You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
11 KiB
297 lines
11 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file terrain_estimator.cpp |
|
* Function for fusing rangefinder measurements to estimate terrain vertical position/ |
|
* |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
|
|
bool Ekf::initHagl() |
|
{ |
|
bool initialized = false; |
|
|
|
if (!_control_status.flags.in_air) { |
|
// if on ground, do not trust the range sensor, but assume a ground clearance |
|
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance; |
|
// use the ground clearance value as our uncertainty |
|
_terrain_var = sq(_params.rng_gnd_clearance); |
|
_time_last_fake_hagl_fuse = _time_last_imu; |
|
initialized = true; |
|
|
|
} else if (shouldUseRangeFinderForHagl() |
|
&& _range_sensor.isDataHealthy()) { |
|
// if we have a fresh measurement, use it to initialise the terrain estimator |
|
_terrain_vpos = _state.pos(2) + _range_sensor.getDistBottom(); |
|
// initialise state variance to variance of measurement |
|
_terrain_var = sq(_params.range_noise); |
|
// success |
|
initialized = true; |
|
|
|
} else if (shouldUseOpticalFlowForHagl() |
|
&& _flow_for_terrain_data_ready) { |
|
// initialise terrain vertical position to origin as this is the best guess we have |
|
_terrain_vpos = fmaxf(0.0f, _state.pos(2)); |
|
_terrain_var = 100.0f; |
|
initialized = true; |
|
|
|
} else { |
|
// no information - cannot initialise |
|
} |
|
|
|
if (initialized) { |
|
// has initialized with valid data |
|
_time_last_hagl_fuse = _time_last_imu; |
|
} |
|
|
|
return initialized; |
|
} |
|
|
|
void Ekf::runTerrainEstimator() |
|
{ |
|
// If we are on ground, store the local position and time to use as a reference |
|
if (!_control_status.flags.in_air) { |
|
_last_on_ground_posD = _state.pos(2); |
|
} |
|
|
|
// Perform initialisation check and |
|
// on ground, continuously reset the terrain estimator |
|
if (!_terrain_initialised || !_control_status.flags.in_air) { |
|
_terrain_initialised = initHagl(); |
|
|
|
} else { |
|
|
|
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle |
|
|
|
// process noise due to errors in vehicle height estimate |
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise); |
|
|
|
// process noise due to terrain gradient |
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) |
|
* (sq(_state.vel(0)) + sq(_state.vel(1))); |
|
|
|
// limit the variance to prevent it becoming badly conditioned |
|
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f); |
|
|
|
// Fuse range finder data if available |
|
if (shouldUseRangeFinderForHagl() |
|
&& _range_sensor.isDataHealthy()) { |
|
fuseHagl(); |
|
} |
|
|
|
if (shouldUseOpticalFlowForHagl() |
|
&& _flow_for_terrain_data_ready) { |
|
fuseFlowForTerrain(); |
|
_flow_for_terrain_data_ready = false; |
|
} |
|
|
|
// constrain _terrain_vpos to be a minimum of _params.rng_gnd_clearance larger than _state.pos(2) |
|
if (_terrain_vpos - _state.pos(2) < _params.rng_gnd_clearance) { |
|
_terrain_vpos = _params.rng_gnd_clearance + _state.pos(2); |
|
} |
|
} |
|
|
|
updateTerrainValidity(); |
|
} |
|
|
|
void Ekf::fuseHagl() |
|
{ |
|
// get a height above ground measurement from the range finder assuming a flat earth |
|
const float meas_hagl = _range_sensor.getDistBottom(); |
|
|
|
// predict the hagl from the vehicle position and terrain height |
|
const float pred_hagl = _terrain_vpos - _state.pos(2); |
|
|
|
// calculate the innovation |
|
_hagl_innov = pred_hagl - meas_hagl; |
|
|
|
// calculate the observation variance adding the variance of the vehicles own height uncertainty |
|
const float obs_variance = fmaxf(P(9,9) * _params.vehicle_variance_scaler, 0.0f) |
|
+ sq(_params.range_noise) |
|
+ sq(_params.range_noise_scaler * _range_sensor.getRange()); |
|
|
|
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion |
|
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance); |
|
|
|
// perform an innovation consistency check and only fuse data if it passes |
|
const float gate_size = fmaxf(_params.range_innov_gate, 1.0f); |
|
_hagl_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var); |
|
|
|
if (_hagl_test_ratio <= 1.0f) { |
|
// calculate the Kalman gain |
|
const float gain = _terrain_var / _hagl_innov_var; |
|
// correct the state |
|
_terrain_vpos -= gain * _hagl_innov; |
|
// correct the variance |
|
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f); |
|
// record last successful fusion event |
|
_time_last_hagl_fuse = _time_last_imu; |
|
_innov_check_fail_status.flags.reject_hagl = false; |
|
|
|
} else { |
|
// If we have been rejecting range data for too long, reset to measurement |
|
const uint64_t timeout = static_cast<uint64_t>(_params.terrain_timeout * 1e6f); |
|
if (isTimedOut(_time_last_hagl_fuse, timeout)) { |
|
_terrain_vpos = _state.pos(2) + meas_hagl; |
|
_terrain_var = obs_variance; |
|
_terrain_vpos_reset_counter++; |
|
|
|
} else { |
|
_innov_check_fail_status.flags.reject_hagl = true; |
|
} |
|
} |
|
} |
|
|
|
void Ekf::fuseFlowForTerrain() |
|
{ |
|
// calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed |
|
// correct for gyro bias errors in the data used to do the motion compensation |
|
// Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis. |
|
const Vector2f opt_flow_rate = _flow_compensated_XY_rad / _flow_sample_delayed.dt + Vector2f(_flow_gyro_bias); |
|
|
|
// get latest estimated orientation |
|
const float q0 = _state.quat_nominal(0); |
|
const float q1 = _state.quat_nominal(1); |
|
const float q2 = _state.quat_nominal(2); |
|
const float q3 = _state.quat_nominal(3); |
|
|
|
// calculate the optical flow observation variance |
|
const float R_LOS = calcOptFlowMeasVar(); |
|
|
|
// get rotation matrix from earth to body |
|
const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal); |
|
|
|
// calculate the sensor position relative to the IMU |
|
const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body; |
|
|
|
// calculate the velocity of the sensor relative to the imu in body frame |
|
// Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign |
|
const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body; |
|
|
|
// calculate the velocity of the sensor in the earth frame |
|
const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body; |
|
|
|
// rotate into body frame |
|
const Vector3f vel_body = earth_to_body * vel_rel_earth; |
|
|
|
const float t0 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3; |
|
|
|
// constrain terrain to minimum allowed value and predict height above ground |
|
_terrain_vpos = fmaxf(_terrain_vpos, _params.rng_gnd_clearance + _state.pos(2)); |
|
const float pred_hagl_inv = 1.f / (_terrain_vpos - _state.pos(2)); |
|
|
|
// Calculate observation matrix for flow around the vehicle x axis |
|
const float Hx = vel_body(1) * t0 * pred_hagl_inv * pred_hagl_inv; |
|
|
|
// Constrain terrain variance to be non-negative |
|
_terrain_var = fmaxf(_terrain_var, 0.0f); |
|
|
|
// Cacluate innovation variance |
|
_flow_innov_var(0) = Hx * Hx * _terrain_var + R_LOS; |
|
|
|
// calculate the kalman gain for the flow x measurement |
|
const float Kx = _terrain_var * Hx / _flow_innov_var(0); |
|
|
|
// calculate prediced optical flow about x axis |
|
const float pred_flow_x = vel_body(1) * earth_to_body(2, 2) * pred_hagl_inv; |
|
|
|
// calculate flow innovation (x axis) |
|
_flow_innov(0) = pred_flow_x - opt_flow_rate(0); |
|
|
|
// calculate correction term for terrain variance |
|
const float KxHxP = Kx * Hx * _terrain_var; |
|
|
|
// innovation consistency check |
|
const float gate_size = fmaxf(_params.flow_innov_gate, 1.0f); |
|
float flow_test_ratio = sq(_flow_innov(0)) / (sq(gate_size) * _flow_innov_var(0)); |
|
|
|
// do not perform measurement update if badly conditioned |
|
if (flow_test_ratio <= 1.0f) { |
|
_terrain_vpos += Kx * _flow_innov(0); |
|
// guard against negative variance |
|
_terrain_var = fmaxf(_terrain_var - KxHxP, 0.0f); |
|
_time_last_flow_terrain_fuse = _time_last_imu; |
|
} |
|
|
|
// Calculate observation matrix for flow around the vehicle y axis |
|
const float Hy = -vel_body(0) * t0 * pred_hagl_inv * pred_hagl_inv; |
|
|
|
// Calculuate innovation variance |
|
_flow_innov_var(1) = Hy * Hy * _terrain_var + R_LOS; |
|
|
|
// calculate the kalman gain for the flow y measurement |
|
const float Ky = _terrain_var * Hy / _flow_innov_var(1); |
|
|
|
// calculate prediced optical flow about y axis |
|
const float pred_flow_y = -vel_body(0) * earth_to_body(2, 2) * pred_hagl_inv; |
|
|
|
// calculate flow innovation (y axis) |
|
_flow_innov(1) = pred_flow_y - opt_flow_rate(1); |
|
|
|
// calculate correction term for terrain variance |
|
const float KyHyP = Ky * Hy * _terrain_var; |
|
|
|
// innovation consistency check |
|
flow_test_ratio = sq(_flow_innov(1)) / (sq(gate_size) * _flow_innov_var(1)); |
|
|
|
if (flow_test_ratio <= 1.0f) { |
|
_terrain_vpos += Ky * _flow_innov(1); |
|
// guard against negative variance |
|
_terrain_var = fmaxf(_terrain_var - KyHyP, 0.0f); |
|
_time_last_flow_terrain_fuse = _time_last_imu; |
|
} |
|
} |
|
|
|
void Ekf::updateTerrainValidity() |
|
{ |
|
// we have been fusing range finder measurements in the last 5 seconds |
|
const bool recent_range_fusion = isRecent(_time_last_hagl_fuse, (uint64_t)5e6); |
|
|
|
// we have been fusing optical flow measurements for terrain estimation within the last 5 seconds |
|
// this can only be the case if the main filter does not fuse optical flow |
|
const bool recent_flow_for_terrain_fusion = isRecent(_time_last_flow_terrain_fuse, (uint64_t)5e6); |
|
|
|
_hagl_valid = (_terrain_initialised && (recent_range_fusion || recent_flow_for_terrain_fusion)); |
|
|
|
_hagl_sensor_status.flags.range_finder = shouldUseRangeFinderForHagl() |
|
&& recent_range_fusion |
|
&& (_time_last_fake_hagl_fuse != _time_last_hagl_fuse); |
|
|
|
_hagl_sensor_status.flags.flow = shouldUseOpticalFlowForHagl() && recent_flow_for_terrain_fusion; |
|
}
|
|
|