You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1537 lines
34 KiB
1537 lines
34 KiB
/**************************************************************************** |
|
* lib/stdio/lib_dtoa.c |
|
* |
|
* This file was ported to NuttX by Yolande Cates. |
|
* |
|
* Copyright (c) 1990, 1993 |
|
* The Regents of the University of California. All rights reserved. |
|
* |
|
* This code is derived from software contributed to Berkeley by |
|
* Chris Torek. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. All advertising materials mentioning features or use of this software |
|
* must display the following acknowledgement: |
|
* This product includes software developed by the University of |
|
* California, Berkeley and its contributors. |
|
* 4. Neither the name of the University nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Included Files |
|
****************************************************************************/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <stdint.h> |
|
#include <string.h> |
|
|
|
#include "lib_internal.h" |
|
|
|
/**************************************************************************** |
|
* Pre-processor Definitions |
|
****************************************************************************/ |
|
|
|
#ifdef Unsigned_Shifts |
|
# define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000; |
|
#else |
|
# define Sign_Extend(a,b) /* no-op */ |
|
#endif |
|
|
|
#ifdef CONFIG_ENDIAN_BIG |
|
# define word0(x) ((uint32_t *)&x)[0] |
|
# define word1(x) ((uint32_t *)&x)[1] |
|
#else |
|
# define word0(x) ((uint32_t *)&x)[1] |
|
# define word1(x) ((uint32_t *)&x)[0] |
|
#endif |
|
|
|
#ifdef CONFIG_ENDIAN_BIG |
|
# define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
|
((unsigned short *)a)[1] = (unsigned short)c, a++) |
|
#else |
|
# define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
|
((unsigned short *)a)[0] = (unsigned short)c, a++) |
|
#endif |
|
|
|
#define Exp_shift 20 |
|
#define Exp_shift1 20 |
|
#define Exp_msk1 0x100000 |
|
#define Exp_msk11 0x100000 |
|
#define Exp_mask 0x7ff00000 |
|
#define P 53 |
|
#define Bias 1023 |
|
#define IEEE_Arith |
|
#define Emin (-1022) |
|
#define Exp_1 0x3ff00000 |
|
#define Exp_11 0x3ff00000 |
|
#define Ebits 11 |
|
#define Frac_mask 0xfffff |
|
#define Frac_mask1 0xfffff |
|
#define Ten_pmax 22 |
|
#define Bletch 0x10 |
|
#define Bndry_mask 0xfffff |
|
#define Bndry_mask1 0xfffff |
|
#define LSB 1 |
|
#define Sign_bit 0x80000000 |
|
#define Log2P 1 |
|
#define Tiny0 0 |
|
#define Tiny1 1 |
|
#define Quick_max 14 |
|
#define Int_max 14 |
|
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ |
|
|
|
#define Kmax 15 |
|
|
|
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
|
y->wds*sizeof(long) + 2*sizeof(int)) |
|
|
|
/**************************************************************************** |
|
* Private Type Definitions |
|
****************************************************************************/ |
|
|
|
struct Bigint |
|
{ |
|
struct Bigint *next; |
|
int k, maxwds, sign, wds; |
|
unsigned long x[1]; |
|
}; |
|
|
|
typedef struct Bigint Bigint; |
|
|
|
/**************************************************************************** |
|
* Private Data |
|
****************************************************************************/ |
|
|
|
static Bigint *freelist[Kmax + 1]; |
|
|
|
/**************************************************************************** |
|
* Private Functions |
|
****************************************************************************/ |
|
|
|
static Bigint *Balloc(int k) |
|
{ |
|
int x; |
|
Bigint *rv; |
|
|
|
if ((rv = freelist[k])) |
|
{ |
|
freelist[k] = rv->next; |
|
} |
|
else |
|
{ |
|
x = 1 << k; |
|
rv = (Bigint *)lib_malloc(sizeof(Bigint) + (x - 1) * sizeof(long)); |
|
rv->k = k; |
|
rv->maxwds = x; |
|
} |
|
rv->sign = rv->wds = 0; |
|
return rv; |
|
} |
|
|
|
static void Bfree(Bigint * v) |
|
{ |
|
if (v) |
|
{ |
|
v->next = freelist[v->k]; |
|
freelist[v->k] = v; |
|
} |
|
} |
|
|
|
/* multiply by m and add a */ |
|
|
|
static Bigint *multadd(Bigint * b, int m, int a) |
|
{ |
|
int i, wds; |
|
unsigned long *x, y; |
|
#ifdef Pack_32 |
|
unsigned long xi, z; |
|
#endif |
|
Bigint *b1; |
|
|
|
wds = b->wds; |
|
x = b->x; |
|
i = 0; |
|
do |
|
{ |
|
#ifdef Pack_32 |
|
xi = *x; |
|
y = (xi & 0xffff) * m + a; |
|
z = (xi >> 16) * m + (y >> 16); |
|
a = (int)(z >> 16); |
|
*x++ = (z << 16) + (y & 0xffff); |
|
#else |
|
y = *x * m + a; |
|
a = (int)(y >> 16); |
|
*x++ = y & 0xffff; |
|
#endif |
|
} |
|
while (++i < wds); |
|
if (a) |
|
{ |
|
if (wds >= b->maxwds) |
|
{ |
|
b1 = Balloc(b->k + 1); |
|
Bcopy(b1, b); |
|
Bfree(b); |
|
b = b1; |
|
} |
|
b->x[wds++] = a; |
|
b->wds = wds; |
|
} |
|
return b; |
|
} |
|
|
|
static int hi0bits(unsigned long x) |
|
{ |
|
int k = 0; |
|
|
|
if (!(x & 0xffff0000)) |
|
{ |
|
k = 16; |
|
x <<= 16; |
|
} |
|
|
|
if (!(x & 0xff000000)) |
|
{ |
|
k += 8; |
|
x <<= 8; |
|
} |
|
|
|
if (!(x & 0xf0000000)) |
|
{ |
|
k += 4; |
|
x <<= 4; |
|
} |
|
|
|
if (!(x & 0xc0000000)) |
|
{ |
|
k += 2; |
|
x <<= 2; |
|
} |
|
|
|
if (!(x & 0x80000000)) |
|
{ |
|
k++; |
|
if (!(x & 0x40000000)) |
|
{ |
|
return 32; |
|
} |
|
} |
|
return k; |
|
} |
|
|
|
static int lo0bits(unsigned long *y) |
|
{ |
|
int k; |
|
unsigned long x = *y; |
|
|
|
if (x & 7) |
|
{ |
|
if (x & 1) |
|
{ |
|
return 0; |
|
} |
|
if (x & 2) |
|
{ |
|
*y = x >> 1; |
|
return 1; |
|
} |
|
*y = x >> 2; |
|
return 2; |
|
} |
|
|
|
k = 0; |
|
if (!(x & 0xffff)) |
|
{ |
|
k = 16; |
|
x >>= 16; |
|
} |
|
|
|
if (!(x & 0xff)) |
|
{ |
|
k += 8; |
|
x >>= 8; |
|
} |
|
|
|
if (!(x & 0xf)) |
|
{ |
|
k += 4; |
|
x >>= 4; |
|
} |
|
|
|
if (!(x & 0x3)) |
|
{ |
|
k += 2; |
|
x >>= 2; |
|
} |
|
|
|
if (!(x & 1)) |
|
{ |
|
k++; |
|
x >>= 1; |
|
if (!x & 1) |
|
{ |
|
return 32; |
|
} |
|
} |
|
*y = x; |
|
return k; |
|
} |
|
|
|
static Bigint *i2b(int i) |
|
{ |
|
Bigint *b; |
|
|
|
b = Balloc(1); |
|
b->x[0] = i; |
|
b->wds = 1; |
|
return b; |
|
} |
|
|
|
static Bigint *mult(Bigint * a, Bigint * b) |
|
{ |
|
Bigint *c; |
|
int k, wa, wb, wc; |
|
unsigned long carry, y, z; |
|
unsigned long *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
|
#ifdef Pack_32 |
|
uint32_t z2; |
|
#endif |
|
|
|
if (a->wds < b->wds) |
|
{ |
|
c = a; |
|
a = b; |
|
b = c; |
|
} |
|
|
|
k = a->k; |
|
wa = a->wds; |
|
wb = b->wds; |
|
wc = wa + wb; |
|
if (wc > a->maxwds) |
|
{ |
|
k++; |
|
} |
|
c = Balloc(k); |
|
for (x = c->x, xa = x + wc; x < xa; x++) |
|
{ |
|
*x = 0; |
|
} |
|
xa = a->x; |
|
xae = xa + wa; |
|
xb = b->x; |
|
xbe = xb + wb; |
|
xc0 = c->x; |
|
#ifdef Pack_32 |
|
for (; xb < xbe; xb++, xc0++) |
|
{ |
|
if ((y = *xb & 0xffff)) |
|
{ |
|
x = xa; |
|
xc = xc0; |
|
carry = 0; |
|
do |
|
{ |
|
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
|
carry = z >> 16; |
|
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
|
carry = z2 >> 16; |
|
Storeinc(xc, z2, z); |
|
} |
|
while (x < xae); |
|
*xc = carry; |
|
} |
|
if ((y = *xb >> 16)) |
|
{ |
|
x = xa; |
|
xc = xc0; |
|
carry = 0; |
|
z2 = *xc; |
|
do |
|
{ |
|
z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
|
carry = z >> 16; |
|
Storeinc(xc, z, z2); |
|
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
|
carry = z2 >> 16; |
|
} |
|
while (x < xae); |
|
*xc = z2; |
|
} |
|
} |
|
#else |
|
for (; xb < xbe; xc0++) |
|
{ |
|
if ((y = *xb++)) |
|
{ |
|
x = xa; |
|
xc = xc0; |
|
carry = 0; |
|
do |
|
{ |
|
z = *x++ * y + *xc + carry; |
|
carry = z >> 16; |
|
*xc++ = z & 0xffff; |
|
} |
|
while (x < xae); |
|
*xc = carry; |
|
} |
|
} |
|
#endif |
|
for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc); |
|
c->wds = wc; |
|
return c; |
|
} |
|
|
|
static Bigint *p5s; |
|
|
|
static Bigint *pow5mult(Bigint * b, int k) |
|
{ |
|
Bigint *b1, *p5, *p51; |
|
int i; |
|
static int p05[3] = { 5, 25, 125 }; |
|
|
|
if ((i = k & 3)) |
|
b = multadd(b, p05[i - 1], 0); |
|
|
|
if (!(k >>= 2)) |
|
{ |
|
return b; |
|
} |
|
|
|
if (!(p5 = p5s)) |
|
{ |
|
/* first time */ |
|
p5 = p5s = i2b(625); |
|
p5->next = 0; |
|
} |
|
|
|
for (;;) |
|
{ |
|
if (k & 1) |
|
{ |
|
b1 = mult(b, p5); |
|
Bfree(b); |
|
b = b1; |
|
} |
|
if (!(k >>= 1)) |
|
{ |
|
break; |
|
} |
|
|
|
if (!(p51 = p5->next)) |
|
{ |
|
p51 = p5->next = mult(p5, p5); |
|
p51->next = 0; |
|
} |
|
p5 = p51; |
|
} |
|
return b; |
|
} |
|
|
|
static Bigint *lshift(Bigint * b, int k) |
|
{ |
|
int i, k1, n, n1; |
|
Bigint *b1; |
|
unsigned long *x, *x1, *xe, z; |
|
|
|
#ifdef Pack_32 |
|
n = k >> 5; |
|
#else |
|
n = k >> 4; |
|
#endif |
|
k1 = b->k; |
|
n1 = n + b->wds + 1; |
|
for (i = b->maxwds; n1 > i; i <<= 1) |
|
{ |
|
k1++; |
|
} |
|
b1 = Balloc(k1); |
|
x1 = b1->x; |
|
for (i = 0; i < n; i++) |
|
{ |
|
*x1++ = 0; |
|
} |
|
x = b->x; |
|
xe = x + b->wds; |
|
#ifdef Pack_32 |
|
if (k &= 0x1f) |
|
{ |
|
k1 = 32 - k; |
|
z = 0; |
|
do |
|
{ |
|
*x1++ = *x << k | z; |
|
z = *x++ >> k1; |
|
} |
|
while (x < xe); |
|
if ((*x1 = z)) |
|
{ |
|
++n1; |
|
} |
|
} |
|
#else |
|
if (k &= 0xf) |
|
{ |
|
k1 = 16 - k; |
|
z = 0; |
|
do |
|
{ |
|
*x1++ = ((*x << k) & 0xffff) | z; |
|
z = *x++ >> k1; |
|
} |
|
while (x < xe); |
|
if ((*x1 = z)) |
|
{ |
|
++n1; |
|
} |
|
} |
|
#endif |
|
else |
|
do |
|
{ |
|
*x1++ = *x++; |
|
} |
|
while (x < xe); |
|
b1->wds = n1 - 1; |
|
Bfree(b); |
|
return b1; |
|
} |
|
|
|
static int cmp(Bigint * a, Bigint * b) |
|
{ |
|
unsigned long *xa, *xa0, *xb, *xb0; |
|
int i, j; |
|
|
|
i = a->wds; |
|
j = b->wds; |
|
#ifdef CONFIG_DEBUG_LIB |
|
if (i > 1 && !a->x[i - 1]) |
|
{ |
|
ldbg("cmp called with a->x[a->wds-1] == 0\n"); |
|
} |
|
if (j > 1 && !b->x[j - 1]) |
|
{ |
|
ldbg("cmp called with b->x[b->wds-1] == 0\n"); |
|
} |
|
#endif |
|
if (i -= j) |
|
return i; |
|
xa0 = a->x; |
|
xa = xa0 + j; |
|
xb0 = b->x; |
|
xb = xb0 + j; |
|
for (;;) |
|
{ |
|
if (*--xa != *--xb) |
|
return *xa < *xb ? -1 : 1; |
|
if (xa <= xa0) |
|
break; |
|
} |
|
return 0; |
|
} |
|
|
|
static Bigint *diff(Bigint * a, Bigint * b) |
|
{ |
|
Bigint *c; |
|
int i, wa, wb; |
|
long borrow, y; /* We need signed shifts here. */ |
|
unsigned long *xa, *xae, *xb, *xbe, *xc; |
|
#ifdef Pack_32 |
|
int32_t z; |
|
#endif |
|
|
|
i = cmp(a, b); |
|
if (!i) |
|
{ |
|
c = Balloc(0); |
|
c->wds = 1; |
|
c->x[0] = 0; |
|
return c; |
|
} |
|
if (i < 0) |
|
{ |
|
c = a; |
|
a = b; |
|
b = c; |
|
i = 1; |
|
} |
|
else |
|
i = 0; |
|
c = Balloc(a->k); |
|
c->sign = i; |
|
wa = a->wds; |
|
xa = a->x; |
|
xae = xa + wa; |
|
wb = b->wds; |
|
xb = b->x; |
|
xbe = xb + wb; |
|
xc = c->x; |
|
borrow = 0; |
|
#ifdef Pack_32 |
|
do |
|
{ |
|
y = (*xa & 0xffff) - (*xb & 0xffff) + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
z = (*xa++ >> 16) - (*xb++ >> 16) + borrow; |
|
borrow = z >> 16; |
|
Sign_Extend(borrow, z); |
|
Storeinc(xc, z, y); |
|
} |
|
while (xb < xbe); |
|
while (xa < xae) |
|
{ |
|
y = (*xa & 0xffff) + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
z = (*xa++ >> 16) + borrow; |
|
borrow = z >> 16; |
|
Sign_Extend(borrow, z); |
|
Storeinc(xc, z, y); |
|
} |
|
#else |
|
do |
|
{ |
|
y = *xa++ - *xb++ + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
*xc++ = y & 0xffff; |
|
} |
|
while (xb < xbe); |
|
while (xa < xae) |
|
{ |
|
y = *xa++ + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
*xc++ = y & 0xffff; |
|
} |
|
#endif |
|
while (!*--xc) |
|
wa--; |
|
c->wds = wa; |
|
return c; |
|
} |
|
|
|
static Bigint *d2b(double d, int *e, int *bits) |
|
{ |
|
Bigint *b; |
|
int de, i, k; |
|
unsigned long *x, y, z; |
|
|
|
#ifdef Pack_32 |
|
b = Balloc(1); |
|
#else |
|
b = Balloc(2); |
|
#endif |
|
x = b->x; |
|
|
|
z = word0(d) & Frac_mask; |
|
word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
|
if ((de = (int)(word0(d) >> Exp_shift))) |
|
z |= Exp_msk1; |
|
#ifdef Pack_32 |
|
if ((y = word1(d))) |
|
{ |
|
if ((k = lo0bits(&y))) |
|
{ |
|
x[0] = y | z << (32 - k); |
|
z >>= k; |
|
} |
|
else |
|
x[0] = y; |
|
i = b->wds = (x[1] = z) ? 2 : 1; |
|
} |
|
else |
|
{ |
|
#ifdef CONFIG_DEBUG_LIB |
|
if (!z) |
|
{ |
|
ldbg("Zero passed to d2b\n"); |
|
} |
|
#endif |
|
k = lo0bits(&z); |
|
x[0] = z; |
|
i = b->wds = 1; |
|
k += 32; |
|
} |
|
#else |
|
if ((y = word1(d))) |
|
{ |
|
if ((k = lo0bits(&y))) |
|
if (k >= 16) |
|
{ |
|
x[0] = y | ((z << (32 - k)) & 0xffff); |
|
x[1] = z >> (k - 16) & 0xffff; |
|
x[2] = z >> k; |
|
i = 2; |
|
} |
|
else |
|
{ |
|
x[0] = y & 0xffff; |
|
x[1] = (y >> 16) | ((z << (16 - k)) & 0xffff); |
|
x[2] = z >> k & 0xffff; |
|
x[3] = z >> (k + 16); |
|
i = 3; |
|
} |
|
else |
|
{ |
|
x[0] = y & 0xffff; |
|
x[1] = y >> 16; |
|
x[2] = z & 0xffff; |
|
x[3] = z >> 16; |
|
i = 3; |
|
} |
|
} |
|
else |
|
{ |
|
#ifdef CONFIG_DEBUG_LIB |
|
if (!z) |
|
{ |
|
ldbg("Zero passed to d2b\n"); |
|
} |
|
#endif |
|
k = lo0bits(&z); |
|
if (k >= 16) |
|
{ |
|
x[0] = z; |
|
i = 0; |
|
} |
|
else |
|
{ |
|
x[0] = z & 0xffff; |
|
x[1] = z >> 16; |
|
i = 1; |
|
} |
|
k += 32; |
|
} |
|
while (!x[i]) |
|
--i; |
|
b->wds = i + 1; |
|
#endif |
|
if (de) |
|
{ |
|
*e = de - Bias - (P - 1) + k; |
|
*bits = P - k; |
|
} |
|
else |
|
{ |
|
*e = de - Bias - (P - 1) + 1 + k; |
|
#ifdef Pack_32 |
|
*bits = 32 * i - hi0bits(x[i - 1]); |
|
#else |
|
*bits = (i + 2) * 16 - hi0bits(x[i]); |
|
#endif |
|
} |
|
return b; |
|
} |
|
|
|
static const double tens[] = { |
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
|
1e20, 1e21, 1e22 |
|
}; |
|
|
|
#ifdef IEEE_Arith |
|
static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
|
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; |
|
|
|
# define n_bigtens 5 |
|
#else |
|
static const double bigtens[] = { 1e16, 1e32 }; |
|
static const double tinytens[] = { 1e-16, 1e-32 }; |
|
|
|
# define n_bigtens 2 |
|
#endif |
|
|
|
static int quorem(Bigint * b, Bigint * S) |
|
{ |
|
int n; |
|
long borrow, y; |
|
unsigned long carry, q, ys; |
|
unsigned long *bx, *bxe, *sx, *sxe; |
|
#ifdef Pack_32 |
|
int32_t z; |
|
uint32_t si, zs; |
|
#endif |
|
|
|
n = S->wds; |
|
#ifdef CONFIG_DEBUG_LIB |
|
if (b->wds > n) |
|
{ |
|
ldbg("oversize b in quorem\n"); |
|
} |
|
#endif |
|
if (b->wds < n) |
|
{ |
|
return 0; |
|
} |
|
sx = S->x; |
|
sxe = sx + --n; |
|
bx = b->x; |
|
bxe = bx + n; |
|
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
|
#ifdef CONFIG_DEBUG_LIB |
|
if (q > 9) |
|
{ |
|
ldbg("oversized quotient in quorem\n"); |
|
} |
|
#endif |
|
if (q) |
|
{ |
|
borrow = 0; |
|
carry = 0; |
|
do |
|
{ |
|
#ifdef Pack_32 |
|
si = *sx++; |
|
ys = (si & 0xffff) * q + carry; |
|
zs = (si >> 16) * q + (ys >> 16); |
|
carry = zs >> 16; |
|
y = (*bx & 0xffff) - (ys & 0xffff) + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
z = (*bx >> 16) - (zs & 0xffff) + borrow; |
|
borrow = z >> 16; |
|
Sign_Extend(borrow, z); |
|
Storeinc(bx, z, y); |
|
#else |
|
ys = *sx++ * q + carry; |
|
carry = ys >> 16; |
|
y = *bx - (ys & 0xffff) + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
*bx++ = y & 0xffff; |
|
#endif |
|
} |
|
while (sx <= sxe); |
|
if (!*bxe) |
|
{ |
|
bx = b->x; |
|
while (--bxe > bx && !*bxe) |
|
--n; |
|
b->wds = n; |
|
} |
|
} |
|
if (cmp(b, S) >= 0) |
|
{ |
|
q++; |
|
borrow = 0; |
|
carry = 0; |
|
bx = b->x; |
|
sx = S->x; |
|
do |
|
{ |
|
#ifdef Pack_32 |
|
si = *sx++; |
|
ys = (si & 0xffff) + carry; |
|
zs = (si >> 16) + (ys >> 16); |
|
carry = zs >> 16; |
|
y = (*bx & 0xffff) - (ys & 0xffff) + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
z = (*bx >> 16) - (zs & 0xffff) + borrow; |
|
borrow = z >> 16; |
|
Sign_Extend(borrow, z); |
|
Storeinc(bx, z, y); |
|
#else |
|
ys = *sx++ + carry; |
|
carry = ys >> 16; |
|
y = *bx - (ys & 0xffff) + borrow; |
|
borrow = y >> 16; |
|
Sign_Extend(borrow, y); |
|
*bx++ = y & 0xffff; |
|
#endif |
|
} |
|
while (sx <= sxe); |
|
bx = b->x; |
|
bxe = bx + n; |
|
if (!*bxe) |
|
{ |
|
while (--bxe > bx && !*bxe) |
|
--n; |
|
b->wds = n; |
|
} |
|
} |
|
return q; |
|
} |
|
|
|
/**************************************************************************** |
|
* Public Functions |
|
****************************************************************************/ |
|
|
|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
|
* |
|
* Inspired by "How to Print Floating-Point Numbers Accurately" by |
|
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. |
|
* |
|
* Modifications: |
|
* 1. Rather than iterating, we use a simple numeric overestimate |
|
* to determine k = floor(log10(d)). We scale relevant |
|
* quantities using O(log2(k)) rather than O(k) multiplications. |
|
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
|
* try to generate digits strictly left to right. Instead, we |
|
* compute with fewer bits and propagate the carry if necessary |
|
* when rounding the final digit up. This is often faster. |
|
* 3. Under the assumption that input will be rounded nearest, |
|
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
|
* That is, we allow equality in stopping tests when the |
|
* round-nearest rule will give the same floating-point value |
|
* as would satisfaction of the stopping test with strict |
|
* inequality. |
|
* 4. We remove common factors of powers of 2 from relevant |
|
* quantities. |
|
* 5. When converting floating-point integers less than 1e16, |
|
* we use floating-point arithmetic rather than resorting |
|
* to multiple-precision integers. |
|
* 6. When asked to produce fewer than 15 digits, we first try |
|
* to get by with floating-point arithmetic; we resort to |
|
* multiple-precision integer arithmetic only if we cannot |
|
* guarantee that the floating-point calculation has given |
|
* the correctly rounded result. For k requested digits and |
|
* "uniformly" distributed input, the probability is |
|
* something like 10^(k-15) that we must resort to the int32_t |
|
* calculation. |
|
*/ |
|
|
|
char *__dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve) |
|
{ |
|
/* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; |
|
* trailing zeros are suppressed from the returned string. If not null, *rve |
|
* is set to point to the end of the return value. If d is +-Infinity or |
|
* NaN, then *decpt is set to 9999. |
|
* |
|
* mode: 0 ==> shortest string that yields d when read in and rounded to |
|
* nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with |
|
* IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives |
|
* 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives |
|
* a return value similar to that of ecvt, except that trailing zeros are |
|
* suppressed. 3 ==> through ndigits past the decimal point. This gives a |
|
* return value similar to that from fcvt, except that trailing zeros are |
|
* suppressed, and ndigits can be negative. 4-9 should give the same return |
|
* values as 2-3, i.e., 4 <= mode <= 9 ==> same return as mode 2 + (mode & |
|
* 1). These modes are mainly for debugging; often they run slower but |
|
* sometimes faster than modes 2-3. 4,5,8,9 ==> left-to-right digit |
|
* generation. 6-9 ==> don't try fast floating-point estimate (if |
|
* applicable). |
|
* |
|
* Values of mode other than 0-9 are treated as mode 0. |
|
* |
|
* Sufficient space is allocated to the return value to hold the suppressed |
|
* trailing zeros. */ |
|
|
|
int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, |
|
j, j_1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case = 0, try_quick; |
|
long L; |
|
int denorm; |
|
unsigned long x; |
|
Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S; |
|
double d2, ds, eps; |
|
char *s, *s0; |
|
static Bigint *result; |
|
static int result_k; |
|
|
|
if (result) |
|
{ |
|
result->k = result_k; |
|
result->maxwds = 1 << result_k; |
|
Bfree(result); |
|
result = 0; |
|
} |
|
|
|
if (word0(d) & Sign_bit) |
|
{ |
|
/* set sign for everything, including 0's and NaNs */ |
|
*sign = 1; |
|
word0(d) &= ~Sign_bit; /* clear sign bit */ |
|
} |
|
else |
|
*sign = 0; |
|
|
|
#if defined(IEEE_Arith) |
|
# ifdef IEEE_Arith |
|
if ((word0(d) & Exp_mask) == Exp_mask) |
|
#else |
|
if (word0(d) == 0x8000) |
|
#endif |
|
{ |
|
/* Infinity or NaN */ |
|
*decpt = 9999; |
|
s = |
|
#ifdef IEEE_Arith |
|
!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" : |
|
#endif |
|
"NaN"; |
|
if (rve) |
|
*rve = |
|
#ifdef IEEE_Arith |
|
s[3] ? s + 8 : |
|
#endif |
|
s + 3; |
|
return s; |
|
} |
|
#endif |
|
if (!d) |
|
{ |
|
*decpt = 1; |
|
s = "0"; |
|
if (rve) |
|
*rve = s + 1; |
|
return s; |
|
} |
|
|
|
b = d2b(d, &be, &bbits); |
|
if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) |
|
{ |
|
d2 = d; |
|
word0(d2) &= Frac_mask1; |
|
word0(d2) |= Exp_11; |
|
|
|
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5 log10(x) = log(x) / log(10) ~=~ |
|
* log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) log10(d) = |
|
* (i-Bias)*log(2)/log(10) + log10(d2) This suggests computing an |
|
* approximation k to log10(d) by k = (i - Bias)*0.301029995663981 + ( |
|
* (d2-1.5)*0.289529654602168 + 0.176091259055681 ); We want k to be too |
|
* large rather than too small. The error in the first-order Taylor |
|
* series approximation is in our favor, so we just round up the constant |
|
* enough to compensate for any error in the multiplication of (i - Bias) |
|
* by 0.301029995663981; since |i - Bias| <= 1077, and 1077 * 0.30103 * |
|
* 2^-52 ~=~ 7.2e-14, adding 1e-13 to the constant term more than |
|
* suffices. Hence we adjust the constant term to 0.1760912590558. (We |
|
* could get a more accurate k by invoking log10, but this is probably |
|
* not worthwhile.) */ |
|
|
|
i -= Bias; |
|
denorm = 0; |
|
} |
|
else |
|
{ |
|
/* d is denormalized */ |
|
|
|
i = bbits + be + (Bias + (P - 1) - 1); |
|
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) |
|
: word1(d) << (32 - i); |
|
d2 = x; |
|
word0(d2) -= 31 * Exp_msk1; /* adjust exponent */ |
|
i -= (Bias + (P - 1) - 1) + 1; |
|
denorm = 1; |
|
} |
|
ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981; |
|
k = (int)ds; |
|
if (ds < 0. && ds != k) |
|
k--; /* want k = floor(ds) */ |
|
k_check = 1; |
|
if (k >= 0 && k <= Ten_pmax) |
|
{ |
|
if (d < tens[k]) |
|
k--; |
|
k_check = 0; |
|
} |
|
j = bbits - i - 1; |
|
if (j >= 0) |
|
{ |
|
b2 = 0; |
|
s2 = j; |
|
} |
|
else |
|
{ |
|
b2 = -j; |
|
s2 = 0; |
|
} |
|
if (k >= 0) |
|
{ |
|
b5 = 0; |
|
s5 = k; |
|
s2 += k; |
|
} |
|
else |
|
{ |
|
b2 -= k; |
|
b5 = -k; |
|
s5 = 0; |
|
} |
|
if (mode < 0 || mode > 9) |
|
mode = 0; |
|
try_quick = 1; |
|
if (mode > 5) |
|
{ |
|
mode -= 4; |
|
try_quick = 0; |
|
} |
|
leftright = 1; |
|
switch (mode) |
|
{ |
|
case 0: |
|
case 1: |
|
ilim = ilim1 = -1; |
|
i = 18; |
|
ndigits = 0; |
|
break; |
|
case 2: |
|
leftright = 0; |
|
/* no break */ |
|
case 4: |
|
if (ndigits <= 0) |
|
ndigits = 1; |
|
ilim = ilim1 = i = ndigits; |
|
break; |
|
case 3: |
|
leftright = 0; |
|
/* no break */ |
|
case 5: |
|
i = ndigits + k + 1; |
|
ilim = i; |
|
ilim1 = i - 1; |
|
if (i <= 0) |
|
i = 1; |
|
} |
|
j = sizeof(unsigned long); |
|
for (result_k = 0; (signed)(sizeof(Bigint) - sizeof(unsigned long) + j) <= i; |
|
j <<= 1) |
|
result_k++; |
|
result = Balloc(result_k); |
|
s = s0 = (char *)result; |
|
|
|
if (ilim >= 0 && ilim <= Quick_max && try_quick) |
|
{ |
|
|
|
/* Try to get by with floating-point arithmetic. */ |
|
|
|
i = 0; |
|
d2 = d; |
|
k0 = k; |
|
ilim0 = ilim; |
|
ieps = 2; /* conservative */ |
|
if (k > 0) |
|
{ |
|
ds = tens[k & 0xf]; |
|
j = k >> 4; |
|
if (j & Bletch) |
|
{ |
|
/* prevent overflows */ |
|
j &= Bletch - 1; |
|
d /= bigtens[n_bigtens - 1]; |
|
ieps++; |
|
} |
|
for (; j; j >>= 1, i++) |
|
if (j & 1) |
|
{ |
|
ieps++; |
|
ds *= bigtens[i]; |
|
} |
|
d /= ds; |
|
} |
|
else if ((j_1 = -k)) |
|
{ |
|
d *= tens[j_1 & 0xf]; |
|
for (j = j_1 >> 4; j; j >>= 1, i++) |
|
if (j & 1) |
|
{ |
|
ieps++; |
|
d *= bigtens[i]; |
|
} |
|
} |
|
if (k_check && d < 1. && ilim > 0) |
|
{ |
|
if (ilim1 <= 0) |
|
goto fast_failed; |
|
ilim = ilim1; |
|
k--; |
|
d *= 10.; |
|
ieps++; |
|
} |
|
eps = ieps * d + 7.; |
|
word0(eps) -= (P - 1) * Exp_msk1; |
|
if (ilim == 0) |
|
{ |
|
S = mhi = 0; |
|
d -= 5.; |
|
if (d > eps) |
|
goto one_digit; |
|
if (d < -eps) |
|
goto no_digits; |
|
goto fast_failed; |
|
} |
|
#ifndef No_leftright |
|
if (leftright) |
|
{ |
|
/* Use Steele & White method of only generating digits needed. */ |
|
eps = 0.5 / tens[ilim - 1] - eps; |
|
for (i = 0;;) |
|
{ |
|
L = (int)d; |
|
d -= L; |
|
*s++ = '0' + (int)L; |
|
if (d < eps) |
|
goto ret1; |
|
if (1. - d < eps) |
|
goto bump_up; |
|
if (++i >= ilim) |
|
break; |
|
eps *= 10.; |
|
d *= 10.; |
|
} |
|
} |
|
else |
|
{ |
|
#endif |
|
/* Generate ilim digits, then fix them up. */ |
|
eps *= tens[ilim - 1]; |
|
for (i = 1;; i++, d *= 10.) |
|
{ |
|
L = (int)d; |
|
d -= L; |
|
*s++ = '0' + (int)L; |
|
if (i == ilim) |
|
{ |
|
if (d > 0.5 + eps) |
|
goto bump_up; |
|
else if (d < 0.5 - eps) |
|
{ |
|
while (*--s == '0'); |
|
s++; |
|
goto ret1; |
|
} |
|
break; |
|
} |
|
} |
|
#ifndef No_leftright |
|
} |
|
#endif |
|
fast_failed: |
|
s = s0; |
|
d = d2; |
|
k = k0; |
|
ilim = ilim0; |
|
} |
|
|
|
/* Do we have a "small" integer? */ |
|
|
|
if (be >= 0 && k <= Int_max) |
|
{ |
|
/* Yes. */ |
|
ds = tens[k]; |
|
if (ndigits < 0 && ilim <= 0) |
|
{ |
|
S = mhi = 0; |
|
if (ilim < 0 || d <= 5 * ds) |
|
goto no_digits; |
|
goto one_digit; |
|
} |
|
for (i = 1;; i++) |
|
{ |
|
L = (int)(d / ds); |
|
d -= L * ds; |
|
#ifdef Check_FLT_ROUNDS |
|
/* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
|
if (d < 0) |
|
{ |
|
L--; |
|
d += ds; |
|
} |
|
#endif |
|
*s++ = '0' + (int)L; |
|
if (i == ilim) |
|
{ |
|
d += d; |
|
if (d > ds || (d == ds && (L & 1))) |
|
{ |
|
bump_up: |
|
while (*--s == '9') |
|
if (s == s0) |
|
{ |
|
k++; |
|
*s = '0'; |
|
break; |
|
} |
|
++*s++; |
|
} |
|
break; |
|
} |
|
if (!(d *= 10.)) |
|
break; |
|
} |
|
goto ret1; |
|
} |
|
|
|
m2 = b2; |
|
m5 = b5; |
|
mhi = mlo = 0; |
|
if (leftright) |
|
{ |
|
if (mode < 2) |
|
{ |
|
i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; |
|
} |
|
else |
|
{ |
|
j = ilim - 1; |
|
if (m5 >= j) |
|
m5 -= j; |
|
else |
|
{ |
|
s5 += j -= m5; |
|
b5 += j; |
|
m5 = 0; |
|
} |
|
if ((i = ilim) < 0) |
|
{ |
|
m2 -= i; |
|
i = 0; |
|
} |
|
} |
|
b2 += i; |
|
s2 += i; |
|
mhi = i2b(1); |
|
} |
|
if (m2 > 0 && s2 > 0) |
|
{ |
|
i = m2 < s2 ? m2 : s2; |
|
b2 -= i; |
|
m2 -= i; |
|
s2 -= i; |
|
} |
|
if (b5 > 0) |
|
{ |
|
if (leftright) |
|
{ |
|
if (m5 > 0) |
|
{ |
|
mhi = pow5mult(mhi, m5); |
|
b1 = mult(mhi, b); |
|
Bfree(b); |
|
b = b1; |
|
} |
|
if ((j = b5 - m5)) |
|
b = pow5mult(b, j); |
|
} |
|
else |
|
b = pow5mult(b, b5); |
|
} |
|
S = i2b(1); |
|
if (s5 > 0) |
|
S = pow5mult(S, s5); |
|
|
|
/* Check for special case that d is a normalized power of 2. */ |
|
|
|
if (mode < 2) |
|
{ |
|
if (!word1(d) && !(word0(d) & Bndry_mask) && word0(d) & Exp_mask) |
|
{ |
|
/* The special case */ |
|
b2 += Log2P; |
|
s2 += Log2P; |
|
spec_case = 1; |
|
} |
|
else |
|
spec_case = 0; |
|
} |
|
|
|
/* |
|
* Arrange for convenient computation of quotients: shift left if |
|
* necessary so divisor has 4 leading 0 bits. |
|
* |
|
* Perhaps we should just compute leading 28 bits of S once and for all |
|
* and pass them and a shift to quorem, so it can do shifts and ors |
|
* to compute the numerator for q. |
|
*/ |
|
#ifdef Pack_32 |
|
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0x1f)) |
|
i = 32 - i; |
|
#else |
|
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds - 1]) : 1) + s2) & 0xf)) |
|
i = 16 - i; |
|
#endif |
|
if (i > 4) |
|
{ |
|
i -= 4; |
|
b2 += i; |
|
m2 += i; |
|
s2 += i; |
|
} |
|
else if (i < 4) |
|
{ |
|
i += 28; |
|
b2 += i; |
|
m2 += i; |
|
s2 += i; |
|
} |
|
if (b2 > 0) |
|
b = lshift(b, b2); |
|
if (s2 > 0) |
|
S = lshift(S, s2); |
|
if (k_check) |
|
{ |
|
if (cmp(b, S) < 0) |
|
{ |
|
k--; |
|
b = multadd(b, 10, 0); /* we botched the k estimate */ |
|
if (leftright) |
|
mhi = multadd(mhi, 10, 0); |
|
ilim = ilim1; |
|
} |
|
} |
|
if (ilim <= 0 && mode > 2) |
|
{ |
|
if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) |
|
{ |
|
/* no digits, fcvt style */ |
|
no_digits: |
|
k = -1 - ndigits; |
|
goto ret; |
|
} |
|
one_digit: |
|
*s++ = '1'; |
|
k++; |
|
goto ret; |
|
} |
|
if (leftright) |
|
{ |
|
if (m2 > 0) |
|
mhi = lshift(mhi, m2); |
|
|
|
/* Compute mlo -- check for special case that d is a normalized power of |
|
* 2. */ |
|
|
|
mlo = mhi; |
|
if (spec_case) |
|
{ |
|
mhi = Balloc(mhi->k); |
|
Bcopy(mhi, mlo); |
|
mhi = lshift(mhi, Log2P); |
|
} |
|
|
|
for (i = 1;; i++) |
|
{ |
|
dig = quorem(b, S) + '0'; |
|
/* Do we yet have the shortest decimal string that will round to d? */ |
|
j = cmp(b, mlo); |
|
delta = diff(S, mhi); |
|
j_1 = delta->sign ? 1 : cmp(b, delta); |
|
Bfree(delta); |
|
#ifndef ROUND_BIASED |
|
if (j_1 == 0 && !mode && !(word1(d) & 1)) |
|
{ |
|
if (dig == '9') |
|
goto round_9_up; |
|
if (j > 0) |
|
dig++; |
|
*s++ = dig; |
|
goto ret; |
|
} |
|
#endif |
|
if (j < 0 || (j == 0 && !mode |
|
#ifndef ROUND_BIASED |
|
&& (!(word1(d) & 1)) |
|
#endif |
|
)) |
|
{ |
|
if ((j_1 > 0)) |
|
{ |
|
b = lshift(b, 1); |
|
j_1 = cmp(b, S); |
|
if ((j_1 > 0 || (j_1 == 0 && (dig & 1))) && dig++ == '9') |
|
goto round_9_up; |
|
} |
|
*s++ = dig; |
|
goto ret; |
|
} |
|
if (j_1 > 0) |
|
{ |
|
if (dig == '9') |
|
{ /* possible if i == 1 */ |
|
round_9_up: |
|
*s++ = '9'; |
|
goto roundoff; |
|
} |
|
*s++ = dig + 1; |
|
goto ret; |
|
} |
|
*s++ = dig; |
|
if (i == ilim) |
|
break; |
|
b = multadd(b, 10, 0); |
|
if (mlo == mhi) |
|
mlo = mhi = multadd(mhi, 10, 0); |
|
else |
|
{ |
|
mlo = multadd(mlo, 10, 0); |
|
mhi = multadd(mhi, 10, 0); |
|
} |
|
} |
|
} |
|
else |
|
for (i = 1;; i++) |
|
{ |
|
*s++ = dig = quorem(b, S) + '0'; |
|
if (i >= ilim) |
|
break; |
|
b = multadd(b, 10, 0); |
|
} |
|
|
|
/* Round off last digit */ |
|
|
|
b = lshift(b, 1); |
|
j = cmp(b, S); |
|
if (j > 0 || (j == 0 && (dig & 1))) |
|
{ |
|
roundoff: |
|
while (*--s == '9') |
|
if (s == s0) |
|
{ |
|
k++; |
|
*s++ = '1'; |
|
goto ret; |
|
} |
|
++*s++; |
|
} |
|
else |
|
{ |
|
while (*--s == '0'); |
|
s++; |
|
} |
|
ret: |
|
Bfree(S); |
|
if (mhi) |
|
{ |
|
if (mlo && mlo != mhi) |
|
Bfree(mlo); |
|
Bfree(mhi); |
|
} |
|
ret1: |
|
Bfree(b); |
|
if (s == s0) |
|
{ /* don't return empty string */ |
|
*s++ = '0'; |
|
k = 0; |
|
} |
|
*s = 0; |
|
*decpt = k + 1; |
|
if (rve) |
|
*rve = s; |
|
return s0; |
|
}
|
|
|