You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
420 lines
8.4 KiB
420 lines
8.4 KiB
/** |
|
* @file Matrix.hpp |
|
* |
|
* A simple matrix template library. |
|
* |
|
* @author James Goppert <james.goppert@gmail.com> |
|
*/ |
|
|
|
#pragma once |
|
|
|
#include <stdio.h> |
|
#include <stddef.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <math.h> |
|
|
|
#include "math.hpp" |
|
|
|
namespace matrix |
|
{ |
|
|
|
template <typename Type, size_t M> |
|
class Vector; |
|
|
|
template<typename Type, size_t M, size_t N> |
|
class Matrix |
|
{ |
|
|
|
public: |
|
|
|
Type _data[M][N]; |
|
|
|
virtual ~Matrix() {}; |
|
|
|
Matrix() : |
|
_data() |
|
{ |
|
} |
|
|
|
Matrix(const Type *data_) : |
|
_data() |
|
{ |
|
memcpy(_data, data_, sizeof(_data)); |
|
} |
|
|
|
Matrix(const Matrix &other) : |
|
_data() |
|
{ |
|
memcpy(_data, other._data, sizeof(_data)); |
|
} |
|
|
|
/** |
|
* Accessors/ Assignment etc. |
|
*/ |
|
|
|
Type *data() |
|
{ |
|
return _data[0]; |
|
} |
|
|
|
inline Type operator()(size_t i, size_t j) const |
|
{ |
|
return _data[i][j]; |
|
} |
|
|
|
inline Type &operator()(size_t i, size_t j) |
|
{ |
|
return _data[i][j]; |
|
} |
|
|
|
/** |
|
* Matrix Operations |
|
*/ |
|
|
|
// this might use a lot of programming memory |
|
// since it instantiates a class for every |
|
// required mult pair, but it provides |
|
// compile time size_t checking |
|
template<size_t P> |
|
Matrix<Type, M, P> operator*(const Matrix<Type, N, P> &other) const |
|
{ |
|
const Matrix<Type, M, N> &self = *this; |
|
Matrix<Type, M, P> res; |
|
res.setZero(); |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t k = 0; k < P; k++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i, k) += self(i, j) * other(j, k); |
|
} |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
Matrix<Type, M, N> emult(const Matrix<Type, M, N> &other) const |
|
{ |
|
Matrix<Type, M, N> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i , j) = self(i, j)*other(i, j); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
Matrix<Type, M, N> operator+(const Matrix<Type, M, N> &other) const |
|
{ |
|
Matrix<Type, M, N> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i , j) = self(i, j) + other(i, j); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
bool operator==(const Matrix<Type, M, N> &other) const |
|
{ |
|
const Matrix<Type, M, N> &self = *this; |
|
static const Type eps = Type(1e-6); |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
if (fabs(self(i , j) - other(i, j)) > eps) { |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
Matrix<Type, M, N> operator-(const Matrix<Type, M, N> &other) const |
|
{ |
|
Matrix<Type, M, N> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i , j) = self(i, j) - other(i, j); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
// unary minus |
|
Matrix<Type, M, N> operator-() const |
|
{ |
|
Matrix<Type, M, N> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i , j) = -self(i, j); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
void operator+=(const Matrix<Type, M, N> &other) |
|
{ |
|
Matrix<Type, M, N> &self = *this; |
|
self = self + other; |
|
} |
|
|
|
void operator-=(const Matrix<Type, M, N> &other) |
|
{ |
|
Matrix<Type, M, N> &self = *this; |
|
self = self - other; |
|
} |
|
|
|
template<size_t P> |
|
void operator*=(const Matrix<Type, N, P> &other) |
|
{ |
|
Matrix<Type, M, N> &self = *this; |
|
self = self * other; |
|
} |
|
|
|
/** |
|
* Scalar Operations |
|
*/ |
|
|
|
Matrix<Type, M, N> operator*(Type scalar) const |
|
{ |
|
Matrix<Type, M, N> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i , j) = self(i, j) * scalar; |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
inline Matrix<Type, M, N> operator/(Type scalar) const |
|
{ |
|
return (*this)*(1/scalar); |
|
} |
|
|
|
Matrix<Type, M, N> operator+(Type scalar) const |
|
{ |
|
Matrix<Type, M, N> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(i , j) = self(i, j) + scalar; |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
inline Matrix<Type, M, N> operator-(Type scalar) const |
|
{ |
|
return (*this) + (-1*scalar); |
|
} |
|
|
|
void operator*=(Type scalar) |
|
{ |
|
Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
self(i, j) = self(i, j) * scalar; |
|
} |
|
} |
|
} |
|
|
|
void operator/=(Type scalar) |
|
{ |
|
Matrix<Type, M, N> &self = *this; |
|
self = self * (1.0f / scalar); |
|
} |
|
|
|
inline void operator+=(Type scalar) |
|
{ |
|
*this = (*this) + scalar; |
|
} |
|
|
|
inline void operator-=(Type scalar) |
|
{ |
|
*this = (*this) - scalar; |
|
} |
|
|
|
|
|
/** |
|
* Misc. Functions |
|
*/ |
|
|
|
void print() const |
|
{ |
|
const Matrix<Type, M, N> &self = *this; |
|
printf("\n"); |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
printf("["); |
|
|
|
for (size_t j = 0; j < N; j++) { |
|
printf("%10g\t", double(self(i, j))); |
|
} |
|
|
|
printf("]\n"); |
|
} |
|
} |
|
|
|
Matrix<Type, N, M> transpose() const |
|
{ |
|
Matrix<Type, N, M> res; |
|
const Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
res(j, i) = self(i, j); |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
|
|
// tranpose alias |
|
inline Matrix<Type, N, M> T() const |
|
{ |
|
return transpose(); |
|
} |
|
|
|
void setZero() |
|
{ |
|
memset(_data, 0, sizeof(_data)); |
|
} |
|
|
|
void setAll(Type val) |
|
{ |
|
Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
for (size_t j = 0; j < N; j++) { |
|
self(i, j) = val; |
|
} |
|
} |
|
} |
|
|
|
inline void setOne() |
|
{ |
|
setAll(1); |
|
} |
|
|
|
void setIdentity() |
|
{ |
|
setZero(); |
|
Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M and i < N; i++) { |
|
self(i, i) = 1; |
|
} |
|
} |
|
|
|
inline void swapRows(size_t a, size_t b) |
|
{ |
|
if (a == b) { |
|
return; |
|
} |
|
|
|
Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t j = 0; j < N; j++) { |
|
Type tmp = self(a, j); |
|
self(a, j) = self(b, j); |
|
self(b, j) = tmp; |
|
} |
|
} |
|
|
|
inline void swapCols(size_t a, size_t b) |
|
{ |
|
if (a == b) { |
|
return; |
|
} |
|
|
|
Matrix<Type, M, N> &self = *this; |
|
|
|
for (size_t i = 0; i < M; i++) { |
|
Type tmp = self(i, a); |
|
self(i, a) = self(i, b); |
|
self(i, b) = tmp; |
|
} |
|
} |
|
|
|
Matrix<Type, M, N> abs() |
|
{ |
|
Matrix<Type, M, N> r; |
|
for (int i=0; i<M; i++) { |
|
for (int j=0; j<M; j++) { |
|
r(i,j) = Type(fabs((*this)(i,j))); |
|
} |
|
} |
|
return r; |
|
} |
|
|
|
Type max() |
|
{ |
|
Type max_val = (*this)(0,0); |
|
for (int i=0; i<M; i++) { |
|
for (int j=0; j<M; j++) { |
|
Type val = (*this)(i,j); |
|
if (val > max_val) { |
|
max_val = val; |
|
} |
|
} |
|
} |
|
return max_val; |
|
} |
|
|
|
Type min() |
|
{ |
|
Type min_val = (*this)(0,0); |
|
for (int i=0; i<M; i++) { |
|
for (int j=0; j<M; j++) { |
|
Type val = (*this)(i,j); |
|
if (val < min_val) { |
|
min_val = val; |
|
} |
|
} |
|
} |
|
return min_val; |
|
} |
|
|
|
}; |
|
|
|
template<typename Type, size_t M, size_t N> |
|
Matrix<Type, M, N> zeros() { |
|
Matrix<Type, M, N> m; |
|
m.setZero(); |
|
return m; |
|
} |
|
|
|
template<typename Type, size_t M, size_t N> |
|
Matrix<Type, M, N> ones() { |
|
Matrix<Type, M, N> m; |
|
m.setOne(); |
|
return m; |
|
} |
|
|
|
typedef Matrix<float, 3, 3> Matrix3f; |
|
|
|
}; // namespace matrix |
|
|
|
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
|
|
|