You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
348 lines
13 KiB
348 lines
13 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file terrain_estimator.cpp |
|
* Function for fusing rangefinder measurements to estimate terrain vertical position/ |
|
* |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
|
|
bool Ekf::initHagl() |
|
{ |
|
// get most recent range measurement from buffer |
|
const rangeSample &latest_measurement = _range_buffer.get_newest(); |
|
|
|
if (!_rng_hgt_faulty && (_time_last_imu - latest_measurement.time_us) < (uint64_t)2e5 && _R_rng_to_earth_2_2 > _params.range_cos_max_tilt) { |
|
// if we have a fresh measurement, use it to initialise the terrain estimator |
|
_terrain_vpos = _state.pos(2) + latest_measurement.rng * _R_rng_to_earth_2_2; |
|
// initialise state variance to variance of measurement |
|
_terrain_var = sq(_params.range_noise); |
|
// success |
|
return true; |
|
} else if (_flow_for_terrain_data_ready) { |
|
// initialise terrain vertical position to origin as this is the best guess we have |
|
_terrain_vpos = fmaxf(0.0f, _state.pos(2)); |
|
_terrain_var = 100.0f; |
|
return true; |
|
} else if (!_control_status.flags.in_air) { |
|
// if on ground we assume a ground clearance |
|
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance; |
|
// Use the ground clearance value as our uncertainty |
|
_terrain_var = sq(_params.rng_gnd_clearance); |
|
// this is a guess |
|
return true; |
|
|
|
} else { |
|
// no information - cannot initialise |
|
return false; |
|
} |
|
} |
|
|
|
void Ekf::runTerrainEstimator() |
|
{ |
|
// Perform a continuity check on range finder data |
|
checkRangeDataContinuity(); |
|
|
|
// Perform initialisation check |
|
if (!_terrain_initialised) { |
|
_terrain_initialised = initHagl(); |
|
|
|
} else { |
|
|
|
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle |
|
|
|
// process noise due to errors in vehicle height estimate |
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise); |
|
|
|
// process noise due to terrain gradient |
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) * (sq(_state.vel(0)) + sq(_state.vel( |
|
1))); |
|
|
|
// limit the variance to prevent it becoming badly conditioned |
|
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f); |
|
|
|
// if stationary on the ground and no or bad range data for over a second, fake a measurement |
|
// to handle bad range finder data when on ground |
|
if ((_rng_hgt_faulty || !_range_data_ready) && !_control_status.flags.in_air && _vehicle_at_rest && |
|
(_time_last_imu - _time_last_hagl_fuse) > (uint64_t)1E6) { |
|
_range_data_ready = true; |
|
_rng_hgt_faulty = false; |
|
_range_sample_delayed.rng = _params.rng_gnd_clearance; |
|
} |
|
|
|
// Fuse range finder data if available |
|
if (_range_data_ready && !_rng_hgt_faulty) { |
|
fuseHagl(); |
|
|
|
// update range sensor angle parameters in case they have changed |
|
// we do this here to avoid doing those calculations at a high rate |
|
_sin_tilt_rng = sinf(_params.rng_sens_pitch); |
|
_cos_tilt_rng = cosf(_params.rng_sens_pitch); |
|
|
|
} |
|
|
|
if (_flow_for_terrain_data_ready) { |
|
fuseFlowForTerrain(); |
|
_flow_for_terrain_data_ready = false; |
|
} |
|
|
|
// constrain _terrain_vpos to be a minimum of _params.rng_gnd_clearance larger than _state.pos(2) |
|
if (_terrain_vpos - _state.pos(2) < _params.rng_gnd_clearance) { |
|
_terrain_vpos = _params.rng_gnd_clearance + _state.pos(2); |
|
} |
|
} |
|
|
|
// Update terrain validity |
|
update_terrain_valid(); |
|
} |
|
|
|
void Ekf::fuseHagl() |
|
{ |
|
// If the vehicle is excessively tilted, do not try to fuse range finder observations |
|
if (_R_rng_to_earth_2_2 > _params.range_cos_max_tilt) { |
|
// get a height above ground measurement from the range finder assuming a flat earth |
|
float meas_hagl = _range_sample_delayed.rng * _R_rng_to_earth_2_2; |
|
|
|
// predict the hagl from the vehicle position and terrain height |
|
float pred_hagl = _terrain_vpos - _state.pos(2); |
|
|
|
// calculate the innovation |
|
_hagl_innov = pred_hagl - meas_hagl; |
|
|
|
// calculate the observation variance adding the variance of the vehicles own height uncertainty |
|
float obs_variance = fmaxf(P[9][9] * _params.vehicle_variance_scaler, 0.0f) + sq(_params.range_noise) + sq(_params.range_noise_scaler * _range_sample_delayed.rng); |
|
|
|
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion |
|
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance); |
|
|
|
// perform an innovation consistency check and only fuse data if it passes |
|
float gate_size = fmaxf(_params.range_innov_gate, 1.0f); |
|
_terr_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var); |
|
|
|
if (_terr_test_ratio <= 1.0f) { |
|
// calculate the Kalman gain |
|
float gain = _terrain_var / _hagl_innov_var; |
|
// correct the state |
|
_terrain_vpos -= gain * _hagl_innov; |
|
// correct the variance |
|
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f); |
|
// record last successful fusion event |
|
_time_last_hagl_fuse = _time_last_imu; |
|
_innov_check_fail_status.flags.reject_hagl = false; |
|
} else { |
|
// If we have been rejecting range data for too long, reset to measurement |
|
if ((_time_last_imu - _time_last_hagl_fuse) > (uint64_t)10E6) { |
|
_terrain_vpos = _state.pos(2) + meas_hagl; |
|
_terrain_var = obs_variance; |
|
} else { |
|
_innov_check_fail_status.flags.reject_hagl = true; |
|
} |
|
} |
|
} else { |
|
_innov_check_fail_status.flags.reject_hagl = true; |
|
return; |
|
} |
|
} |
|
|
|
void Ekf::fuseFlowForTerrain() |
|
{ |
|
// calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed |
|
// correct for gyro bias errors in the data used to do the motion compensation |
|
// Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis. |
|
Vector2f opt_flow_rate; |
|
opt_flow_rate(0) = _flowRadXYcomp(0) / _flow_sample_delayed.dt + _flow_gyro_bias(0); |
|
opt_flow_rate(1) = _flowRadXYcomp(1) / _flow_sample_delayed.dt + _flow_gyro_bias(1); |
|
|
|
// get latest estimated orientation |
|
float q0 = _state.quat_nominal(0); |
|
float q1 = _state.quat_nominal(1); |
|
float q2 = _state.quat_nominal(2); |
|
float q3 = _state.quat_nominal(3); |
|
|
|
// calculate the optical flow observation variance |
|
float R_LOS = calcOptFlowMeasVar(); |
|
|
|
// get rotation matrix from earth to body |
|
Dcmf earth_to_body(_state.quat_nominal); |
|
earth_to_body = earth_to_body.transpose(); |
|
|
|
// calculate the sensor position relative to the IMU |
|
Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body; |
|
|
|
// calculate the velocity of the sensor relative to the imu in body frame |
|
// Note: _flow_sample_delayed.gyroXYZ is the negative of the body angular velocity, thus use minus sign |
|
Vector3f vel_rel_imu_body = cross_product(-_flow_sample_delayed.gyroXYZ / _flow_sample_delayed.dt, pos_offset_body); |
|
|
|
// calculate the velocity of the sensor in the earth frame |
|
Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body; |
|
|
|
// rotate into body frame |
|
Vector3f vel_body = earth_to_body * vel_rel_earth; |
|
|
|
float t0 = q0*q0 - q1*q1 - q2*q2 + q3*q3; |
|
|
|
// constrain terrain to minimum allowed value and predict height above ground |
|
_terrain_vpos = fmaxf(_terrain_vpos, _params.rng_gnd_clearance + _state.pos(2)); |
|
float pred_hagl = _terrain_vpos - _state.pos(2); |
|
|
|
// Calculate observation matrix for flow around the vehicle x axis |
|
float Hx = vel_body(1) * t0 /(pred_hagl * pred_hagl); |
|
|
|
// Constrain terrain variance to be non-negative |
|
_terrain_var = fmaxf(_terrain_var, 0.0f); |
|
|
|
// Cacluate innovation variance |
|
_flow_innov_var[0] = Hx * Hx * _terrain_var + R_LOS; |
|
|
|
// calculate the kalman gain for the flow x measurement |
|
float Kx = _terrain_var * Hx / _flow_innov_var[0]; |
|
|
|
// calculate prediced optical flow about x axis |
|
float pred_flow_x = vel_body(1) * earth_to_body(2,2) / pred_hagl; |
|
|
|
// calculate flow innovation (x axis) |
|
_flow_innov[0] = pred_flow_x - opt_flow_rate(0); |
|
|
|
// calculate correction term for terrain variance |
|
float KxHxP = Kx * Hx * _terrain_var; |
|
|
|
// innovation consistency check |
|
float gate_size = fmaxf(_params.flow_innov_gate, 1.0f); |
|
float flow_test_ratio = sq(_flow_innov[0]) / (sq(gate_size) * _flow_innov_var[0]); |
|
|
|
// do not perform measurement update if badly conditioned |
|
if (flow_test_ratio <= 1.0f) { |
|
_terrain_vpos += Kx * _flow_innov[0]; |
|
// guard against negative variance |
|
_terrain_var = fmaxf(_terrain_var - KxHxP, 0.0f); |
|
_time_last_of_fuse = _time_last_imu; |
|
} |
|
|
|
// Calculate observation matrix for flow around the vehicle y axis |
|
float Hy = -vel_body(0) * t0 /(pred_hagl * pred_hagl); |
|
|
|
// Calculuate innovation variance |
|
_flow_innov_var[1] = Hy * Hy * _terrain_var + R_LOS; |
|
|
|
// calculate the kalman gain for the flow y measurement |
|
float Ky = _terrain_var * Hy / _flow_innov_var[1]; |
|
|
|
// calculate prediced optical flow about y axis |
|
float pred_flow_y = -vel_body(0) * earth_to_body(2,2) / pred_hagl; |
|
|
|
// calculate flow innovation (y axis) |
|
_flow_innov[1] = pred_flow_y - opt_flow_rate(1); |
|
|
|
// calculate correction term for terrain variance |
|
float KyHyP = Ky * Hy * _terrain_var; |
|
|
|
// innovation consistency check |
|
flow_test_ratio = sq(_flow_innov[1]) / (sq(gate_size) * _flow_innov_var[1]); |
|
|
|
if (flow_test_ratio <= 1.0f) { |
|
_terrain_vpos += Ky * _flow_innov[1]; |
|
// guard against negative variance |
|
_terrain_var = fmaxf(_terrain_var - KyHyP, 0.0f); |
|
_time_last_of_fuse = _time_last_imu; |
|
} |
|
} |
|
|
|
// return true if the terrain height estimate is valid |
|
bool Ekf::get_terrain_valid() |
|
{ |
|
return _hagl_valid; |
|
} |
|
|
|
// determine terrain validity |
|
void Ekf::update_terrain_valid() |
|
{ |
|
// we have been fusing range finder measurements in the last 5 seconds |
|
bool recent_range_fusion = (_time_last_imu - _time_last_hagl_fuse) < 5*1000*1000; |
|
|
|
// we have been fusing optical flow measurements for terrain estimation within the last 5 seconds |
|
// this can only be the case if the main filter does not fuse optical flow |
|
bool recent_flow_for_terrain_fusion = ((_time_last_imu - _time_last_of_fuse) < 5*1000*1000) && !_control_status.flags.opt_flow; |
|
|
|
|
|
if (_terrain_initialised && (recent_range_fusion || recent_flow_for_terrain_fusion)) { |
|
|
|
_hagl_valid = true; |
|
|
|
} else { |
|
_hagl_valid = false; |
|
} |
|
} |
|
|
|
// get the estimated vertical position of the terrain relative to the NED origin |
|
void Ekf::get_terrain_vert_pos(float *ret) |
|
{ |
|
memcpy(ret, &_terrain_vpos, sizeof(float)); |
|
} |
|
|
|
void Ekf::get_hagl_innov(float *hagl_innov) |
|
{ |
|
memcpy(hagl_innov, &_hagl_innov, sizeof(_hagl_innov)); |
|
} |
|
|
|
|
|
void Ekf::get_hagl_innov_var(float *hagl_innov_var) |
|
{ |
|
memcpy(hagl_innov_var, &_hagl_innov_var, sizeof(_hagl_innov_var)); |
|
} |
|
|
|
// check that the range finder data is continuous |
|
void Ekf::checkRangeDataContinuity() |
|
{ |
|
// update range data continuous flag (1Hz ie 2000 ms) |
|
/* Timing in micro seconds */ |
|
|
|
/* Apply a 2.0 sec low pass filter to the time delta from the last range finder updates */ |
|
float alpha = 0.5f * _dt_update; |
|
_dt_last_range_update_filt_us = _dt_last_range_update_filt_us * (1.0f - alpha) + alpha * |
|
(_imu_sample_delayed.time_us - _range_sample_delayed.time_us); |
|
|
|
_dt_last_range_update_filt_us = fminf(_dt_last_range_update_filt_us, 4e6f); |
|
|
|
if (_dt_last_range_update_filt_us < 2e6f) { |
|
_range_data_continuous = true; |
|
|
|
} else { |
|
_range_data_continuous = false; |
|
} |
|
}
|
|
|