You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
439 lines
14 KiB
439 lines
14 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* Julian Oes <joes@student.ethz.ch> |
|
* Lorenz Meier <lm@inf.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file geo.c |
|
* |
|
* Geo / math functions to perform geodesic calculations |
|
* |
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Julian Oes <joes@student.ethz.ch> |
|
* @author Lorenz Meier <lm@inf.ethz.ch> |
|
*/ |
|
|
|
#include <systemlib/geo/geo.h> |
|
#include <nuttx/config.h> |
|
#include <unistd.h> |
|
#include <pthread.h> |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <stdbool.h> |
|
|
|
|
|
/* values for map projection */ |
|
static double phi_1; |
|
static double sin_phi_1; |
|
static double cos_phi_1; |
|
static double lambda_0; |
|
static double scale; |
|
|
|
__EXPORT void map_projection_init(double lat_0, double lon_0) //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 |
|
{ |
|
/* notation and formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ |
|
phi_1 = lat_0 / 180.0 * M_PI; |
|
lambda_0 = lon_0 / 180.0 * M_PI; |
|
|
|
sin_phi_1 = sin(phi_1); |
|
cos_phi_1 = cos(phi_1); |
|
|
|
/* calculate local scale by using the relation of true distance and the distance on plane */ //TODO: this is a quick solution, there are probably easier ways to determine the scale |
|
|
|
/* 1) calculate true distance d on sphere to a point: http://www.movable-type.co.uk/scripts/latlong.html */ |
|
const double r_earth = 6371000; |
|
|
|
double lat1 = phi_1; |
|
double lon1 = lambda_0; |
|
|
|
double lat2 = phi_1 + 0.5 / 180 * M_PI; |
|
double lon2 = lambda_0 + 0.5 / 180 * M_PI; |
|
double sin_lat_2 = sin(lat2); |
|
double cos_lat_2 = cos(lat2); |
|
double d = acos(sin(lat1) * sin_lat_2 + cos(lat1) * cos_lat_2 * cos(lon2 - lon1)) * r_earth; |
|
|
|
/* 2) calculate distance rho on plane */ |
|
double k_bar = 0; |
|
double c = acos(sin_phi_1 * sin_lat_2 + cos_phi_1 * cos_lat_2 * cos(lon2 - lambda_0)); |
|
|
|
if (0 != c) |
|
k_bar = c / sin(c); |
|
|
|
double x2 = k_bar * (cos_lat_2 * sin(lon2 - lambda_0)); //Projection of point 2 on plane |
|
double y2 = k_bar * ((cos_phi_1 * sin_lat_2 - sin_phi_1 * cos_lat_2 * cos(lon2 - lambda_0))); |
|
double rho = sqrt(pow(x2, 2) + pow(y2, 2)); |
|
|
|
scale = d / rho; |
|
|
|
} |
|
|
|
__EXPORT void map_projection_project(double lat, double lon, float *x, float *y) |
|
{ |
|
/* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ |
|
double phi = lat / 180.0 * M_PI; |
|
double lambda = lon / 180.0 * M_PI; |
|
|
|
double sin_phi = sin(phi); |
|
double cos_phi = cos(phi); |
|
|
|
double k_bar = 0; |
|
/* using small angle approximation (formula in comment is without aproximation) */ |
|
double c = acos(sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2)); //double c = acos( sin_phi_1 * sin_phi + cos_phi_1 * cos_phi * cos(lambda - lambda_0) ); |
|
|
|
if (0 != c) |
|
k_bar = c / sin(c); |
|
|
|
/* using small angle approximation (formula in comment is without aproximation) */ |
|
*y = k_bar * (cos_phi * (lambda - lambda_0)) * scale;//*y = k_bar * (cos_phi * sin(lambda - lambda_0)) * scale; |
|
*x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * (1 - pow((lambda - lambda_0), 2) / 2))) * scale; // *x = k_bar * ((cos_phi_1 * sin_phi - sin_phi_1 * cos_phi * cos(lambda - lambda_0))) * scale; |
|
|
|
// printf("%phi_1=%.10f, lambda_0 =%.10f\n", phi_1, lambda_0); |
|
} |
|
|
|
__EXPORT void map_projection_reproject(float x, float y, double *lat, double *lon) |
|
{ |
|
/* notation and formulas accoring to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ |
|
|
|
double x_descaled = x / scale; |
|
double y_descaled = y / scale; |
|
|
|
double c = sqrt(pow(x_descaled, 2) + pow(y_descaled, 2)); |
|
double sin_c = sin(c); |
|
double cos_c = cos(c); |
|
|
|
double lat_sphere = 0; |
|
|
|
if (c != 0) |
|
lat_sphere = asin(cos_c * sin_phi_1 + (x_descaled * sin_c * cos_phi_1) / c); |
|
else |
|
lat_sphere = asin(cos_c * sin_phi_1); |
|
|
|
// printf("lat_sphere = %.10f\n",lat_sphere); |
|
|
|
double lon_sphere = 0; |
|
|
|
if (phi_1 == M_PI / 2) { |
|
//using small angle approximation (formula in comment is without aproximation) |
|
lon_sphere = (lambda_0 - y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(-y_descaled, x_descaled)); |
|
|
|
} else if (phi_1 == -M_PI / 2) { |
|
//using small angle approximation (formula in comment is without aproximation) |
|
lon_sphere = (lambda_0 + y_descaled / x_descaled); //lon_sphere = (lambda_0 + atan2(y_descaled, x_descaled)); |
|
|
|
} else { |
|
|
|
lon_sphere = (lambda_0 + atan2(y_descaled * sin_c , c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c)); |
|
//using small angle approximation |
|
// double denominator = (c * cos_phi_1 * cos_c - x_descaled * sin_phi_1 * sin_c); |
|
// if(denominator != 0) |
|
// { |
|
// lon_sphere = (lambda_0 + (y_descaled * sin_c) / denominator); |
|
// } |
|
// else |
|
// { |
|
// ... |
|
// } |
|
} |
|
|
|
// printf("lon_sphere = %.10f\n",lon_sphere); |
|
|
|
*lat = lat_sphere * 180.0 / M_PI; |
|
*lon = lon_sphere * 180.0 / M_PI; |
|
|
|
} |
|
|
|
|
|
__EXPORT float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) |
|
{ |
|
double lat_now_rad = lat_now / 180.0d * M_PI; |
|
double lon_now_rad = lon_now / 180.0d * M_PI; |
|
double lat_next_rad = lat_next / 180.0d * M_PI; |
|
double lon_next_rad = lon_next / 180.0d * M_PI; |
|
|
|
|
|
double d_lat = lat_next_rad - lat_now_rad; |
|
double d_lon = lon_next_rad - lon_now_rad; |
|
|
|
double a = sin(d_lat / 2.0d) * sin(d_lat / 2.0) + sin(d_lon / 2.0d) * sin(d_lon / 2.0d) * cos(lat_now_rad) * cos(lat_next_rad); |
|
double c = 2.0d * atan2(sqrt(a), sqrt(1.0d - a)); |
|
|
|
const double radius_earth = 6371000.0d; |
|
|
|
return radius_earth * c; |
|
} |
|
|
|
__EXPORT float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) |
|
{ |
|
double lat_now_rad = lat_now * M_DEG_TO_RAD; |
|
double lon_now_rad = lon_now * M_DEG_TO_RAD; |
|
double lat_next_rad = lat_next * M_DEG_TO_RAD; |
|
double lon_next_rad = lon_next * M_DEG_TO_RAD; |
|
|
|
double d_lat = lat_next_rad - lat_now_rad; |
|
double d_lon = lon_next_rad - lon_now_rad; |
|
|
|
/* conscious mix of double and float trig function to maximize speed and efficiency */ |
|
float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)); |
|
|
|
theta = _wrap_pi(theta); |
|
|
|
return theta; |
|
} |
|
|
|
// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu> |
|
|
|
__EXPORT int get_distance_to_line(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end) |
|
{ |
|
// This function returns the distance to the nearest point on the track line. Distance is positive if current |
|
// position is right of the track and negative if left of the track as seen from a point on the track line |
|
// headed towards the end point. |
|
|
|
float dist_to_end; |
|
float bearing_end; |
|
float bearing_track; |
|
float bearing_diff; |
|
|
|
int return_value = ERROR; // Set error flag, cleared when valid result calculated. |
|
crosstrack_error->past_end = false; |
|
crosstrack_error->distance = 0.0f; |
|
crosstrack_error->bearing = 0.0f; |
|
|
|
// Return error if arguments are bad |
|
if (lat_now == 0.0d || lon_now == 0.0d || lat_start == 0.0d || lon_start == 0.0d || lat_end == 0.0d || lon_end == 0.0d) return return_value; |
|
|
|
bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
|
bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end); |
|
bearing_diff = bearing_track - bearing_end; |
|
bearing_diff = _wrap_pi(bearing_diff); |
|
|
|
// Return past_end = true if past end point of line |
|
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) { |
|
crosstrack_error->past_end = true; |
|
return_value = OK; |
|
return return_value; |
|
} |
|
|
|
dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
|
crosstrack_error->distance = (dist_to_end) * sin(bearing_diff); |
|
|
|
if (sin(bearing_diff) >= 0) { |
|
crosstrack_error->bearing = _wrap_pi(bearing_track - M_PI_2_F); |
|
|
|
} else { |
|
crosstrack_error->bearing = _wrap_pi(bearing_track + M_PI_2_F); |
|
} |
|
|
|
return_value = OK; |
|
|
|
return return_value; |
|
|
|
} |
|
|
|
|
|
__EXPORT int get_distance_to_arc(struct crosstrack_error_s * crosstrack_error, double lat_now, double lon_now, double lat_center, double lon_center, |
|
float radius, float arc_start_bearing, float arc_sweep) |
|
{ |
|
// This function returns the distance to the nearest point on the track arc. Distance is positive if current |
|
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and |
|
// headed towards the end point. |
|
|
|
// Determine if the current position is inside or outside the sector between the line from the center |
|
// to the arc start and the line from the center to the arc end |
|
float bearing_sector_start; |
|
float bearing_sector_end; |
|
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); |
|
bool in_sector; |
|
|
|
int return_value = ERROR; // Set error flag, cleared when valid result calculated. |
|
crosstrack_error->past_end = false; |
|
crosstrack_error->distance = 0.0f; |
|
crosstrack_error->bearing = 0.0f; |
|
|
|
// Return error if arguments are bad |
|
if (lat_now == 0.0d || lon_now == 0.0d || lat_center == 0.0d || lon_center == 0.0d || radius == 0.0d) return return_value; |
|
|
|
|
|
if (arc_sweep >= 0) { |
|
bearing_sector_start = arc_start_bearing; |
|
bearing_sector_end = arc_start_bearing + arc_sweep; |
|
|
|
if (bearing_sector_end > 2.0f * M_PI_F) bearing_sector_end -= M_TWOPI_F; |
|
|
|
} else { |
|
bearing_sector_end = arc_start_bearing; |
|
bearing_sector_start = arc_start_bearing - arc_sweep; |
|
|
|
if (bearing_sector_start < 0.0f) bearing_sector_start += M_TWOPI_F; |
|
} |
|
|
|
in_sector = false; |
|
|
|
// Case where sector does not span zero |
|
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start && bearing_now <= bearing_sector_end) in_sector = true; |
|
|
|
// Case where sector does span zero |
|
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start || bearing_now < bearing_sector_end)) in_sector = true; |
|
|
|
// If in the sector then calculate distance and bearing to closest point |
|
if (in_sector) { |
|
crosstrack_error->past_end = false; |
|
float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); |
|
|
|
if (dist_to_center <= radius) { |
|
crosstrack_error->distance = radius - dist_to_center; |
|
crosstrack_error->bearing = bearing_now + M_PI_F; |
|
|
|
} else { |
|
crosstrack_error->distance = dist_to_center - radius; |
|
crosstrack_error->bearing = bearing_now; |
|
} |
|
|
|
// If out of the sector then calculate dist and bearing to start or end point |
|
|
|
} else { |
|
|
|
// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude) |
|
// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to |
|
// calculate the position of the start and end points. We should not be doing this often |
|
// as this function generally will not be called repeatedly when we are out of the sector. |
|
|
|
// TO DO - this is messed up and won't compile |
|
float start_disp_x = radius * sin(arc_start_bearing); |
|
float start_disp_y = radius * cos(arc_start_bearing); |
|
float end_disp_x = radius * sin(_wrapPI(arc_start_bearing + arc_sweep)); |
|
float end_disp_y = radius * cos(_wrapPI(arc_start_bearing + arc_sweep)); |
|
float lon_start = lon_now + start_disp_x / 111111.0d; |
|
float lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0d; |
|
float lon_end = lon_now + end_disp_x / 111111.0d; |
|
float lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0d; |
|
float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); |
|
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
|
|
|
|
|
if (dist_to_start < dist_to_end) { |
|
crosstrack_error->distance = dist_to_start; |
|
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); |
|
|
|
} else { |
|
crosstrack_error->past_end = true; |
|
crosstrack_error->distance = dist_to_end; |
|
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); |
|
} |
|
|
|
} |
|
|
|
crosstrack_error->bearing = _wrapPI(crosstrack_error->bearing); |
|
return_value = OK; |
|
return return_value; |
|
} |
|
|
|
__EXPORT float _wrap_pi(float bearing) |
|
{ |
|
/* value is inf or NaN */ |
|
if (!isfinite(bearing) || bearing == 0) { |
|
return bearing; |
|
} |
|
|
|
int c = 0; |
|
|
|
while (bearing > M_PI_F && c < 30) { |
|
bearing -= M_TWOPI_F; |
|
c++; |
|
} |
|
|
|
c = 0; |
|
|
|
while (bearing <= -M_PI_F && c < 30) { |
|
bearing += M_TWOPI_F; |
|
c++; |
|
} |
|
|
|
return bearing; |
|
} |
|
|
|
__EXPORT float _wrap_2pi(float bearing) |
|
{ |
|
/* value is inf or NaN */ |
|
if (!isfinite(bearing)) { |
|
return bearing; |
|
} |
|
|
|
while (bearing >= M_TWOPI_F) { |
|
bearing = bearing - M_TWOPI_F; |
|
} |
|
|
|
while (bearing < 0.0f) { |
|
bearing = bearing + M_TWOPI_F; |
|
} |
|
|
|
return bearing; |
|
} |
|
|
|
__EXPORT float _wrap_180(float bearing) |
|
{ |
|
/* value is inf or NaN */ |
|
if (!isfinite(bearing)) { |
|
return bearing; |
|
} |
|
|
|
while (bearing > 180.0f) { |
|
bearing = bearing - 360.0f; |
|
} |
|
|
|
while (bearing <= -180.0f) { |
|
bearing = bearing + 360.0f; |
|
} |
|
|
|
return bearing; |
|
} |
|
|
|
__EXPORT float _wrap_360(float bearing) |
|
{ |
|
/* value is inf or NaN */ |
|
if (!isfinite(bearing)) { |
|
return bearing; |
|
} |
|
|
|
while (bearing >= 360.0f) { |
|
bearing = bearing - 360.0f; |
|
} |
|
|
|
while (bearing < 0.0f) { |
|
bearing = bearing + 360.0f; |
|
} |
|
|
|
return bearing; |
|
} |
|
|
|
|
|
|