#pragma once #include #include #include #include "common.h" using matrix::AxisAnglef; using matrix::Dcmf; using matrix::Eulerf; using matrix::Matrix3f; using matrix::Quatf; using matrix::Vector2f; using matrix::Vector3f; using matrix::wrap_pi; static constexpr uint8_t N_MODELS_EKFGSF = 5; // Required math constants static constexpr float _m_2pi_inv = 0.159154943f; static constexpr float _m_pi = 3.14159265f; static constexpr float _m_pi2 = 1.57079632f; using namespace estimator; class EKFGSF_yaw { public: EKFGSF_yaw(); // Update Filter States - this should be called whenever new IMU data is available void update(const imuSample &imu_sample, bool run_EKF, // set to true when flying or movement is suitable for yaw estimation float airspeed, // true airspeed used for centripetal accel compensation - set to 0 when not required. const Vector3f &imu_gyro_bias); // estimated rate gyro bias (rad/sec) void setVelocity(const Vector2f &velocity, // NE velocity measurement (m/s) float accuracy); // 1-sigma accuracy of velocity measurement (m/s) // get solution data for logging bool getLogData(float *yaw_composite, float *yaw_composite_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]); // get yaw estimate and the corresponding variance // return false if no yaw estimate available bool getYawData(float *yaw, float *yaw_variance); private: // Parameters - these could be made tuneable const float _gyro_noise{1.0e-1f}; // yaw rate noise used for covariance prediction (rad/sec) const float _accel_noise{2.0f}; // horizontal accel noise used for covariance prediction (m/sec**2) const float _tilt_gain{0.2f}; // gain from tilt error to gyro correction for complementary filter (1/sec) const float _gyro_bias_gain{0.04f}; // gain applied to integral of gyro correction for complementary filter (1/sec) const float _weight_min{0.0f}; // minimum value of an individual model weighting // Declarations used by the bank of N_MODELS_EKFGSF AHRS complementary filters Vector3f _delta_ang{}; // IMU delta angle (rad) Vector3f _delta_vel{}; // IMU delta velocity (m/s) float _delta_ang_dt{}; // _delta_ang integration time interval (sec) float _delta_vel_dt{}; // _delta_vel integration time interval (sec) float _true_airspeed{}; // true airspeed used for centripetal accel compensation (m/s) struct _ahrs_ekf_gsf_struct{ Dcmf R; // matrix that rotates a vector from body to earth frame Vector3f gyro_bias; // gyro bias learned and used by the quaternion calculation bool aligned; // true when AHRS has been aligned float vel_NE[2]; // NE velocity vector from last GPS measurement (m/s) bool fuse_gps; // true when GPS should be fused on that frame float accel_dt; // time step used when generating _simple_accel_FR data (sec) } _ahrs_ekf_gsf[N_MODELS_EKFGSF]{}; bool _ahrs_ekf_gsf_tilt_aligned{}; // true the initial tilt alignment has been calculated float _ahrs_accel_fusion_gain{}; // gain from accel vector tilt error to rate gyro correction used by AHRS calculation Vector3f _ahrs_accel{}; // low pass filtered body frame specific force vector used by AHRS calculation (m/s/s) float _ahrs_accel_norm{}; // length of _ahrs_accel specific force vector used by AHRS calculation (m/s/s) // calculate the gain from gravity vector misalingment to tilt correction to be used by all AHRS filters float ahrsCalcAccelGain() const; // update specified AHRS rotation matrix using IMU and optionally true airspeed data void ahrsPredict(const uint8_t model_index); // align all AHRS roll and pitch orientations using IMU delta velocity vector void ahrsAlignTilt(); // align all AHRS yaw orientations to initial values void ahrsAlignYaw(); // Efficient propagation of a delta angle in body frame applied to the body to earth frame rotation matrix Matrix3f ahrsPredictRotMat(const Matrix3f &R, const Vector3f &g); // Declarations used by a bank of N_MODELS_EKFGSF EKFs struct _ekf_gsf_struct{ matrix::Vector3f X; // Vel North (m/s), Vel East (m/s), yaw (rad)s matrix::SquareMatrix P; // covariance matrix matrix::SquareMatrix S_inverse; // inverse of the innovation covariance matrix float S_det_inverse; // inverse of the innovation covariance matrix determinant matrix::Vector2f innov; // Velocity N,E innovation (m/s) } _ekf_gsf[N_MODELS_EKFGSF]{}; bool _vel_data_updated{}; // true when velocity data has been updated bool _run_ekf_gsf{}; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data Vector2f _vel_NE{}; // NE velocity observations (m/s) float _vel_accuracy{}; // 1-sigma accuracy of velocity observations (m/s) bool _ekf_gsf_vel_fuse_started{}; // true when the EKF's have started fusing velocity data and the prediction and update processing is active // initialise states and covariance data for the GSF and EKF filters void initialiseEKFGSF(); // predict state and covariance for the specified EKF using inertial data void predictEKF(const uint8_t model_index); // update state and covariance for the specified EKF using a NE velocity measurement // return false if update failed bool updateEKF(const uint8_t model_index); inline float sq(float x) const { return x * x; }; // converts Tait-Bryan 312 sequence of rotations from frame 1 to frame 2 // to the corresponding rotation matrix that rotates from frame 2 to frame 1 // rot312(0) - First rotation is a RH rotation about the Z axis (rad) // rot312(1) - Second rotation is a RH rotation about the X axis (rad) // rot312(2) - Third rotation is a RH rotation about the Y axis (rad) // See http://www.atacolorado.com/eulersequences.doc Dcmf taitBryan312ToRotMat(const Vector3f &rot312); // Declarations used by the Gaussian Sum Filter (GSF) that combines the individual EKF yaw estimates matrix::Vector _model_weights{}; float _gsf_yaw{}; // yaw estimate (rad) float _gsf_yaw_variance{}; // variance of yaw estimate (rad^2) // return the probability of the state estimate for the specified EKF assuming a gaussian error distribution float gaussianDensity(const uint8_t model_index) const; // update the inverse of the innovation covariance matrix void updateInnovCovMatInv(const uint8_t model_index, const matrix::SquareMatrix &S); };