You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
376 lines
12 KiB
376 lines
12 KiB
/* |
|
* |
|
* NMEA library |
|
* URL: http://nmea.sourceforge.net |
|
* Author: Tim (xtimor@gmail.com) |
|
* Licence: http://www.gnu.org/licenses/lgpl.html |
|
* $Id: gmath.c 17 2008-03-11 11:56:11Z xtimor $ |
|
* |
|
*/ |
|
|
|
/*! \file gmath.h */ |
|
#include "nmea/gmath.h" |
|
|
|
#include <math.h> |
|
#include <float.h> |
|
|
|
/** |
|
* \fn nmea_degree2radian |
|
* \brief Convert degree to radian |
|
*/ |
|
float nmea_degree2radian(float val) |
|
{ return (val * NMEA_PI180); } |
|
|
|
/** |
|
* \fn nmea_radian2degree |
|
* \brief Convert radian to degree |
|
*/ |
|
float nmea_radian2degree(float val) |
|
{ return (val / NMEA_PI180); } |
|
|
|
/** |
|
* \brief Convert NDEG (NMEA degree) to fractional degree |
|
*/ |
|
float nmea_ndeg2degree(float val) |
|
{ |
|
float deg = ((int)(val / 100)); |
|
val = deg + (val - deg * 100) / 60; |
|
return val; |
|
} |
|
|
|
/** |
|
* \brief Convert fractional degree to NDEG (NMEA degree) |
|
*/ |
|
float nmea_degree2ndeg(float val) |
|
{ |
|
float int_part; |
|
float fra_part; |
|
fra_part = modf(val, &int_part); |
|
val = int_part * 100 + fra_part * 60; |
|
return val; |
|
} |
|
|
|
/** |
|
* \fn nmea_ndeg2radian |
|
* \brief Convert NDEG (NMEA degree) to radian |
|
*/ |
|
float nmea_ndeg2radian(float val) |
|
{ return nmea_degree2radian(nmea_ndeg2degree(val)); } |
|
|
|
/** |
|
* \fn nmea_radian2ndeg |
|
* \brief Convert radian to NDEG (NMEA degree) |
|
*/ |
|
float nmea_radian2ndeg(float val) |
|
{ return nmea_degree2ndeg(nmea_radian2degree(val)); } |
|
|
|
/** |
|
* \brief Calculate PDOP (Position Dilution Of Precision) factor |
|
*/ |
|
float nmea_calc_pdop(float hdop, float vdop) |
|
{ |
|
return sqrt(pow(hdop, 2) + pow(vdop, 2)); |
|
} |
|
|
|
float nmea_dop2meters(float dop) |
|
{ return (dop * NMEA_DOP_FACTOR); } |
|
|
|
float nmea_meters2dop(float meters) |
|
{ return (meters / NMEA_DOP_FACTOR); } |
|
|
|
/** |
|
* \brief Calculate distance between two points |
|
* \return Distance in meters |
|
*/ |
|
float nmea_distance( |
|
const nmeaPOS *from_pos, /**< From position in radians */ |
|
const nmeaPOS *to_pos /**< To position in radians */ |
|
) |
|
{ |
|
float dist = ((float)NMEA_EARTHRADIUS_M) * acos( |
|
sin(to_pos->lat) * sin(from_pos->lat) + |
|
cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon) |
|
); |
|
return dist; |
|
} |
|
|
|
/** |
|
* \brief Calculate distance between two points |
|
* This function uses an algorithm for an oblate spheroid earth model. |
|
* The algorithm is described here: |
|
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf |
|
* \return Distance in meters |
|
*/ |
|
float nmea_distance_ellipsoid( |
|
const nmeaPOS *from_pos, /**< From position in radians */ |
|
const nmeaPOS *to_pos, /**< To position in radians */ |
|
float *from_azimuth, /**< (O) azimuth at "from" position in radians */ |
|
float *to_azimuth /**< (O) azimuth at "to" position in radians */ |
|
) |
|
{ |
|
/* All variables */ |
|
float f, a, b, sqr_a, sqr_b; |
|
float L, phi1, phi2, U1, U2, sin_U1, sin_U2, cos_U1, cos_U2; |
|
float sigma, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, sqr_cos_alpha, lambda, sin_lambda, cos_lambda, delta_lambda; |
|
int remaining_steps; |
|
float sqr_u, A, B, delta_sigma; |
|
|
|
/* Check input */ |
|
//NMEA_ASSERT(from_pos != 0); |
|
//NMEA_ASSERT(to_pos != 0); |
|
|
|
if ((from_pos->lat == to_pos->lat) && (from_pos->lon == to_pos->lon)) |
|
{ /* Identical points */ |
|
if ( from_azimuth != 0 ) |
|
*from_azimuth = 0; |
|
if ( to_azimuth != 0 ) |
|
*to_azimuth = 0; |
|
return 0; |
|
} /* Identical points */ |
|
|
|
/* Earth geometry */ |
|
f = NMEA_EARTH_FLATTENING; |
|
a = NMEA_EARTH_SEMIMAJORAXIS_M; |
|
b = (1 - f) * a; |
|
sqr_a = a * a; |
|
sqr_b = b * b; |
|
|
|
/* Calculation */ |
|
L = to_pos->lon - from_pos->lon; |
|
phi1 = from_pos->lat; |
|
phi2 = to_pos->lat; |
|
U1 = atan((1 - f) * tan(phi1)); |
|
U2 = atan((1 - f) * tan(phi2)); |
|
sin_U1 = sin(U1); |
|
sin_U2 = sin(U2); |
|
cos_U1 = cos(U1); |
|
cos_U2 = cos(U2); |
|
|
|
/* Initialize iteration */ |
|
sigma = 0; |
|
sin_sigma = sin(sigma); |
|
cos_sigma = cos(sigma); |
|
cos_2_sigmam = 0; |
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam; |
|
sqr_cos_alpha = 0; |
|
lambda = L; |
|
sin_lambda = sin(lambda); |
|
cos_lambda = cos(lambda); |
|
delta_lambda = lambda; |
|
remaining_steps = 20; |
|
|
|
while ((delta_lambda > 1e-12) && (remaining_steps > 0)) |
|
{ /* Iterate */ |
|
/* Variables */ |
|
float tmp1, tmp2, tan_sigma, sin_alpha, cos_alpha, C, lambda_prev; |
|
|
|
/* Calculation */ |
|
tmp1 = cos_U2 * sin_lambda; |
|
tmp2 = cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda; |
|
sin_sigma = sqrt(tmp1 * tmp1 + tmp2 * tmp2); |
|
cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda; |
|
tan_sigma = sin_sigma / cos_sigma; |
|
sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma; |
|
cos_alpha = cos(asin(sin_alpha)); |
|
sqr_cos_alpha = cos_alpha * cos_alpha; |
|
cos_2_sigmam = cos_sigma - 2 * sin_U1 * sin_U2 / sqr_cos_alpha; |
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam; |
|
C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha)); |
|
lambda_prev = lambda; |
|
sigma = asin(sin_sigma); |
|
lambda = L + |
|
(1 - C) * f * sin_alpha |
|
* (sigma + C * sin_sigma * (cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam))); |
|
delta_lambda = lambda_prev - lambda; |
|
if ( delta_lambda < 0 ) delta_lambda = -delta_lambda; |
|
sin_lambda = sin(lambda); |
|
cos_lambda = cos(lambda); |
|
remaining_steps--; |
|
} /* Iterate */ |
|
|
|
/* More calculation */ |
|
sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b; |
|
A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u))); |
|
B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u))); |
|
delta_sigma = B * sin_sigma * ( |
|
cos_2_sigmam + B / 4 * ( |
|
cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) - |
|
B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam) |
|
)); |
|
|
|
/* Calculate result */ |
|
if ( from_azimuth != 0 ) |
|
{ |
|
float tan_alpha_1 = cos_U2 * sin_lambda / (cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda); |
|
*from_azimuth = atan(tan_alpha_1); |
|
} |
|
if ( to_azimuth != 0 ) |
|
{ |
|
float tan_alpha_2 = cos_U1 * sin_lambda / (-sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda); |
|
*to_azimuth = atan(tan_alpha_2); |
|
} |
|
|
|
return b * A * (sigma - delta_sigma); |
|
} |
|
|
|
/** |
|
* \brief Horizontal move of point position |
|
*/ |
|
int nmea_move_horz( |
|
const nmeaPOS *start_pos, /**< Start position in radians */ |
|
nmeaPOS *end_pos, /**< Result position in radians */ |
|
float azimuth, /**< Azimuth (degree) [0, 359] */ |
|
float distance /**< Distance (km) */ |
|
) |
|
{ |
|
nmeaPOS p1 = *start_pos; |
|
int RetVal = 1; |
|
|
|
distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */ |
|
azimuth = nmea_degree2radian(azimuth); |
|
|
|
end_pos->lat = asin( |
|
sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth)); |
|
end_pos->lon = p1.lon + atan2( |
|
sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat)); |
|
|
|
if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon)) |
|
{ |
|
end_pos->lat = 0; end_pos->lon = 0; |
|
RetVal = 0; |
|
} |
|
|
|
return RetVal; |
|
} |
|
|
|
/** |
|
* \brief Horizontal move of point position |
|
* This function uses an algorithm for an oblate spheroid earth model. |
|
* The algorithm is described here: |
|
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf |
|
*/ |
|
int nmea_move_horz_ellipsoid( |
|
const nmeaPOS *start_pos, /**< Start position in radians */ |
|
nmeaPOS *end_pos, /**< (O) Result position in radians */ |
|
float azimuth, /**< Azimuth in radians */ |
|
float distance, /**< Distance (km) */ |
|
float *end_azimuth /**< (O) Azimuth at end position in radians */ |
|
) |
|
{ |
|
/* Variables */ |
|
float f, a, b, sqr_a, sqr_b; |
|
float phi1, tan_U1, sin_U1, cos_U1, s, alpha1, sin_alpha1, cos_alpha1; |
|
float tan_sigma1, sigma1, sin_alpha, cos_alpha, sqr_cos_alpha, sqr_u, A, B; |
|
float sigma_initial, sigma, sigma_prev, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, delta_sigma; |
|
int remaining_steps; |
|
float tmp1, phi2, lambda, C, L; |
|
|
|
/* Check input */ |
|
//NMEA_ASSERT(start_pos != 0); |
|
//NMEA_ASSERT(end_pos != 0); |
|
|
|
if (fabs(distance) < 1e-12) |
|
{ /* No move */ |
|
*end_pos = *start_pos; |
|
if ( end_azimuth != 0 ) *end_azimuth = azimuth; |
|
return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon)); |
|
} /* No move */ |
|
|
|
/* Earth geometry */ |
|
f = NMEA_EARTH_FLATTENING; |
|
a = NMEA_EARTH_SEMIMAJORAXIS_M; |
|
b = (1 - f) * a; |
|
sqr_a = a * a; |
|
sqr_b = b * b; |
|
|
|
/* Calculation */ |
|
phi1 = start_pos->lat; |
|
tan_U1 = (1 - f) * tan(phi1); |
|
cos_U1 = 1 / sqrt(1 + tan_U1 * tan_U1); |
|
sin_U1 = tan_U1 * cos_U1; |
|
s = distance; |
|
alpha1 = azimuth; |
|
sin_alpha1 = sin(alpha1); |
|
cos_alpha1 = cos(alpha1); |
|
tan_sigma1 = tan_U1 / cos_alpha1; |
|
sigma1 = atan2(tan_U1, cos_alpha1); |
|
sin_alpha = cos_U1 * sin_alpha1; |
|
sqr_cos_alpha = 1 - sin_alpha * sin_alpha; |
|
cos_alpha = sqrt(sqr_cos_alpha); |
|
sqr_u = sqr_cos_alpha * (sqr_a - sqr_b) / sqr_b; |
|
A = 1 + sqr_u / 16384 * (4096 + sqr_u * (-768 + sqr_u * (320 - 175 * sqr_u))); |
|
B = sqr_u / 1024 * (256 + sqr_u * (-128 + sqr_u * (74 - 47 * sqr_u))); |
|
|
|
/* Initialize iteration */ |
|
sigma_initial = s / (b * A); |
|
sigma = sigma_initial; |
|
sin_sigma = sin(sigma); |
|
cos_sigma = cos(sigma); |
|
cos_2_sigmam = cos(2 * sigma1 + sigma); |
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam; |
|
delta_sigma = 0; |
|
sigma_prev = 2 * NMEA_PI; |
|
remaining_steps = 20; |
|
|
|
while ((fabs(sigma - sigma_prev) > 1e-12) && (remaining_steps > 0)) |
|
{ /* Iterate */ |
|
cos_2_sigmam = cos(2 * sigma1 + sigma); |
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam; |
|
sin_sigma = sin(sigma); |
|
cos_sigma = cos(sigma); |
|
delta_sigma = B * sin_sigma * ( |
|
cos_2_sigmam + B / 4 * ( |
|
cos_sigma * (-1 + 2 * sqr_cos_2_sigmam) - |
|
B / 6 * cos_2_sigmam * (-3 + 4 * sin_sigma * sin_sigma) * (-3 + 4 * sqr_cos_2_sigmam) |
|
)); |
|
sigma_prev = sigma; |
|
sigma = sigma_initial + delta_sigma; |
|
remaining_steps --; |
|
} /* Iterate */ |
|
|
|
/* Calculate result */ |
|
tmp1 = (sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_alpha1); |
|
phi2 = atan2( |
|
sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_alpha1, |
|
(1 - f) * sqrt(sin_alpha * sin_alpha + tmp1 * tmp1) |
|
); |
|
lambda = atan2( |
|
sin_sigma * sin_alpha1, |
|
cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_alpha1 |
|
); |
|
C = f / 16 * sqr_cos_alpha * (4 + f * (4 - 3 * sqr_cos_alpha)); |
|
L = lambda - |
|
(1 - C) * f * sin_alpha * ( |
|
sigma + C * sin_sigma * |
|
(cos_2_sigmam + C * cos_sigma * (-1 + 2 * sqr_cos_2_sigmam)) |
|
); |
|
|
|
/* Result */ |
|
end_pos->lon = start_pos->lon + L; |
|
end_pos->lat = phi2; |
|
if ( end_azimuth != 0 ) |
|
{ |
|
*end_azimuth = atan2( |
|
sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_alpha1 |
|
); |
|
} |
|
return ! (NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon)); |
|
} |
|
|
|
/** |
|
* \brief Convert position from INFO to radians position |
|
*/ |
|
void nmea_info2pos(const nmeaINFO *info, nmeaPOS *pos) |
|
{ |
|
pos->lat = nmea_ndeg2radian(info->lat); |
|
pos->lon = nmea_ndeg2radian(info->lon); |
|
} |
|
|
|
/** |
|
* \brief Convert radians position to INFOs position |
|
*/ |
|
void nmea_pos2info(const nmeaPOS *pos, nmeaINFO *info) |
|
{ |
|
info->lat = nmea_radian2ndeg(pos->lat); |
|
info->lon = nmea_radian2ndeg(pos->lon); |
|
}
|
|
|