 2*q3; const float SA1 = 2*q2; const float SA2 = SA0*q0 - SA1*q1; const float SA3 = sq(q0) - sq(q1) + sq(q2) - sq(q3); float SA4, SA5_inv; if (sq(SA3) > 1e-6f) { SA4 = 1.0F/sq(SA3); SA5_inv = sq(SA2)*SA4 + 1; canUseA = fabsf(SA5_inv) > 1e-6f; } bool canUseB = false; const float SB0 = 2*q0; const float SB1 = 2*q1; const float SB2 = -SB0*q3 + SB1*q2; const float SB4 = -sq(q0) + sq(q1) - sq(q2) + sq(q3); float SB3, SB5_inv; if (sq(SB2) > 1e-6f) { SB3 = 1.0F/sq(SB2); SB5_inv = SB3*sq(SB4) + 1; canUseB = fabsf(SB5_inv) > 1e-6f; } Vector4f H_YAW; if (canUseA && (!canUseB || fabsf(SA5_inv) >= fabsf(SB5_inv))) { const float SA5 = 1.0F/SA5_inv; const float SA6 = 1.0F/SA3; const float SA7 = SA2*SA4; const float SA8 = 2*SA7; const float SA9 = 2*SA6; H_YAW(0) = SA5*(SA0*SA6 - SA8*q0); H_YAW(1) = SA5*(-SA1*SA6 + SA8*q1); H_YAW(2) = SA5*(-SA1*SA7 - SA9*q1); H_YAW(3) = SA5*(SA0*SA7 + SA9*q0); } else if (canUseB && (!canUseA || fabsf(SB5_inv) > fabsf(SA5_inv))) { const float SB5 = 1.0F/SB5_inv; const float SB6 = 1.0F/SB2; const float SB7 = SB3*SB4; const float SB8 = 2*SB7; const float SB9 = 2*SB6; H_YAW(0) = -SB5*(-SB0*SB6 + SB8*q3); H_YAW(1) = -SB5*(SB1*SB6 - SB8*q2); H_YAW(2) = -SB5*(-SB1*SB7 - SB9*q2); H_YAW(3) = -SB5*(SB0*SB7 + SB9*q3); } else { return; } float innovation; if (zero_innovation) { innovation = 0.0f; } else { // calculate the the innovation and wrap to the interval between +-pi innovation = wrap_pi(atan2f(-_R_to_earth(0, 1), _R_to_earth(1, 1)) - measurement); } // define the innovation gate size float innov_gate = math::max(_params.heading_innov_gate, 1.0f); // Update the quaternion states and covariance matrix updateQuaternion(innovation, R_YAW, innov_gate, H_YAW); } // update quaternion states and covariances using the yaw innovation, yaw observation variance and yaw Jacobian void Ekf::updateQuaternion(const float innovation, const float variance, const float gate_sigma, const Vector4f& yaw_jacobian) { // Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 4 elements in H are non zero // calculate the innovation variance _heading_innov_var = variance; for (unsigned row = 0; row <= 3; row++) { float tmp = 0.0f; for (uint8_t col = 0; col <= 3; col++) { tmp += P(row,col) * yaw_jacobian(col); } _heading_innov_var += yaw_jacobian(row) * tmp; } float heading_innov_var_inv; // check if the innovation variance calculation is badly conditioned if (_heading_innov_var >= variance) { // the innovation variance contribution from the state covariances is not negative, no fault _fault_status.flags.bad_hdg = false; heading_innov_var_inv = 1.0f / _heading_innov_var; } else { // the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned _fault_status.flags.bad_hdg = true; // we reinitialise the covariance matrix and abort this fusion step initialiseCovariance(); ECL_ERR_TIMESTAMPED("mag yaw fusion numerical error - covariance reset"); return; } // calculate the Kalman gains // only calculate gains for states we are using Vector24f Kfusion; for (uint8_t row = 0; row <= 15; row++) { for (uint8_t col = 0; col <= 3; col++) { Kfusion(row) += P(row,col) * yaw_jacobian(col); } Kfusion(row) *= heading_innov_var_inv; } if (_control_status.flags.wind) { for (uint8_t row = 22; row <= 23; row++) { for (uint8_t col = 0; col <= 3; col++) { Kfusion(row) += P(row,col) * yaw_jacobian(col); } Kfusion(row) *= heading_innov_var_inv; } } // innovation test ratio _yaw_test_ratio = sq(innovation) / (sq(gate_sigma) * _heading_innov_var); // we are no longer using 3-axis fusion so set the reported test levels to zero _mag_test_ratio.setZero(); // set the magnetometer unhealthy if the test fails if (_yaw_test_ratio > 1.0f) { _innov_check_fail_status.flags.reject_yaw = true; // if we are in air we don't want to fuse the measurement // we allow to use it when on the ground because the large innovation could be caused // by interference or a large initial gyro bias if (_control_status.flags.in_air) { return; } else { // constrain the innovation to the maximum set by the gate float gate_limit = sqrtf((sq(gate_sigma) * _heading_innov_var)); _heading_innov = math::constrain(innovation, -gate_limit, gate_limit); } } else { _innov_check_fail_status.flags.reject_yaw = false; _heading_innov = innovation; } // apply covariance correction via P_new = (I -K*H)*P // first calculate expression for KHP // then calculate P - KHP SquareMatrix24f KHP; float KH[4]; for (unsigned row = 0; row < _k_num_states; row++) { KH[0] = Kfusion(row) * yaw_jacobian(0); KH[1] = Kfusion(row) * yaw_jacobian(1); KH[2] = Kfusion(row) * yaw_jacobian(2); KH[3] = Kfusion(row) * yaw_jacobian(3); for (unsigned column = 0; column < _k_num_states; column++) { float tmp = KH[0] * P(0,column); tmp += KH[1] * P(1,column); tmp += KH[2] * P(2,column); tmp += KH[3] * P(3,column); KHP(row,column) = tmp; } } const bool healthy = checkAndFixCovarianceUpdate(KHP); _fault_status.flags.bad_hdg = !healthy; if (healthy) { // apply the covariance corrections P -= KHP; fixCovarianceErrors(true); // apply the state corrections fuse(Kfusion, _heading_innov); } } void Ekf::fuseHeading() { Vector3f mag_earth_pred; float measured_hdg; // Calculate the observation variance float R_YAW; if (_control_status.flags.mag_hdg) { // using magnetic heading tuning parameter R_YAW = sq(_params.mag_heading_noise); } else if (_control_status.flags.ev_yaw) { // using error estimate from external vision data R_YAW = _ev_sample_delayed.angVar; } else { // default value R_YAW = 0.01f; } // update transformation matrix from body to world frame using the current state estimate _R_to_earth = Dcmf(_state.quat_nominal); if (shouldUse321RotationSequence(_R_to_earth)) { const float predicted_hdg = getEuler321Yaw(_R_to_earth); if (_control_status.flags.mag_hdg) { // Rotate the measurements into earth frame using the zero yaw angle const Dcmf R_to_earth = updateEuler321YawInRotMat(0.f, _R_to_earth); mag_earth_pred = R_to_earth * (_mag_sample_delayed.mag - _state.mag_B); // the angle of the projection onto the horizontal gives the yaw angle measured_hdg = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination(); } else if (_control_status.flags.ev_yaw) { measured_hdg = getEuler321Yaw(_ev_sample_delayed.quat); } else { measured_hdg = predicted_hdg; } // handle special case where yaw measurement is unavailable bool fuse_zero_innov = false; if (_is_yaw_fusion_inhibited) { // The yaw measurement cannot be trusted but we need to fuse something to prevent a badly // conditioned covariance matrix developing over time. if (!_control_status.flags.vehicle_at_rest) { // Vehicle is not at rest so fuse a zero innovation if necessary to prevent // unconstrained quaternion variance growth and record the predicted heading // to use as an observation when movement ceases. // TODO a better way of determining when this is necessary const float sumQuatVar = P(0,0) + P(1,1) + P(2,2) + P(3,3); if (sumQuatVar > _params.quat_max_variance) { fuse_zero_innov = true; R_YAW = 0.25f; } _last_static_yaw = predicted_hdg; } else { // Vehicle is at rest so use the last moving prediction as an observation // to prevent the heading from drifting and to enable yaw gyro bias learning // before takeoff. measured_hdg = _last_static_yaw; } } else { _last_static_yaw = predicted_hdg; } fuseYaw321(measured_hdg, R_YAW, fuse_zero_innov); } else { const float predicted_hdg = getEuler312Yaw(_R_to_earth); if (_control_status.flags.mag_hdg) { // rotate the magnetometer measurements into earth frame using a zero yaw angle const Dcmf R_to_earth = updateEuler312YawInRotMat(0.f, _R_to_earth); mag_earth_pred = R_to_earth * (_mag_sample_delayed.mag - _state.mag_B); // the angle of the projection onto the horizontal gives the yaw angle measured_hdg = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination(); } else if (_control_status.flags.ev_yaw) { measured_hdg = getEuler312Yaw(_ev_sample_delayed.quat); } else { measured_hdg = predicted_hdg; } // handle special case where yaw measurement is unavailable bool fuse_zero_innov = false; if (_is_yaw_fusion_inhibited) { // The yaw measurement cannot be trusted but we need to fuse something to prevent a badly // conditioned covariance matrix developing over time. if (!_control_status.flags.vehicle_at_rest) { // Vehicle is not at rest so fuse a zero innovation if necessary to prevent // unconstrained quaterniion variance growth and record the predicted heading // to use as an observation when movement ceases. // TODO a better way of determining when this is necessary const float sumQuatVar = P(0,0) + P(1,1) + P(2,2) + P(3,3); if (sumQuatVar > _params.quat_max_variance) { fuse_zero_innov = true; R_YAW = 0.25f; } _last_static_yaw = predicted_hdg; } else { // Vehicle is at rest so use the last moving prediction as an observation // to prevent the heading from drifting and to enable yaw gyro bias learning // before takeoff. measured_hdg = _last_static_yaw; } } else { _last_static_yaw = predicted_hdg; } fuseYaw312(measured_hdg, R_YAW, fuse_zero_innov); } } void Ekf::fuseDeclination(float decl_sigma) { // assign intermediate state variables const float &magN = _state.mag_I(0); const float &magE = _state.mag_I(1); // minimum North field strength before calculation becomes badly conditioned (T) constexpr float N_field_min = 0.001f; // observation variance (rad**2) const float R_DECL = sq(decl_sigma); // Calculate intermediate variables if (fabsf(magN) < sq(N_field_min)) { // calculation is badly conditioned close to +-90 deg declination return; } const float HK0 = ecl::powf(magN, -2); const float HK1 = HK0*ecl::powf(magE, 2) + 1.0F; const float HK2 = 1.0F/HK1; const float HK3 = 1.0F/magN; const float HK4 = HK2*HK3; const float HK5 = HK3*magE; const float HK6 = HK5*P(16,17) - P(17,17); const float HK7 = ecl::powf(HK1, -2); const float HK8 = HK5*P(16,16) - P(16,17); const float innovation_variance = -HK0*HK6*HK7 + HK7*HK8*magE/ecl::powf(magN, 3) + R_DECL; float HK9; if (innovation_variance > R_DECL) { HK9 = HK4/innovation_variance; } else { // variance calculation is badly conditioned return; } // Calculate the observation Jacobian // Note only 2 terms are non-zero which can be used in matrix operations for calculation of Kalman gains and covariance update to significantly reduce cost // Note Hfusion indices do not match state indices SparseVector24f<16,17> Hfusion; Hfusion.at<16>() = -HK0*HK2*magE; Hfusion.at<17>() = HK4; // Calculate the Kalman gains Vector24f Kfusion; for (unsigned row = 0; row <= 15; row++) { Kfusion(row) = -HK9*(HK5*P(row,16) - P(row,17)); } Kfusion(16) = -HK8*HK9; Kfusion(17) = -HK6*HK9; for (unsigned row = 18; row <= 23; row++) { Kfusion(row) = -HK9*(HK5*P(16,row) - P(17,row)); } const float innovation = math::constrain(atan2f(magE, magN) - getMagDeclination(), -0.5f, 0.5f); const bool is_fused = measurementUpdate(Kfusion, Hfusion, innovation); _fault_status.flags.bad_mag_decl = !is_fused; if (is_fused) { limitDeclination(); } } void Ekf::limitDeclination() { // get a reference value for the earth field declinaton and minimum plausible horizontal field strength // set to 50% of the horizontal strength from geo tables if location is known float decl_reference; float h_field_min = 0.001f; if (_params.mag_declination_source & MASK_USE_GEO_DECL) { // use parameter value until GPS is available, then use value returned by geo library if (_NED_origin_initialised || ISFINITE(_mag_declination_gps)) { decl_reference = _mag_declination_gps; h_field_min = fmaxf(h_field_min , 0.5f * _mag_strength_gps * cosf(_mag_inclination_gps)); } else { decl_reference = math::radians(_params.mag_declination_deg); } } else { // always use the parameter value decl_reference = math::radians(_params.mag_declination_deg); } // do not allow the horizontal field length to collapse - this will make the declination fusion badly conditioned // and can result in a reversal of the NE field states which the filter cannot recover from // apply a circular limit float h_field = sqrtf(_state.mag_I(0)*_state.mag_I(0) + _state.mag_I(1)*_state.mag_I(1)); if (h_field < h_field_min) { if (h_field > 0.001f * h_field_min) { const float h_scaler = h_field_min / h_field; _state.mag_I(0) *= h_scaler; _state.mag_I(1) *= h_scaler; } else { // too small to scale radially so set to expected value const float mag_declination = getMagDeclination(); _state.mag_I(0) = 2.0f * h_field_min * cosf(mag_declination); _state.mag_I(1) = 2.0f * h_field_min * sinf(mag_declination); } h_field = h_field_min; } // do not allow the declination estimate to vary too much relative to the reference value constexpr float decl_tolerance = 0.5f; const float decl_max = decl_reference + decl_tolerance; const float decl_min = decl_reference - decl_tolerance; const float decl_estimate = atan2f(_state.mag_I(1) , _state.mag_I(0)); if (decl_estimate > decl_max) { _state.mag_I(0) = h_field * cosf(decl_max); _state.mag_I(1) = h_field * sinf(decl_max); } else if (decl_estimate < decl_min) { _state.mag_I(0) = h_field * cosf(decl_min); _state.mag_I(1) = h_field * sinf(decl_min); } } float Ekf::calculate_synthetic_mag_z_measurement(const Vector3f& mag_meas, const Vector3f& mag_earth_predicted) { // theoretical magnitude of the magnetometer Z component value given X and Y sensor measurement and our knowledge // of the earth magnetic field vector at the current location const float mag_z_abs = sqrtf(math::max(sq(mag_earth_predicted.length()) - sq(mag_meas(0)) - sq(mag_meas(1)), 0.0f)); // calculate sign of synthetic magnetomter Z component based on the sign of the predicted magnetomer Z component const float mag_z_body_pred = mag_earth_predicted.dot(_R_to_earth.col(2)); return (mag_z_body_pred < 0) ? -mag_z_abs : mag_z_abs; }