/****************************************************************************
 *
 *   Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name ECL nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file control.cpp
 * Control functions for ekf attitude and position estimator.
 *
 * @author Paul Riseborough <p_riseborough@live.com.au>
 *
 */

#include "../ecl.h"
#include "ekf.h"
#include <mathlib/mathlib.h>

void Ekf::controlFusionModes()
{
	// Store the status to enable change detection
	_control_status_prev.value = _control_status.value;

	// monitor the tilt alignment
	if (!_control_status.flags.tilt_align) {
		// whilst we are aligning the tilt, monitor the variances
		Vector3f angle_err_var_vec = calcRotVecVariances();

		// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
		// and declare the tilt alignment complete
		if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(math::radians(3.0f))) {
			_control_status.flags.tilt_align = true;
			_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);

			// send alignment status message to the console
			if (_control_status.flags.baro_hgt) {
				ECL_INFO("EKF aligned, (pressure height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length);

			} else if (_control_status.flags.ev_hgt) {
				ECL_INFO("EKF aligned, (EV height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length);

			} else if (_control_status.flags.gps_hgt) {
				ECL_INFO("EKF aligned, (GPS height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length);

			} else if (_control_status.flags.rng_hgt) {
				ECL_INFO("EKF aligned, (range height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length);

			} else {
				ECL_ERR("EKF aligned, (unknown height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length);
			}

		}

	}

	// check for intermittent data (before pop_first_older_than)
	const baroSample &baro_init = _baro_buffer.get_newest();
	_baro_hgt_faulty = !((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

	const gpsSample &gps_init = _gps_buffer.get_newest();
	_gps_hgt_intermittent = !((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL);

	// check for arrival of new sensor data at the fusion time horizon
	_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed);
	_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed);

	_delta_time_baro_us = _baro_sample_delayed.time_us;
	_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed);

	// if we have a new baro sample save the delta time between this sample and the last sample which is
	// used below for baro offset calculations
	if (_baro_data_ready) {
		_delta_time_baro_us = _baro_sample_delayed.time_us - _delta_time_baro_us;
	}

	// calculate 2,2 element of rotation matrix from sensor frame to earth frame
	// this is required for use of range finder and flow data
	_R_rng_to_earth_2_2 = _R_to_earth(2, 0) * _sin_tilt_rng + _R_to_earth(2, 2) * _cos_tilt_rng;

	// Get range data from buffer and check validity
	_range_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed);

	checkRangeDataValidity();

	if (_range_data_ready && !_rng_hgt_faulty) {
		// correct the range data for position offset relative to the IMU
		Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body;
		Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
		_range_sample_delayed.rng += pos_offset_earth(2) / _R_rng_to_earth_2_2;
	}

	// We don't fuse flow data immediately because we have to wait for the mid integration point to fall behind the fusion time horizon.
	// This means we stop looking for new data until the old data has been fused.
	if (!_flow_data_ready) {
		_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed)
				   && (_R_to_earth(2, 2) > _params.range_cos_max_tilt);
	}

	// check if we should fuse flow data for terrain estimation
	if (!_flow_for_terrain_data_ready && _flow_data_ready && _control_status.flags.in_air) {
		// only fuse flow for terrain if range data hasn't been fused for 5 seconds
		_flow_for_terrain_data_ready = (_time_last_imu - _time_last_hagl_fuse) > 5 * 1000 * 1000;
		// only fuse flow for terrain if the main filter is not fusing flow and we are using gps
		_flow_for_terrain_data_ready &= (!_control_status.flags.opt_flow && _control_status.flags.gps);
	}

	_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed);
	_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed);

	// check for height sensor timeouts and reset and change sensor if necessary
	controlHeightSensorTimeouts();

	// control use of observations for aiding
	controlMagFusion();
	controlOpticalFlowFusion();
	controlGpsFusion();
	controlAirDataFusion();
	controlBetaFusion();
	controlDragFusion();
	controlHeightFusion();

	// For efficiency, fusion of direct state observations for position and velocity is performed sequentially
	// in a single function using sensor data from multiple sources (GPS, baro, range finder, etc)
	controlVelPosFusion();

	// Additional data from an external vision pose estimator can be fused.
	controlExternalVisionFusion();

	// Additional NE velocity data from an auxiliary sensor can be fused
	controlAuxVelFusion();

	// check if we are no longer fusing measurements that directly constrain velocity drift
	update_deadreckoning_status();
}

void Ekf::controlExternalVisionFusion()
{
	// Check for new external vision data
	if (_ev_data_ready) {

		// if the ev data is not in a NED reference frame, then the transformation between EV and EKF navigation frames
		// needs to be calculated and the observations rotated into the EKF frame of reference
		if ((_params.fusion_mode & MASK_ROTATE_EV) && ((_params.fusion_mode & MASK_USE_EVPOS) || (_params.fusion_mode & MASK_USE_EVVEL)) && !_control_status.flags.ev_yaw) {
			// rotate EV measurements into the EKF Navigation frame
			calcExtVisRotMat();
		}

                // external vision aiding selection logic
                if (_control_status.flags.tilt_align && _control_status.flags.yaw_align) {

			// check for a external vision measurement that has fallen behind the fusion time horizon
			if ((_time_last_imu - _time_last_ext_vision) < (2 * EV_MAX_INTERVAL)) {
				// turn on use of external vision measurements for position
                                if (_params.fusion_mode & MASK_USE_EVPOS && !_control_status.flags.ev_pos) {
					_control_status.flags.ev_pos = true;
                                        resetPosition();
					ECL_INFO("EKF commencing external vision position fusion");
				}

				// turn on use of external vision measurements for velocity
                                if (_params.fusion_mode & MASK_USE_EVVEL && !_control_status.flags.ev_vel) {
					_control_status.flags.ev_vel = true;
                                        resetVelocity();
					ECL_INFO("EKF commencing external vision velocity fusion");
				}

                                if ((_params.fusion_mode & MASK_ROTATE_EV) && !(_params.fusion_mode & MASK_USE_EVYAW)
                                        && !_ev_rot_mat_initialised)  {
                                        // Reset transformation between EV and EKF navigation frames when starting fusion
                                        resetExtVisRotMat();
                                        _ev_rot_mat_initialised = true;
                                }
			}
		}

		// external vision yaw aiding selection logic
		if (!_control_status.flags.gps && (_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) {
			// don't start using EV data unless daa is arriving frequently
			if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) {
				// reset the yaw angle to the value from the observation quaternion
				// get the roll, pitch, yaw estimates from the quaternion states
				Quatf q_init(_state.quat_nominal);
				Eulerf euler_init(q_init);

				// get initial yaw from the observation quaternion
				const extVisionSample &ev_newest = _ext_vision_buffer.get_newest();
				Quatf q_obs(ev_newest.quat);
				Eulerf euler_obs(q_obs);
				euler_init(2) = euler_obs(2);

				// save a copy of the quaternion state for later use in calculating the amount of reset change
				Quatf quat_before_reset = _state.quat_nominal;

				// calculate initial quaternion states for the ekf
				_state.quat_nominal = Quatf(euler_init);
				uncorrelateQuatStates();

				// adjust the quaternion covariances estimated yaw error
				increaseQuatYawErrVariance(sq(fmaxf(_ev_sample_delayed.angErr, 1.0e-2f)));

				// calculate the amount that the quaternion has changed by
				_state_reset_status.quat_change = _state.quat_nominal * quat_before_reset.inversed();

				// add the reset amount to the output observer buffered data
				for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
					_output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal;
				}

				// apply the change in attitude quaternion to our newest quaternion estimate
				// which was already taken out from the output buffer
				_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;

				// capture the reset event
				_state_reset_status.quat_counter++;

				// flag the yaw as aligned
				_control_status.flags.yaw_align = true;

				// turn on fusion of external vision yaw measurements and disable all magnetometer fusion
				_control_status.flags.ev_yaw = true;
				_control_status.flags.mag_hdg = false;
				_control_status.flags.mag_dec = false;

				// save covariance data for re-use if currently doing 3-axis fusion
				if (_control_status.flags.mag_3D) {
					save_mag_cov_data();
					_control_status.flags.mag_3D = false;
				}

				ECL_INFO("EKF commencing external vision yaw fusion");
			}
		}

		// determine if we should start using the height observations
		if (_params.vdist_sensor_type == VDIST_SENSOR_EV) {
			// don't start using EV data unless data is arriving frequently
			if (!_control_status.flags.ev_hgt && ((_time_last_imu - _time_last_ext_vision) < (2 * EV_MAX_INTERVAL))) {
				setControlEVHeight();
				resetHeight();
			}
		}

		// determine if we should use the vertical position observation
		if (_control_status.flags.ev_hgt) {
			_fuse_height = true;
		}

		// determine if we should use the horizontal position observations
		if (_control_status.flags.ev_pos) {
			_fuse_pos = true;

			// correct position and height for offset relative to IMU
			Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
			Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_ev_sample_delayed.posNED(0) -= pos_offset_earth(0);
			_ev_sample_delayed.posNED(1) -= pos_offset_earth(1);
			_ev_sample_delayed.posNED(2) -= pos_offset_earth(2);

                        // Use an incremental position fusion method for EV position data if GPS is also used
                        if (_params.fusion_mode & MASK_USE_GPS) {
				_fuse_hpos_as_odom = true;
			} else {
				_fuse_hpos_as_odom = false;
			}

			if (_fuse_hpos_as_odom) {
				if (!_hpos_prev_available) {
					// no previous observation available to calculate position change
					_fuse_pos = false;
					_hpos_prev_available = true;

				} else {
					// calculate the change in position since the last measurement
					Vector3f ev_delta_pos = _ev_sample_delayed.posNED - _pos_meas_prev;

                                        // rotate measurement into body frame is required when fusing with GPS
                                        ev_delta_pos = _ev_rot_mat * ev_delta_pos;

					// use the change in position since the last measurement
					_vel_pos_innov[3] = _state.pos(0) - _hpos_pred_prev(0) - ev_delta_pos(0);
					_vel_pos_innov[4] = _state.pos(1) - _hpos_pred_prev(1) - ev_delta_pos(1);

                                        // observation 1-STD error, incremental pos observation is expected to have more uncertainty
                                        _posObsNoiseNE = fmaxf(_ev_sample_delayed.posErr, 0.5f);
				}

				// record observation and estimate for use next time
				_pos_meas_prev = _ev_sample_delayed.posNED;
				_hpos_pred_prev(0) = _state.pos(0);
				_hpos_pred_prev(1) = _state.pos(1);

			} else {
				// use the absolute position
                                Vector3f ev_pos_meas = _ev_sample_delayed.posNED;
                                if (_params.fusion_mode & MASK_ROTATE_EV) {
                                        ev_pos_meas = _ev_rot_mat * ev_pos_meas;
                                }
                                _vel_pos_innov[3] = _state.pos(0) - ev_pos_meas(0);
                                _vel_pos_innov[4] = _state.pos(1) - ev_pos_meas(1);
                                // observation 1-STD error
                                _posObsNoiseNE = fmaxf(_ev_sample_delayed.posErr, 0.01f);

				// check if we have been deadreckoning too long
				if ((_time_last_imu - _time_last_pos_fuse) > _params.reset_timeout_max) {
					// don't reset velocity if we have another source of aiding constraining it
					if (((_time_last_imu - _time_last_of_fuse) > (uint64_t)1E6) && ((_time_last_imu - _time_last_vel_fuse) > (uint64_t)1E6)) {
						resetVelocity();
					}

					resetPosition();
				}
			}

			// innovation gate size
                        _posInnovGateNE = fmaxf(_params.ev_pos_innov_gate, 1.0f);
                }else{
                    _vel_pos_innov[3] = 0.0f;
                    _vel_pos_innov[4] = 0.0f;
                }

		// determine if we should use the velocity observations
		if (_control_status.flags.ev_vel) {
                        _fuse_hor_vel = true;
                        _fuse_vert_vel = true;

                        Vector3f velNED_aligned{_ev_sample_delayed.velNED};

			// rotate measurement into correct earth frame if required
			if (_params.fusion_mode & MASK_ROTATE_EV) {
                                velNED_aligned = _ev_rot_mat * _ev_sample_delayed.velNED;
			}

			// correct velocity for offset relative to IMU
			Vector3f ang_rate = _imu_sample_delayed.delta_ang * (1.0f / _imu_sample_delayed.delta_ang_dt);
			Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
			Vector3f vel_offset_body = cross_product(ang_rate, pos_offset_body);
			Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
                        velNED_aligned -= vel_offset_earth;

                        _vel_pos_innov[0] = _state.vel(0) - velNED_aligned(0);
                        _vel_pos_innov[1] = _state.vel(1) - velNED_aligned(1);
                        _vel_pos_innov[2] = _state.vel(2) - velNED_aligned(2);

			// check if we have been deadreckoning too long
			if ((_time_last_imu - _time_last_vel_fuse) > _params.reset_timeout_max) {
				// don't reset velocity if we have another source of aiding constraining it
				if (((_time_last_imu - _time_last_of_fuse) > (uint64_t)1E6) && ((_time_last_imu - _time_last_pos_fuse) > (uint64_t)1E6)) {
					resetVelocity();
				}
			}

			// observation 1-STD error
			_velObsVarNED(2) = _velObsVarNED(1) = _velObsVarNED(0) = fmaxf(_ev_sample_delayed.velErr, 0.01f);

			// innovation gate size
                        _vvelInnovGate = _hvelInnovGate = fmaxf(_params.ev_vel_innov_gate, 1.0f);
		}

		// Fuse available NED position data into the main filter
		if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) {
			fuseVelPosHeight();
			_fuse_vert_vel = _fuse_hor_vel = false;
			_fuse_pos = _fuse_height = false;
			_fuse_hpos_as_odom = false;

		}

		// determine if we should use the yaw observation
		if (_control_status.flags.ev_yaw) {
			fuseHeading();

		}

	} else if ((_control_status.flags.ev_pos || _control_status.flags.ev_vel)
		   && (_time_last_imu >= _time_last_ext_vision)
		   && ((_time_last_imu - _time_last_ext_vision) > (uint64_t)_params.reset_timeout_max)) {

		// Turn off EV fusion mode if no data has been received
		_control_status.flags.ev_pos = false;
		_control_status.flags.ev_vel = false;
		_control_status.flags.ev_yaw = false;
		ECL_INFO("EKF External Vision Data Stopped");

	}
}

void Ekf::controlOpticalFlowFusion()
{
	// Check if on ground motion is un-suitable for use of optical flow
	if (!_control_status.flags.in_air) {
		// When on ground check if the vehicle is being shaken or moved in a way that could cause a loss of navigation
		const float accel_norm = _accel_vec_filt.norm();

		const bool motion_is_excessive = ((accel_norm > (CONSTANTS_ONE_G * 1.5f)) // upper g limit
					    || (accel_norm < (CONSTANTS_ONE_G * 0.5f)) // lower g limit
					    || (_ang_rate_mag_filt > _flow_max_rate) // angular rate exceeds flow sensor limit
					    || (_R_to_earth(2,2) < cosf(math::radians(30.0f)))); // tilted excessively

		if (motion_is_excessive) {
			_time_bad_motion_us = _imu_sample_delayed.time_us;

		} else {
			_time_good_motion_us = _imu_sample_delayed.time_us;
		}

	} else {
		_time_bad_motion_us = 0;
		_time_good_motion_us = _imu_sample_delayed.time_us;
	}

	// Accumulate autopilot gyro data across the same time interval as the flow sensor
	_imu_del_ang_of += _imu_sample_delayed.delta_ang - _state.gyro_bias;
	_delta_time_of += _imu_sample_delayed.delta_ang_dt;

	// New optical flow data is available and is ready to be fused when the midpoint of the sample falls behind the fusion time horizon
	if (_flow_data_ready) {
		// Inhibit flow use if motion is un-suitable or we have good quality GPS
		// Apply hysteresis to prevent rapid mode switching
		float gps_err_norm_lim;
		if (_control_status.flags.opt_flow) {
			gps_err_norm_lim = 0.7f;
		} else {
			gps_err_norm_lim = 1.0f;
		}

		// Check if we are in-air and require optical flow to control position drift
		bool flow_required = _control_status.flags.in_air &&
				(_is_dead_reckoning // is doing inertial dead-reckoning so must constrain drift urgently
				  || (_control_status.flags.opt_flow && !_control_status.flags.gps && !_control_status.flags.ev_pos) // is completely reliant on optical flow
				  || (_control_status.flags.gps && (_gps_error_norm > gps_err_norm_lim))); // is using GPS, but GPS is bad

		if (!_inhibit_flow_use && _control_status.flags.opt_flow) {
			// inhibit use of optical flow if motion is unsuitable and we are not reliant on it for flight navigation
			bool preflight_motion_not_ok = !_control_status.flags.in_air && ((_imu_sample_delayed.time_us - _time_good_motion_us) > (uint64_t)1E5);
			bool flight_motion_not_ok = _control_status.flags.in_air && !_range_aid_mode_enabled;
			if ((preflight_motion_not_ok || flight_motion_not_ok) && !flow_required) {
				_inhibit_flow_use = true;
			}
		} else if (_inhibit_flow_use && !_control_status.flags.opt_flow){
			// allow use of optical flow if motion is suitable or we are reliant on it for flight navigation
			bool preflight_motion_ok = !_control_status.flags.in_air && ((_imu_sample_delayed.time_us - _time_bad_motion_us) > (uint64_t)5E6);
			bool flight_motion_ok = _control_status.flags.in_air && _range_aid_mode_enabled;
			if (preflight_motion_ok || flight_motion_ok || flow_required) {
				_inhibit_flow_use = false;
			}
		}

		// Handle cases where we are using optical flow but are no longer able to because data is old
		// or its use has been inhibited.
		if (_control_status.flags.opt_flow) {
		       if (_inhibit_flow_use) {
			       _control_status.flags.opt_flow = false;
			       _time_last_of_fuse = 0;

			} else if ((_time_last_imu - _time_last_of_fuse) > (uint64_t)_params.reset_timeout_max) {
				_control_status.flags.opt_flow = false;

			}
		}

		// optical flow fusion mode selection logic
		if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user
			&& !_control_status.flags.opt_flow // we are not yet using flow data
			&& _control_status.flags.tilt_align // we know our tilt attitude
			&& !_inhibit_flow_use
			&& get_terrain_valid()) // we have a valid distance to ground estimate
		{
			// If the heading is not aligned, reset the yaw and magnetic field states
			if (!_control_status.flags.yaw_align) {
				_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
			}

			// If the heading is valid and use is not inhibited , start using optical flow aiding
			if (_control_status.flags.yaw_align) {
				// set the flag and reset the fusion timeout
				_control_status.flags.opt_flow = true;
				_time_last_of_fuse = _time_last_imu;

				// if we are not using GPS or external vision aiding, then the velocity and position states and covariances need to be set
				const bool flow_aid_only = !(_control_status.flags.gps || _control_status.flags.ev_pos);
				if (flow_aid_only) {
					resetVelocity();
					resetPosition();

					// align the output observer to the EKF states
					alignOutputFilter();
				}
			}

		} else if (!(_params.fusion_mode & MASK_USE_OF)) {
			_control_status.flags.opt_flow = false;
		}

		// handle the case when we have optical flow, are reliant on it, but have not been using it for an extended period
		if (_control_status.flags.opt_flow
		    && !_control_status.flags.gps
		    && !_control_status.flags.ev_pos) {

			bool do_reset = ((_time_last_imu - _time_last_of_fuse) > _params.reset_timeout_max);

			if (do_reset) {
				resetVelocity();
				resetPosition();
			}
		}

		// Only fuse optical flow if valid body rate compensation data is available
		if (calcOptFlowBodyRateComp()) {

			bool flow_quality_good = (_flow_sample_delayed.quality >= _params.flow_qual_min);

			if (!flow_quality_good && !_control_status.flags.in_air) {
				// when on the ground with poor flow quality, assume zero ground relative velocity and LOS rate
				_flowRadXYcomp.zero();
			} else {
				// compensate for body motion to give a LOS rate
				_flowRadXYcomp(0) = _flow_sample_delayed.flowRadXY(0) - _flow_sample_delayed.gyroXYZ(0);
				_flowRadXYcomp(1) = _flow_sample_delayed.flowRadXY(1) - _flow_sample_delayed.gyroXYZ(1);
			}
		} else {
			// don't use this flow data and wait for the next data to arrive
			_flow_data_ready = false;
		}
	}

	// Wait until the midpoint of the flow sample has fallen behind the fusion time horizon
	if (_flow_data_ready && (_imu_sample_delayed.time_us > _flow_sample_delayed.time_us - uint32_t(1e6f * _flow_sample_delayed.dt) / 2)) {
		// Fuse optical flow LOS rate observations into the main filter only if height above ground has been updated recently
		// but use a relaxed time criteria to enable it to coast through bad range finder data
		if (_control_status.flags.opt_flow && ((_time_last_imu - _time_last_hagl_fuse) < (uint64_t)10e6)) {
			fuseOptFlow();
			_last_known_posNE(0) = _state.pos(0);
			_last_known_posNE(1) = _state.pos(1);
		}

		_flow_data_ready = false;
	}
}

void Ekf::controlGpsFusion()
{
	// Check for new GPS data that has fallen behind the fusion time horizon
	if (_gps_data_ready) {

		// GPS yaw aiding selection logic
		if ((_params.fusion_mode & MASK_USE_GPSYAW)
				&& ISFINITE(_gps_sample_delayed.yaw)
				&& _control_status.flags.tilt_align
				&& (!_control_status.flags.gps_yaw || !_control_status.flags.yaw_align)
				&& ((_time_last_imu - _time_last_gps) < (2 * GPS_MAX_INTERVAL))) {

			if (resetGpsAntYaw()) {
				// flag the yaw as aligned
				_control_status.flags.yaw_align = true;

				// turn on fusion of external vision yaw measurements and disable all other yaw fusion
				_control_status.flags.gps_yaw = true;
				_control_status.flags.ev_yaw = false;
				_control_status.flags.mag_hdg = false;
				_control_status.flags.mag_dec = false;

				// save covariance data for re-use if currently doing 3-axis fusion
				if (_control_status.flags.mag_3D) {
					save_mag_cov_data();
					_control_status.flags.mag_3D = false;
				}

				ECL_INFO("EKF commencing GPS yaw fusion");
			}
		}

		// fuse the yaw observation
		if (_control_status.flags.gps_yaw) {
			fuseGpsAntYaw();
		}

		// Determine if we should use GPS aiding for velocity and horizontal position
		// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
		bool gps_checks_passing = (_time_last_imu - _last_gps_fail_us > (uint64_t)5e6);
		bool gps_checks_failing = (_time_last_imu - _last_gps_pass_us > (uint64_t)5e6);
		if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
			if (_control_status.flags.tilt_align && _NED_origin_initialised && gps_checks_passing) {
				// If the heading is not aligned, reset the yaw and magnetic field states
				// Do not use external vision for yaw if using GPS because yaw needs to be
				// defined relative to an NED reference frame
				if (!_control_status.flags.yaw_align || _control_status.flags.ev_yaw || _mag_inhibit_yaw_reset_req) {
					_control_status.flags.ev_yaw = false;
					_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag);
					// Handle the special case where we have not been constraining yaw drift or learning yaw bias due
					// to assumed invalid mag field associated with indoor operation with a downwards looking flow sensor.
					if (_mag_inhibit_yaw_reset_req) {
						_mag_inhibit_yaw_reset_req = false;
						// Zero the yaw bias covariance and set the variance to the initial alignment uncertainty
						setDiag(P, 12, 12, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S));
					}
				}

				// If the heading is valid start using gps aiding
				if (_control_status.flags.yaw_align) {
					// if we are not already aiding with optical flow, then we need to reset the position and velocity
					// otherwise we only need to reset the position
					_control_status.flags.gps = true;

					if (!_control_status.flags.opt_flow) {
						if (!resetPosition() || !resetVelocity()) {
							_control_status.flags.gps = false;

						}

					} else if (!resetPosition()) {
						_control_status.flags.gps = false;

					}

					if (_control_status.flags.gps) {
						ECL_INFO("EKF commencing GPS fusion");
						_time_last_gps = _time_last_imu;
					}
				}
			}

		}  else if (!(_params.fusion_mode & MASK_USE_GPS)) {
			_control_status.flags.gps = false;

		}

		// Handle the case where we are using GPS and another source of aiding and GPS is failing checks
                if (_control_status.flags.gps  && gps_checks_failing && (_control_status.flags.opt_flow || _control_status.flags.ev_pos || _control_status.flags.ev_vel)) {
			_control_status.flags.gps = false;
			// Reset position state to external vision if we are going to use absolute values
			if (_control_status.flags.ev_pos && !(_params.fusion_mode & MASK_ROTATE_EV)) {
				resetPosition();
			}
			ECL_WARN("EKF GPS data quality poor - stopping use");
		}

		// handle the case when we now have GPS, but have not been using it for an extended period
		if (_control_status.flags.gps) {
			// We are relying on aiding to constrain drift so after a specified time
			// with no aiding we need to do something
			bool do_reset = ((_time_last_imu - _time_last_pos_fuse) > _params.reset_timeout_max)
					&& ((_time_last_imu - _time_last_delpos_fuse) > _params.reset_timeout_max)
					&& ((_time_last_imu - _time_last_vel_fuse) > _params.reset_timeout_max)
					&& ((_time_last_imu - _time_last_of_fuse) > _params.reset_timeout_max);

			// We haven't had an absolute position fix for a longer time so need to do something
			do_reset = do_reset || ((_time_last_imu - _time_last_pos_fuse) > (2 * _params.reset_timeout_max));

			if (do_reset) {
				// use GPS velocity data to check and correct yaw angle if a FW vehicle
				if (_control_status.flags.fixed_wing && _control_status.flags.in_air) {
					// if flying a fixed wing aircraft, do a complete reset that includes yaw
					_control_status.flags.mag_align_complete = realignYawGPS();
				}

				resetVelocity();
				resetPosition();
				_velpos_reset_request = false;
				ECL_WARN("EKF GPS fusion timeout - reset to GPS");

				// Reset the timeout counters
				_time_last_pos_fuse = _time_last_imu;
				_time_last_vel_fuse = _time_last_imu;

			}
		}

		// Only use GPS data for position and velocity aiding if enabled
		if (_control_status.flags.gps) {
			_fuse_pos = true;
			_fuse_vert_vel = true;
			_fuse_hor_vel = true;

			// correct velocity for offset relative to IMU
			Vector3f ang_rate = _imu_sample_delayed.delta_ang * (1.0f / _imu_sample_delayed.delta_ang_dt);
			Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body;
			Vector3f vel_offset_body = cross_product(ang_rate, pos_offset_body);
			Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
			_gps_sample_delayed.vel -= vel_offset_earth;

			// correct position and height for offset relative to IMU
			Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_gps_sample_delayed.pos(0) -= pos_offset_earth(0);
			_gps_sample_delayed.pos(1) -= pos_offset_earth(1);
			_gps_sample_delayed.hgt += pos_offset_earth(2);

			// calculate observation process noise
			float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f);

			if (_control_status.flags.opt_flow || _control_status.flags.ev_pos) {
				// if we are using other sources of aiding, then relax the upper observation
				// noise limit which prevents bad GPS perturbing the position estimate
				_posObsNoiseNE = fmaxf(_gps_sample_delayed.hacc, lower_limit);

			} else {
				// if we are not using another source of aiding, then we are reliant on the GPS
				// observations to constrain attitude errors and must limit the observation noise value.
				float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit);
				_posObsNoiseNE = math::constrain(_gps_sample_delayed.hacc, lower_limit, upper_limit);
			}

			_velObsVarNED(2) = _velObsVarNED(1) = _velObsVarNED(0) = sq(fmaxf(_gps_sample_delayed.sacc, _params.gps_vel_noise));

			// calculate innovations
			_vel_pos_innov[0] = _state.vel(0) - _gps_sample_delayed.vel(0);
			_vel_pos_innov[1] = _state.vel(1) - _gps_sample_delayed.vel(1);
			_vel_pos_innov[2] = _state.vel(2) - _gps_sample_delayed.vel(2);
			_vel_pos_innov[3] = _state.pos(0) - _gps_sample_delayed.pos(0);
			_vel_pos_innov[4] = _state.pos(1) - _gps_sample_delayed.pos(1);

			// set innovation gate size
                        _posInnovGateNE = fmaxf(_params.gps_pos_innov_gate, 1.0f);
                        _hvelInnovGate = _vvelInnovGate = fmaxf(_params.gps_vel_innov_gate, 1.0f);
		}

	} else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)10e6)) {
		_control_status.flags.gps = false;
		ECL_WARN("EKF GPS data stopped");
	}  else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)1e6) && (_control_status.flags.opt_flow || _control_status.flags.ev_pos)) {
		// Handle the case where we are fusing another position source along GPS,
		// stop waiting for GPS after 1 s of lost signal
		_control_status.flags.gps = false;
		ECL_WARN("EKF GPS data stopped, using only EV or OF");
	}
}

void Ekf::controlHeightSensorTimeouts()
{
	/*
	 * Handle the case where we have not fused height measurements recently and
	 * uncertainty exceeds the max allowable. Reset using the best available height
	 * measurement source, continue using it after the reset and declare the current
	 * source failed if we have switched.
	*/

	// Check for IMU accelerometer vibration induced clipping as evidenced by the vertical innovations being positive and not stale.
	// Clipping causes the average accel reading to move towards zero which makes the INS think it is falling and produces positive vertical innovations
	float var_product_lim = sq(_params.vert_innov_test_lim) * sq(_params.vert_innov_test_lim);
	bool bad_vert_accel = (_control_status.flags.baro_hgt && // we can only run this check if vertical position and velocity observations are independent
			(sq(_vel_pos_innov[5] * _vel_pos_innov[2]) > var_product_lim * (_vel_pos_innov_var[5] * _vel_pos_innov_var[2])) && // vertical position and velocity sensors are in agreement that we have a significant error
			(_vel_pos_innov[2] > 0.0f) && // positive innovation indicates that the inertial nav thinks it is falling
			((_imu_sample_delayed.time_us - _baro_sample_delayed.time_us) < 2 * BARO_MAX_INTERVAL) && // vertical position data is fresh
			((_imu_sample_delayed.time_us - _gps_sample_delayed.time_us) < 2 * GPS_MAX_INTERVAL)); // vertical velocity data is fresh

	// record time of last bad vert accel
	if (bad_vert_accel) {
		_time_bad_vert_accel =  _time_last_imu;

	} else {
		_time_good_vert_accel = _time_last_imu;
	}

	// declare a bad vertical acceleration measurement and make the declaration persist
	// for a minimum of 10 seconds
	if (_bad_vert_accel_detected) {
		_bad_vert_accel_detected = (_time_last_imu - _time_bad_vert_accel < BADACC_PROBATION);

	} else {
		_bad_vert_accel_detected = bad_vert_accel;
	}

	// check if height is continuously failing because of accel errors
	bool continuous_bad_accel_hgt = ((_time_last_imu - _time_good_vert_accel) > (unsigned)_params.bad_acc_reset_delay_us);

	// check if height has been inertial deadreckoning for too long
	bool hgt_fusion_timeout = ((_time_last_imu - _time_last_hgt_fuse) > (uint64_t)5e6);

	// reset the vertical position and velocity states
	if (hgt_fusion_timeout || continuous_bad_accel_hgt) {
		// boolean that indicates we will do a height reset
		bool reset_height = false;

		// handle the case where we are using baro for height
		if (_control_status.flags.baro_hgt) {
			// check if GPS height is available
			const gpsSample &gps_init = _gps_buffer.get_newest();
			bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);

			const baroSample &baro_init = _baro_buffer.get_newest();
			bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// check for inertial sensing errors in the last 10 seconds
			bool prev_bad_vert_accel = (_time_last_imu - _time_bad_vert_accel < BADACC_PROBATION);

			// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data
			bool reset_to_gps = !_gps_hgt_intermittent && gps_hgt_accurate && !prev_bad_vert_accel;

			// reset to GPS if GPS data is available and there is no Baro data
			reset_to_gps = reset_to_gps || (!_gps_hgt_intermittent && !baro_hgt_available);

			// reset to Baro if we are not doing a GPS reset and baro data is available
			bool reset_to_baro = !reset_to_gps && baro_hgt_available;

			if (reset_to_gps) {
				// set height sensor health
				_baro_hgt_faulty = true;

				// reset the height mode
				setControlGPSHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF baro hgt timeout - reset to GPS");

			} else if (reset_to_baro) {
				// set height sensor health
				_baro_hgt_faulty = false;

				// reset the height mode
				setControlBaroHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF baro hgt timeout - reset to baro");

			} else {
				// we have nothing we can reset to
				// deny a reset
				reset_height = false;

			}
		}

		// handle the case we are using GPS for height
		if (_control_status.flags.gps_hgt) {
			// check if GPS height is available
			const gpsSample &gps_init = _gps_buffer.get_newest();
			bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);

			// check the baro height source for consistency and freshness
			const baroSample &baro_init = _baro_buffer.get_newest();
			bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);
			float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
			bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[9][9]) * sq(_params.baro_innov_gate);

			// if baro data is acceptable and GPS data is inaccurate, reset height to baro
			bool reset_to_baro = baro_data_consistent && baro_data_fresh && !_baro_hgt_faulty && !gps_hgt_accurate;

			// if GPS height is unavailable and baro data is available, reset height to baro
			reset_to_baro = reset_to_baro || (_gps_hgt_intermittent && baro_data_fresh);

			// if we cannot switch to baro and GPS data is available, reset height to GPS
			bool reset_to_gps = !reset_to_baro && !_gps_hgt_intermittent;

			if (reset_to_baro) {
				// set height sensor health
				_baro_hgt_faulty = false;

				// reset the height mode
				setControlBaroHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF gps hgt timeout - reset to baro");

			} else if (reset_to_gps) {
				// reset the height mode
				setControlGPSHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF gps hgt timeout - reset to GPS");

			} else {
				// we have nothing to reset to
				reset_height = false;

			}
		}

		// handle the case we are using range finder for height
		if (_control_status.flags.rng_hgt) {
			// check if range finder data is available
			const rangeSample &rng_init = _range_buffer.get_newest();
			bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL);

			// check if baro data is available
			const baroSample &baro_init = _baro_buffer.get_newest();
			bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// reset to baro if we have no range data and baro data is available
			bool reset_to_baro = !rng_data_available && baro_data_available;

			// reset to range data if it is available
			bool reset_to_rng = rng_data_available;

			if (reset_to_baro) {
				// set height sensor health
				_rng_hgt_faulty = true;
				_baro_hgt_faulty = false;

				// reset the height mode
				setControlBaroHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF rng hgt timeout - reset to baro");

			} else if (reset_to_rng) {
				// set height sensor health
				_rng_hgt_faulty = false;

				// reset the height mode
				setControlRangeHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF rng hgt timeout - reset to rng hgt");

			} else {
				// we have nothing to reset to
				reset_height = false;

			}
		}

		// handle the case where we are using external vision data for height
		if (_control_status.flags.ev_hgt) {
			// check if vision data is available
			const extVisionSample &ev_init = _ext_vision_buffer.get_newest();
			bool ev_data_available = ((_time_last_imu - ev_init.time_us) < 2 * EV_MAX_INTERVAL);

			// check if baro data is available
			const baroSample &baro_init = _baro_buffer.get_newest();
			bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL);

			// reset to baro if we have no vision data and baro data is available
			bool reset_to_baro = !ev_data_available && baro_data_available;

			// reset to ev data if it is available
			bool reset_to_ev = ev_data_available;

			if (reset_to_baro) {
				// set height sensor health
				_baro_hgt_faulty = false;

				// reset the height mode
				setControlBaroHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF ev hgt timeout - reset to baro");

			} else if (reset_to_ev) {
				// reset the height mode
				setControlEVHeight();

				// request a reset
				reset_height = true;
				ECL_WARN("EKF ev hgt timeout - reset to ev hgt");

			} else {
				// we have nothing to reset to
				reset_height = false;

			}
		}

		// Reset vertical position and velocity states to the last measurement
		if (reset_height) {
			resetHeight();
			// Reset the timout timer
			_time_last_hgt_fuse = _time_last_imu;

		}

	}
}

void Ekf::controlHeightFusion()
{
	// set control flags for the desired primary height source

	rangeAidConditionsMet();

	_range_aid_mode_selected = (_params.range_aid == 1) && _range_aid_mode_enabled;

	if (_params.vdist_sensor_type == VDIST_SENSOR_BARO) {

		if (_range_aid_mode_selected && _range_data_ready && !_rng_hgt_faulty) {
			setControlRangeHeight();
			_fuse_height = true;

			// we have just switched to using range finder, calculate height sensor offset such that current
			// measurement matches our current height estimate
			if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
				if (get_terrain_valid()) {
					_hgt_sensor_offset = _terrain_vpos;

				} else {
					_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2);
				}
			}

		} else if (!_range_aid_mode_selected && _baro_data_ready && !_baro_hgt_faulty) {
			setControlBaroHeight();
			_fuse_height = true;

			// we have just switched to using baro height, we don't need to set a height sensor offset
			// since we track a separate _baro_hgt_offset
			if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
				_hgt_sensor_offset = 0.0f;
			}

			// Turn off ground effect compensation if it times out
			if (_control_status.flags.gnd_effect) {
				if ((_time_last_imu - _time_last_gnd_effect_on > GNDEFFECT_TIMEOUT)) {

					_control_status.flags.gnd_effect = false;
				}
			}

		} else if (_control_status.flags.gps_hgt && _gps_data_ready && !_gps_hgt_intermittent) {
			// switch to gps if there was a reset to gps
			_fuse_height = true;

			// we have just switched to using gps height, calculate height sensor offset such that current
			// measurement matches our current height estimate
			if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
				_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
			}
		}
	}

	// set the height data source to range if requested
	if ((_params.vdist_sensor_type == VDIST_SENSOR_RANGE) && !_rng_hgt_faulty) {
		setControlRangeHeight();
		_fuse_height = _range_data_ready;

		// we have just switched to using range finder, calculate height sensor offset such that current
		// measurement matches our current height estimate
		if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
			// use the parameter rng_gnd_clearance if on ground to avoid a noisy offset initialization (e.g. sonar)
			if (_control_status.flags.in_air && get_terrain_valid()) {

				_hgt_sensor_offset = _terrain_vpos;

			} else if (_control_status.flags.in_air) {

				_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2);

			} else {

				_hgt_sensor_offset = _params.rng_gnd_clearance;
			}
		}

	} else if ((_params.vdist_sensor_type == VDIST_SENSOR_RANGE) && _baro_data_ready && !_baro_hgt_faulty) {
		setControlBaroHeight();
		_fuse_height = true;

		// we have just switched to using baro height, we don't need to set a height sensor offset
		// since we track a separate _baro_hgt_offset
		if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
			_hgt_sensor_offset = 0.0f;
		}
	}

	// Determine if GPS should be used as the height source
	if (_params.vdist_sensor_type == VDIST_SENSOR_GPS) {

		if (_range_aid_mode_selected && _range_data_ready && !_rng_hgt_faulty) {
			setControlRangeHeight();
			_fuse_height = true;

			// we have just switched to using range finder, calculate height sensor offset such that current
			// measurement matches our current height estimate
			if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
				if (get_terrain_valid()) {
					_hgt_sensor_offset = _terrain_vpos;

				} else {
					_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2);
				}
			}

		} else if (!_range_aid_mode_selected && _gps_data_ready && !_gps_hgt_intermittent && _gps_checks_passed) {
			setControlGPSHeight();
			_fuse_height = true;

			// we have just switched to using gps height, calculate height sensor offset such that current
			// measurement matches our current height estimate
			if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
				_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
			}

		} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
			// switch to baro if there was a reset to baro
			_fuse_height = true;

			// we have just switched to using baro height, we don't need to set a height sensor offset
			// since we track a separate _baro_hgt_offset
			if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
				_hgt_sensor_offset = 0.0f;
			}
		}
	}

	// Determine if we rely on EV height but switched to baro
	if (_params.vdist_sensor_type == VDIST_SENSOR_EV) {
		if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
			// switch to baro if there was a reset to baro
			_fuse_height = true;

			// we have just switched to using baro height, we don't need to set a height sensor offset
			// since we track a separate _baro_hgt_offset
			if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) {
				_hgt_sensor_offset = 0.0f;
			}
		}
	}

	// calculate a filtered offset between the baro origin and local NED origin if we are not using the baro as a height reference
	if (!_control_status.flags.baro_hgt && _baro_data_ready) {
		float local_time_step = 1e-6f * _delta_time_baro_us;
		local_time_step = math::constrain(local_time_step, 0.0f, 1.0f);

		// apply a 10 second first order low pass filter to baro offset
		float offset_rate_correction =  0.1f * (_baro_sample_delayed.hgt + _state.pos(
				2) - _baro_hgt_offset);
		_baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f);
	}

	if ((_time_last_imu - _time_last_hgt_fuse) > 2 * RNG_MAX_INTERVAL && _control_status.flags.rng_hgt
	    && (!_range_data_ready || _rng_hgt_faulty)) {

		// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements
		// and are on the ground, then synthesise a measurement at the expected on ground value
		if (!_control_status.flags.in_air) {
			_range_sample_delayed.rng = _params.rng_gnd_clearance;
			_range_sample_delayed.time_us = _imu_sample_delayed.time_us;

		}

		_fuse_height = true;
	}


}

void Ekf::rangeAidConditionsMet()
{
	// if the parameter for range aid is enabled we allow to switch from using the primary height source to using range finder as height source
	// under the following conditions
	// 1) Vehicle is in-air
	// 2) Range data is valid
	// 3) Vehicle is no further than max_hagl_for_range_aid away from the ground
	// 4) Ground speed is not higher than max_vel_for_range_aid
	// 5) Terrain estimate is stable (needs better checks)
	if (_control_status.flags.in_air && !_rng_hgt_faulty) {
		// check if we can use range finder measurements to estimate height, use hysteresis to avoid rapid switching
		bool can_use_range_finder;
		if (_range_aid_mode_enabled) {
			can_use_range_finder = (_terrain_vpos - _state.pos(2) < _params.max_hagl_for_range_aid) && get_terrain_valid();

		} else {
			// if we were not using range aid in the previous iteration then require the current height above terrain to be
			// smaller than 70 % of the maximum allowed ground distance for range aid
			can_use_range_finder = (_terrain_vpos - _state.pos(2) < 0.7f * _params.max_hagl_for_range_aid) && get_terrain_valid();
		}

		bool horz_vel_valid = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow)
				      && (_fault_status.value == 0);

		if (horz_vel_valid) {
			float ground_vel = sqrtf(_state.vel(0) * _state.vel(0) + _state.vel(1) * _state.vel(1));

			if (_range_aid_mode_enabled) {
				can_use_range_finder &= ground_vel < _params.max_vel_for_range_aid;

			} else {
				// if we were not using range aid in the previous iteration then require the ground velocity to be
				// smaller than 70 % of the maximum allowed ground velocity for range aid
				can_use_range_finder &= ground_vel < 0.7f * _params.max_vel_for_range_aid;
			}

		} else {
			can_use_range_finder = false;
		}

		// use hysteresis to check for hagl
		if (_range_aid_mode_enabled) {
			can_use_range_finder &= ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 1.0f);

		} else {
			// if we were not using range aid in the previous iteration then use a much lower (1/100) threshold to avoid
			// switching to range finder too soon (wait for terrain to update).
			can_use_range_finder &= ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 0.01f);
		}

		_range_aid_mode_enabled = can_use_range_finder;

	} else {
		_range_aid_mode_enabled = false;
	}
}

void Ekf::checkRangeDataValidity()
{
	// check if out of date
	if ((_imu_sample_delayed.time_us - _range_sample_delayed .time_us) > 2 * RNG_MAX_INTERVAL) {
		_rng_hgt_faulty = true;
		return;
	}

	// Don't allow faulty flag to clear unless range data is continuous
	if (_rng_hgt_faulty && !_range_data_continuous) {
		return;
	}

	// Don't run the checks after this unless we have retrieved new data from the buffer
	if (!_range_data_ready) {
		return;
	} else {
		// reset fault status when we get new data
		_rng_hgt_faulty = (_range_sample_delayed.quality == 0);
	}

	// Check if excessively tilted
	if (_R_rng_to_earth_2_2 < _params.range_cos_max_tilt) {
		_rng_hgt_faulty = true;
		return;
	}

	// Check if out of range
	if ((_range_sample_delayed.rng > _rng_valid_max_val)
	|| (_range_sample_delayed.rng < _rng_valid_min_val)) {
		if (_control_status.flags.in_air) {
			_rng_hgt_faulty = true;
			return;
		} else {
			// Range finders can fail to provide valid readings when resting on the ground
			// or being handled by the user, which prevents use of as a primary height sensor.
			// To work around this issue, we replace out of range data with the expected on ground value.
			_range_sample_delayed.rng = _params.rng_gnd_clearance;
			return;
		}
	}

	// Check for "stuck" range finder measurements when range was not valid for certain period
	// This handles a failure mode observed with some lidar sensors
	if (((_range_sample_delayed.time_us - _time_last_rng_ready) > (uint64_t)10e6) &&
	    _control_status.flags.in_air) {

		// require a variance of rangefinder values to check for "stuck" measurements
		if (_rng_stuck_max_val - _rng_stuck_min_val > _params.range_stuck_threshold) {
			_time_last_rng_ready = _range_sample_delayed.time_us;
			_rng_stuck_min_val = 0.0f;
			_rng_stuck_max_val = 0.0f;
			_control_status.flags.rng_stuck = false;

		} else {
			if (_range_sample_delayed.rng > _rng_stuck_max_val) {
				_rng_stuck_max_val = _range_sample_delayed.rng;
			}

			if (_rng_stuck_min_val < 0.1f || _range_sample_delayed.rng < _rng_stuck_min_val) {
				_rng_stuck_min_val = _range_sample_delayed.rng;
			}

			_control_status.flags.rng_stuck = true;
			_rng_hgt_faulty = true;
		}

	} else {
		_time_last_rng_ready = _range_sample_delayed.time_us;
	}
}

void Ekf::controlAirDataFusion()
{
	// control activation and initialisation/reset of wind states required for airspeed fusion

	// If both airspeed and sideslip fusion have timed out and we are not using a drag observation model then we no longer have valid wind estimates
	bool airspeed_timed_out = ((_time_last_imu - _time_last_arsp_fuse) > (uint64_t)10e6);
	bool sideslip_timed_out = ((_time_last_imu - _time_last_beta_fuse) > (uint64_t)10e6);

	if (_control_status.flags.wind && airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)) {
		_control_status.flags.wind = false;

	}

	if (_control_status.flags.fuse_aspd && airspeed_timed_out) {
		_control_status.flags.fuse_aspd = false;

	}

	// Always try to fuse airspeed data if available and we are in flight
	if (_tas_data_ready && _control_status.flags.in_air) {
		// always fuse airsped data if we are flying and data is present
		if (!_control_status.flags.fuse_aspd) {
			_control_status.flags.fuse_aspd = true;
		}

		// If starting wind state estimation, reset the wind states and covariances before fusing any data
		if (!_control_status.flags.wind) {
			// activate the wind states
			_control_status.flags.wind = true;
			// reset the timout timer to prevent repeated resets
			_time_last_arsp_fuse = _time_last_imu;
			_time_last_beta_fuse = _time_last_imu;
			// reset the wind speed states and corresponding covariances
			resetWindStates();
			resetWindCovariance();

		}

		fuseAirspeed();

	}
}

void Ekf::controlBetaFusion()
{
	// control activation and initialisation/reset of wind states required for synthetic sideslip fusion fusion

	// If both airspeed and sideslip fusion have timed out and we are not using a drag observation model then we no longer have valid wind estimates
	bool sideslip_timed_out = ((_time_last_imu - _time_last_beta_fuse) > (uint64_t)10e6);
	bool airspeed_timed_out = ((_time_last_imu - _time_last_arsp_fuse) > (uint64_t)10e6);

	if (_control_status.flags.wind && airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)) {
		_control_status.flags.wind = false;
	}

	// Perform synthetic sideslip fusion when in-air and sideslip fuson had been enabled externally in addition to the following criteria:

	// Sufficient time has lapsed sice the last fusion
	bool beta_fusion_time_triggered = ((_time_last_imu - _time_last_beta_fuse) > _params.beta_avg_ft_us);

	if (beta_fusion_time_triggered && _control_status.flags.fuse_beta && _control_status.flags.in_air) {
		// If starting wind state estimation, reset the wind states and covariances before fusing any data
		if (!_control_status.flags.wind) {
			// activate the wind states
			_control_status.flags.wind = true;
			// reset the timeout timers to prevent repeated resets
			_time_last_beta_fuse = _time_last_imu;
			_time_last_arsp_fuse = _time_last_imu;
			// reset the wind speed states and corresponding covariances
			resetWindStates();
			resetWindCovariance();
		}

		fuseSideslip();
	}
}

void Ekf::controlDragFusion()
{
	if (_params.fusion_mode & MASK_USE_DRAG) {
		if (_control_status.flags.in_air
				&& !_mag_inhibit_yaw_reset_req) {
			if (!_control_status.flags.wind) {
				// reset the wind states and covariances when starting drag accel fusion
				_control_status.flags.wind = true;
				resetWindStates();
				resetWindCovariance();

			} else if (_drag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_drag_sample_delayed)) {
				fuseDrag();

			}

		} else {
			_control_status.flags.wind = false;

		}
	}
}

void Ekf::controlMagFusion()
{
	if (_params.mag_fusion_type >= MAG_FUSE_TYPE_NONE) {

		// do not use the magnetometer and deactivate magnetic field states
		// save covariance data for re-use if currently doing 3-axis fusion
		if (_control_status.flags.mag_3D) {
			save_mag_cov_data();
			_control_status.flags.mag_3D = false;
		}
		zeroRows(P, 16, 21);
		zeroCols(P, 16, 21);
		_mag_decl_cov_reset = false;
		_control_status.flags.mag_hdg = false;

		return;
	}

	// If we are on ground, store the local position and time to use as a reference
	// Also reset the flight alignment flag so that the mag fields will be re-initialised next time we achieve flight altitude
	if (!_control_status.flags.in_air) {
		_last_on_ground_posD = _state.pos(2);
		_control_status.flags.mag_align_complete = false;
		_num_bad_flight_yaw_events = 0;
	}

	// check for new magnetometer data that has fallen behind the fusion time horizon
	// If we are using external vision data for heading then no magnetometer fusion is used
	if (!_control_status.flags.ev_yaw && !_control_status.flags.gps_yaw && _mag_data_ready) {

		// We need to reset the yaw angle after climbing away from the ground to enable
		// recovery from ground level magnetic interference.
		if (!_control_status.flags.mag_align_complete && _control_status.flags.in_air) {
			// Check if height has increased sufficiently to be away from ground magnetic anomalies
			// and request a yaw reset if not already requested.
			float terrain_vpos_estimate = get_terrain_valid() ? _terrain_vpos : _last_on_ground_posD;
			_mag_yaw_reset_req |= (terrain_vpos_estimate - _state.pos(2)) > 1.5f;
		}

		// perform a yaw reset if requested by other functions
		if (_mag_yaw_reset_req && _control_status.flags.tilt_align) {
			if (!_mag_use_inhibit ) {
				if (!_control_status.flags.mag_align_complete && _control_status.flags.fixed_wing && _control_status.flags.in_air) {
					// A fixed wing vehicle can use GPS to bound yaw errors immediately after launch
					_control_status.flags.mag_align_complete = realignYawGPS();

					if (_velpos_reset_request) {
						resetVelocity();
						resetPosition();
						_velpos_reset_request = false;
					}

				} else {
					_control_status.flags.mag_align_complete = resetMagHeading(_mag_sample_delayed.mag) && _control_status.flags.in_air;
				}
			}
			_control_status.flags.yaw_align = _control_status.flags.yaw_align || _control_status.flags.mag_align_complete;
			_mag_yaw_reset_req = false;
		}

		// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances
		// or the more accurate 3-axis fusion
		if (_control_status.flags.mag_fault) {
			// do no magnetometer fusion at all
			_control_status.flags.mag_hdg = false;
			_control_status.flags.mag_3D = false;

		} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO || _params.mag_fusion_type == MAG_FUSE_TYPE_AUTOFW) {
			// Check if there has been enough change in horizontal velocity to make yaw observable
			// Apply hysteresis to check to avoid rapid toggling
			if (_yaw_angle_observable) {
				_yaw_angle_observable = _accel_lpf_NE.norm() > _params.mag_acc_gate;

			} else {
				_yaw_angle_observable = _accel_lpf_NE.norm() > 2.0f * _params.mag_acc_gate;
			}

			_yaw_angle_observable = _yaw_angle_observable && (_control_status.flags.gps || _control_status.flags.ev_pos);

			// check if there is enough yaw rotation to make the mag bias states observable
			if (!_mag_bias_observable && (fabsf(_yaw_rate_lpf_ef) > _params.mag_yaw_rate_gate)) {
				// initial yaw motion is detected
				_mag_bias_observable = true;
				_yaw_delta_ef = 0.0f;
				_time_yaw_started = _imu_sample_delayed.time_us;

			} else if (_mag_bias_observable) {
				// monitor yaw rotation in 45 deg sections.
				// a rotation of 45 deg is sufficient to make the mag bias observable
				if (fabsf(_yaw_delta_ef) > math::radians(45.0f)) {
					_time_yaw_started = _imu_sample_delayed.time_us;
					_yaw_delta_ef = 0.0f;
				}

				// require sustained yaw motion of 50% the initial yaw rate threshold
				float min_yaw_change_req =  0.5f * _params.mag_yaw_rate_gate * (1e-6f * (float)(_imu_sample_delayed.time_us - _time_yaw_started));
				_mag_bias_observable = fabsf(_yaw_delta_ef) > min_yaw_change_req;

			} else {
				_mag_bias_observable = false;
			}

			// record the last time that movement was suitable for use of 3-axis magnetometer fusion
			if (_mag_bias_observable || _yaw_angle_observable) {
				_time_last_movement = _imu_sample_delayed.time_us;
			}

			// decide whether 3-axis magnetometer fusion can be used
			bool use_3D_fusion = _control_status.flags.tilt_align && // Use of 3D fusion requires valid tilt estimates
					_control_status.flags.in_air && // don't use when on the ground because of magnetic anomalies
					_control_status.flags.mag_align_complete &&
					((_imu_sample_delayed.time_us - _time_last_movement) < 2 * 1000 * 1000); // Using 3-axis fusion for a minimum period after to allow for false negatives

			// perform switch-over
			if (use_3D_fusion) {
				if (!_control_status.flags.mag_3D) {
					// reset the mag field covariances
					zeroRows(P, 16, 21);
					zeroCols(P, 16, 21);

					// re-instate variances for the D earth axis and XYZ body axis field
					for (uint8_t index = 0; index <= 3; index ++) {
						P[index + 18][index + 18] = _saved_mag_bf_variance[index];
					}
					// re-instate the NE axis covariance sub-matrix
					for (uint8_t row = 0; row <= 1; row ++) {
						for (uint8_t col = 0; col <= 1; col ++) {
							P[row + 16][col + 16] = _saved_mag_ef_covmat[row][col];
						}
					}
				}

				// only use one type of mag fusion at the same time
				_control_status.flags.mag_3D = _control_status.flags.mag_align_complete;
				_control_status.flags.mag_hdg = !_control_status.flags.mag_3D;

			} else {
				// save covariance data for re-use if currently doing 3-axis fusion
				if (_control_status.flags.mag_3D) {
					save_mag_cov_data();
					_control_status.flags.mag_3D = false;
				}

				_control_status.flags.mag_hdg = true;
			}

			/*
			Control switch-over between only updating the mag states to updating all states
			When flying as a fixed wing aircraft, a misaligned magnetometer can cause an error in pitch/roll and accel bias estimates.
			When MAG_FUSE_TYPE_AUTOFW is selected and the vehicle is flying as a fixed wing, then magnetometer fusion is only allowed
			to access the magnetic field states.
			*/
			_control_status.flags.update_mag_states_only = (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTOFW)
					&& _control_status.flags.fixed_wing;

			// For the first 5 seconds after switching to 3-axis fusion we allow the magnetic field state estimates to stabilise
			// before they are used to constrain heading drift
			_flt_mag_align_converging = ((_imu_sample_delayed.time_us - _flt_mag_align_start_time) < (uint64_t)5e6);

			if (_control_status.flags.mag_3D && _control_status_prev.flags.update_mag_states_only && !_control_status.flags.update_mag_states_only) {
				// When re-commencing use of magnetometer to correct vehicle states
				// set the field state variance to the observation variance and zero
				// the covariance terms to allow the field states re-learn rapidly
				zeroRows(P, 16, 21);
				zeroCols(P, 16, 21);
				_mag_decl_cov_reset = false;

				for (uint8_t index = 0; index <= 5; index ++) {
					P[index + 16][index + 16] = sq(_params.mag_noise);
				}

				// save covariance data for re-use when auto-switching between heading and 3-axis fusion
				save_mag_cov_data();
			}

		} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) {
			// always use heading fusion
			_control_status.flags.mag_hdg = true;

			// save covariance data for re-use if currently doing 3-axis fusion
			if (_control_status.flags.mag_3D) {
				save_mag_cov_data();
				_control_status.flags.mag_3D = false;
			}

		} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) {
			if (!_control_status.flags.mag_3D && _control_status.flags.yaw_align) {
				// only commence 3-axis fusion when yaw is aligned and field states set
				_control_status.flags.mag_3D = true;
			}
		} else {
			// do no magnetometer fusion at all
			_control_status.flags.mag_hdg = false;

			// save covariance data for re-use if currently doing 3-axis fusion
			if (_control_status.flags.mag_3D) {
				save_mag_cov_data();
				_control_status.flags.mag_3D = false;
			}

		}

		// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift
		// fusing declination when gps aiding is available is optional, but recommended to prevent problem if the vehicle is static for extended periods of time
		if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) {
			_control_status.flags.mag_dec = true;

		} else {
			_control_status.flags.mag_dec = false;
		}

		// If the user has selected auto protection against indoor magnetic field errors, only use the magnetometer
		// if a yaw angle relative to true North is required for navigation. If no GPS or other earth frame aiding
		// is available, assume that we are operating indoors and the magnetometer should not be used.
		bool user_selected = (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR);
		bool not_using_gps = !(_params.fusion_mode & MASK_USE_GPS) || !_control_status.flags.gps;
		bool not_using_evpos = !(_params.fusion_mode & MASK_USE_EVPOS) || !_control_status.flags.ev_pos;
		bool not_selected_evyaw =  !(_params.fusion_mode & MASK_USE_EVYAW);
		if (user_selected && not_using_gps && not_using_evpos && not_selected_evyaw) {
			_mag_use_inhibit = true;
		} else {
			_mag_use_inhibit = false;
			_mag_use_not_inhibit_us = _imu_sample_delayed.time_us;
		}

		// If magnetometer use has been inhibited continuously then a yaw reset is required for a valid heading
		if (uint32_t(_imu_sample_delayed.time_us - _mag_use_not_inhibit_us) > (uint32_t)5e6) {
			_mag_inhibit_yaw_reset_req = true;
		}

		// fuse magnetometer data using the selected methods
		if (_control_status.flags.mag_3D && _control_status.flags.yaw_align) {
			if (!_mag_decl_cov_reset) {
				// After any magnetic field covariance reset event the earth field state
				// covariances need to be corrected to incorporate knowedge of the declination
				// before fusing magnetomer data to prevent rapid rotation of the earth field
				// states for the first few observations.
				fuseDeclination(0.02f);
				_mag_decl_cov_reset = true;
				fuseMag();
			} else {
				// The normal sequence is to fuse the magnetometer data first before fusing
				// declination angle at a higher uncertainty to allow some learning of
				// declination angle over time.
				fuseMag();
				if (_control_status.flags.mag_dec) {
					fuseDeclination(0.5f);
				}
			}

		} else if (_control_status.flags.mag_hdg && _control_status.flags.yaw_align) {
			// fusion of an Euler yaw angle from either a 321 or 312 rotation sequence
			fuseHeading();

		} else {
			// do no fusion at all
		}
	}
}

void Ekf::controlVelPosFusion()
{
	// if we aren't doing any aiding, fake GPS measurements at the last known position to constrain drift
	// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz
	if (!(_params.fusion_mode & MASK_USE_GPS)) {
		_control_status.flags.gps = false;
	}

	if (!_control_status.flags.gps &&
	    !_control_status.flags.opt_flow &&
	    !_control_status.flags.ev_pos &&
            !_control_status.flags.ev_vel &&
	    !(_control_status.flags.fuse_aspd && _control_status.flags.fuse_beta)) {

		// We now need to use a synthetic position observation to prevent unconstrained drift of the INS states.
		_using_synthetic_position = true;

		// Fuse synthetic position observations every 200msec
		if (((_time_last_imu - _time_last_fake_gps) > (uint64_t)2e5) || _fuse_height) {
			// Reset position and velocity states if we re-commence this aiding method
			if ((_time_last_imu - _time_last_fake_gps) > (uint64_t)4e5) {
				resetPosition();
				resetVelocity();
				_fuse_hpos_as_odom = false;

				if (_time_last_fake_gps != 0) {
					ECL_WARN("EKF stopping navigation");
				}

			}

			_fuse_pos = true;
			_fuse_hor_vel = false;
			_fuse_vert_vel = false;
			_time_last_fake_gps = _time_last_imu;

			if (_control_status.flags.in_air && _control_status.flags.tilt_align) {
				_posObsNoiseNE = fmaxf(_params.pos_noaid_noise, _params.gps_pos_noise);

			} else {
				_posObsNoiseNE = 0.5f;
			}

			_vel_pos_innov[0] = 0.0f;
			_vel_pos_innov[1] = 0.0f;
			_vel_pos_innov[2] = 0.0f;
			_vel_pos_innov[3] = _state.pos(0) - _last_known_posNE(0);
			_vel_pos_innov[4] = _state.pos(1) - _last_known_posNE(1);

			// glitch protection is not required so set gate to a large value
			_posInnovGateNE = 100.0f;

		}

	} else {
		_using_synthetic_position = false;
	}

	// Fuse available NED velocity and position data into the main filter
	if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) {
		fuseVelPosHeight();

	}
}

void Ekf::controlAuxVelFusion()
{
	bool data_ready = _auxvel_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_auxvel_sample_delayed);
	bool primary_aiding = _control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow;

	if (data_ready && primary_aiding) {
		_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false;
		_fuse_hor_vel_aux = true;
		_aux_vel_innov[0] = _state.vel(0) - _auxvel_sample_delayed.velNE(0);
		_aux_vel_innov[1] = _state.vel(1) - _auxvel_sample_delayed.velNE(1);
		_velObsVarNED(0) = _auxvel_sample_delayed.velVarNE(0);
		_velObsVarNED(1) = _auxvel_sample_delayed.velVarNE(1);
		_hvelInnovGate = _params.auxvel_gate;
		fuseVelPosHeight();
	}
}