You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

981 lines
46 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.h
* Class for core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#pragma once
#include "estimator_interface.h"
#include "EKFGSF_yaw.h"
class Ekf final : public EstimatorInterface
{
public:
static constexpr uint8_t _k_num_states{24}; ///< number of EKF states
typedef matrix::Vector<float, _k_num_states> Vector24f;
typedef matrix::SquareMatrix<float, _k_num_states> SquareMatrix24f;
typedef matrix::SquareMatrix<float, 2> Matrix2f;
typedef matrix::Vector<float, 4> Vector4f;
template<int ... Idxs>
using SparseVector24f = matrix::SparseVectorf<24, Idxs...>;
Ekf() = default;
virtual ~Ekf() = default;
// initialise variables to sane values (also interface class)
bool init(uint64_t timestamp) override;
// should be called every time new data is pushed into the filter
bool update();
void getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const;
void getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const;
void getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const;
void getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const;
void getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const;
void getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const;
void getBaroHgtInnov(float &baro_hgt_innov) const { baro_hgt_innov = _baro_hgt_innov(2); }
void getBaroHgtInnovVar(float &baro_hgt_innov_var) const { baro_hgt_innov_var = _baro_hgt_innov_var(2); }
void getBaroHgtInnovRatio(float &baro_hgt_innov_ratio) const { baro_hgt_innov_ratio = _baro_hgt_test_ratio(1); }
void getRngHgtInnov(float &rng_hgt_innov) const { rng_hgt_innov = _rng_hgt_innov(2); }
void getRngHgtInnovVar(float &rng_hgt_innov_var) const { rng_hgt_innov_var = _rng_hgt_innov_var(2); }
void getRngHgtInnovRatio(float &rng_hgt_innov_ratio) const { rng_hgt_innov_ratio = _rng_hgt_test_ratio(1); }
void getAuxVelInnov(float aux_vel_innov[2]) const;
void getAuxVelInnovVar(float aux_vel_innov[2]) const;
void getAuxVelInnovRatio(float &aux_vel_innov_ratio) const { aux_vel_innov_ratio = _aux_vel_test_ratio(0); }
void getFlowInnov(float flow_innov[2]) const { _flow_innov.copyTo(flow_innov); }
void getFlowInnovVar(float flow_innov_var[2]) const { _flow_innov_var.copyTo(flow_innov_var); }
void getFlowInnovRatio(float &flow_innov_ratio) const { flow_innov_ratio = _optflow_test_ratio; }
const Vector2f &getFlowVelBody() const { return _flow_vel_body; }
const Vector2f &getFlowVelNE() const { return _flow_vel_ne; }
const Vector2f &getFlowCompensated() const { return _flow_compensated_XY_rad; }
const Vector2f &getFlowUncompensated() const { return _flow_sample_delayed.flow_xy_rad; }
const Vector3f &getFlowGyro() const { return _flow_sample_delayed.gyro_xyz; }
void getHeadingInnov(float &heading_innov) const { heading_innov = _heading_innov; }
void getHeadingInnovVar(float &heading_innov_var) const { heading_innov_var = _heading_innov_var; }
void getHeadingInnovRatio(float &heading_innov_ratio) const { heading_innov_ratio = _yaw_test_ratio; }
void getMagInnov(float mag_innov[3]) const { _mag_innov.copyTo(mag_innov); }
void getMagInnovVar(float mag_innov_var[3]) const { _mag_innov_var.copyTo(mag_innov_var); }
void getMagInnovRatio(float &mag_innov_ratio) const { mag_innov_ratio = _mag_test_ratio.max(); }
void getDragInnov(float drag_innov[2]) const { _drag_innov.copyTo(drag_innov); }
void getDragInnovVar(float drag_innov_var[2]) const { _drag_innov_var.copyTo(drag_innov_var); }
void getDragInnovRatio(float drag_innov_ratio[2]) const { _drag_test_ratio.copyTo(drag_innov_ratio); }
void getAirspeedInnov(float &airspeed_innov) const { airspeed_innov = _airspeed_innov; }
void getAirspeedInnovVar(float &airspeed_innov_var) const { airspeed_innov_var = _airspeed_innov_var; }
void getAirspeedInnovRatio(float &airspeed_innov_ratio) const { airspeed_innov_ratio = _tas_test_ratio; }
void getBetaInnov(float &beta_innov) const { beta_innov = _beta_innov; }
void getBetaInnovVar(float &beta_innov_var) const { beta_innov_var = _beta_innov_var; }
void getBetaInnovRatio(float &beta_innov_ratio) const { beta_innov_ratio = _beta_test_ratio; }
void getHaglInnov(float &hagl_innov) const { hagl_innov = _hagl_innov; }
void getHaglInnovVar(float &hagl_innov_var) const { hagl_innov_var = _hagl_innov_var; }
void getHaglInnovRatio(float &hagl_innov_ratio) const { hagl_innov_ratio = _hagl_test_ratio; }
// get the state vector at the delayed time horizon
matrix::Vector<float, 24> getStateAtFusionHorizonAsVector() const;
// get the wind velocity in m/s
const Vector2f &getWindVelocity() const { return _state.wind_vel; };
// get the wind velocity var
Vector2f getWindVelocityVariance() const { return P.slice<2, 2>(22, 22).diag(); }
// get the true airspeed in m/s
void get_true_airspeed(float *tas) const;
// get the full covariance matrix
const matrix::SquareMatrix<float, 24> &covariances() const { return P; }
// get the diagonal elements of the covariance matrix
matrix::Vector<float, 24> covariances_diagonal() const { return P.diag(); }
// get the orientation (quaterion) covariances
matrix::SquareMatrix<float, 4> orientation_covariances() const { return P.slice<4, 4>(0, 0); }
// get the linear velocity covariances
matrix::SquareMatrix<float, 3> velocity_covariances() const { return P.slice<3, 3>(4, 4); }
// get the position covariances
matrix::SquareMatrix<float, 3> position_covariances() const { return P.slice<3, 3>(7, 7); }
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
bool collect_gps(const gps_message &gps) override;
// get the ekf WGS-84 origin position and height and the system time it was last set
// return true if the origin is valid
bool getEkfGlobalOrigin(uint64_t &origin_time, double &latitude, double &longitude, float &origin_alt) const;
bool setEkfGlobalOrigin(const double latitude, const double longitude, const float altitude);
float getEkfGlobalOriginAltitude() const { return _gps_alt_ref; }
bool setEkfGlobalOriginAltitude(const float altitude);
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) const;
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) const;
// get the 1-sigma horizontal and vertical velocity uncertainty
void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) const;
// get the vehicle control limits required by the estimator to keep within sensor limitations
void get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) const;
// Reset all IMU bias states and covariances to initial alignment values.
void resetImuBias();
void resetGyroBias();
void resetAccelBias();
// Reset all magnetometer bias states and covariances to initial alignment values.
void resetMagBias();
Vector3f getVelocityVariance() const { return P.slice<3, 3>(4, 4).diag(); };
Vector3f getPositionVariance() const { return P.slice<3, 3>(7, 7).diag(); }
// return an array containing the output predictor angular, velocity and position tracking
// error magnitudes (rad), (m/sec), (m)
const Vector3f &getOutputTrackingError() const { return _output_tracking_error; }
/*
First argument returns GPS drift metrics in the following array locations
0 : Horizontal position drift rate (m/s)
1 : Vertical position drift rate (m/s)
2 : Filtered horizontal velocity (m/s)
Second argument returns true when IMU movement is blocking the drift calculation
Function returns true if the metrics have been updated and not returned previously by this function
*/
bool get_gps_drift_metrics(float drift[3], bool *blocked);
// return true if the global position estimate is valid
// return true if the origin is set we are not doing unconstrained free inertial navigation
// and have not started using synthetic position observations to constrain drift
bool global_position_is_valid() const
{
return (_NED_origin_initialised && local_position_is_valid());
}
// return true if the local position estimate is valid
bool local_position_is_valid() const
{
return (!_deadreckon_time_exceeded && !_using_synthetic_position);
}
bool isTerrainEstimateValid() const { return _hagl_valid; };
uint8_t getTerrainEstimateSensorBitfield() const { return _hagl_sensor_status.value; }
// get the estimated terrain vertical position relative to the NED origin
float getTerrainVertPos() const { return _terrain_vpos; };
// get the terrain variance
float get_terrain_var() const { return _terrain_var; }
Vector3f getGyroBias() const { return _state.delta_ang_bias / _dt_ekf_avg; } // get the gyroscope bias in rad/s
Vector3f getAccelBias() const { return _state.delta_vel_bias / _dt_ekf_avg; } // get the accelerometer bias in m/s**2
const Vector3f &getMagBias() const { return _state.mag_B; }
Vector3f getGyroBiasVariance() const { return Vector3f{P(10, 10), P(11, 11), P(12, 12)} / _dt_ekf_avg; } // get the gyroscope bias variance in rad/s
Vector3f getAccelBiasVariance() const { return Vector3f{P(13, 13), P(14, 14), P(15, 15)} / _dt_ekf_avg; } // get the accelerometer bias variance in m/s**2
Vector3f getMagBiasVariance() const { return Vector3f{P(19, 19), P(20, 20), P(21, 21)}; }
// get GPS check status
void get_gps_check_status(uint16_t *val) const { *val = _gps_check_fail_status.value; }
const auto &state_reset_status() const { return _state_reset_status; }
// return the amount the local vertical position changed in the last reset and the number of reset events
void get_posD_reset(float *delta, uint8_t *counter) const
{
*delta = _state_reset_status.posD_change;
*counter = _state_reset_status.posD_counter;
}
// return the amount the local vertical velocity changed in the last reset and the number of reset events
void get_velD_reset(float *delta, uint8_t *counter) const
{
*delta = _state_reset_status.velD_change;
*counter = _state_reset_status.velD_counter;
}
// return the amount the local horizontal position changed in the last reset and the number of reset events
void get_posNE_reset(float delta[2], uint8_t *counter) const
{
_state_reset_status.posNE_change.copyTo(delta);
*counter = _state_reset_status.posNE_counter;
}
// return the amount the local horizontal velocity changed in the last reset and the number of reset events
void get_velNE_reset(float delta[2], uint8_t *counter) const
{
_state_reset_status.velNE_change.copyTo(delta);
*counter = _state_reset_status.velNE_counter;
}
// return the amount the quaternion has changed in the last reset and the number of reset events
void get_quat_reset(float delta_quat[4], uint8_t *counter) const
{
_state_reset_status.quat_change.copyTo(delta_quat);
*counter = _state_reset_status.quat_counter;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned.
void get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas,
float &hagl, float &beta) const;
// return a bitmask integer that describes which state estimates can be used for flight control
void get_ekf_soln_status(uint16_t *status) const;
// return the quaternion defining the rotation from the External Vision to the EKF reference frame
matrix::Quatf getVisionAlignmentQuaternion() const { return Quatf(_R_ev_to_ekf); };
// use the latest IMU data at the current time horizon.
Quatf calculate_quaternion() const;
// set minimum continuous period without GPS fail required to mark a healthy GPS status
void set_min_required_gps_health_time(uint32_t time_us) { _min_gps_health_time_us = time_us; }
// get solution data from the EKF-GSF emergency yaw estimator
// returns false when data is not available
bool getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF],
float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]);
private:
// set the internal states and status to their default value
void reset();
bool initialiseTilt();
// Request the EKF reset the yaw to the estimate from the internal EKF-GSF filter
// and reset the velocity and position states to the GPS. This will cause the EKF
// to ignore the magnetometer for the remainder of flight.
// This should only be used as a last resort before activating a loss of navigation failsafe
void requestEmergencyNavReset() { _do_ekfgsf_yaw_reset = true; }
// check if the EKF is dead reckoning horizontal velocity using inertial data only
void update_deadreckoning_status();
void updateTerrainValidity();
struct {
uint8_t velNE_counter; ///< number of horizontal position reset events (allow to wrap if count exceeds 255)
uint8_t velD_counter; ///< number of vertical velocity reset events (allow to wrap if count exceeds 255)
uint8_t posNE_counter; ///< number of horizontal position reset events (allow to wrap if count exceeds 255)
uint8_t posD_counter; ///< number of vertical position reset events (allow to wrap if count exceeds 255)
uint8_t quat_counter; ///< number of quaternion reset events (allow to wrap if count exceeds 255)
Vector2f velNE_change; ///< North East velocity change due to last reset (m)
float velD_change; ///< Down velocity change due to last reset (m/sec)
Vector2f posNE_change; ///< North, East position change due to last reset (m)
float posD_change; ///< Down position change due to last reset (m)
Quatf quat_change; ///< quaternion delta due to last reset - multiply pre-reset quaternion by this to get post-reset quaternion
} _state_reset_status{}; ///< reset event monitoring structure containing velocity, position, height and yaw reset information
float _dt_ekf_avg{FILTER_UPDATE_PERIOD_S}; ///< average update rate of the ekf
Vector3f _ang_rate_delayed_raw; ///< uncorrected angular rate vector at fusion time horizon (rad/sec)
stateSample _state{}; ///< state struct of the ekf running at the delayed time horizon
bool _filter_initialised{false}; ///< true when the EKF sttes and covariances been initialised
// variables used when position data is being fused using a relative position odometry model
bool _fuse_hpos_as_odom{false}; ///< true when the NE position data is being fused using an odometry assumption
Vector3f _pos_meas_prev; ///< previous value of NED position measurement fused using odometry assumption (m)
Vector2f _hpos_pred_prev; ///< previous value of NE position state used by odometry fusion (m)
bool _hpos_prev_available{false}; ///< true when previous values of the estimate and measurement are available for use
Dcmf _R_ev_to_ekf; ///< transformation matrix that rotates observations from the EV to the EKF navigation frame, initialized with Identity
// booleans true when fresh sensor data is available at the fusion time horizon
bool _gps_data_ready{false}; ///< true when new GPS data has fallen behind the fusion time horizon and is available to be fused
bool _mag_data_ready{false}; ///< true when new magnetometer data has fallen behind the fusion time horizon and is available to be fused
bool _baro_data_ready{false}; ///< true when new baro height data has fallen behind the fusion time horizon and is available to be fused
bool _flow_data_ready{false}; ///< true when the leading edge of the optical flow integration period has fallen behind the fusion time horizon
bool _ev_data_ready{false}; ///< true when new external vision system data has fallen behind the fusion time horizon and is available to be fused
bool _tas_data_ready{false}; ///< true when new true airspeed data has fallen behind the fusion time horizon and is available to be fused
bool _flow_for_terrain_data_ready{false}; /// same flag as "_flow_data_ready" but used for separate terrain estimator
uint64_t _time_prev_gps_us{0}; ///< time stamp of previous GPS data retrieved from the buffer (uSec)
uint64_t _time_last_aiding{0}; ///< amount of time we have been doing inertial only deadreckoning (uSec)
bool _using_synthetic_position{false}; ///< true if we are using a synthetic position to constrain drift
uint64_t _time_last_hor_pos_fuse{0}; ///< time the last fusion of horizontal position measurements was performed (uSec)
uint64_t _time_last_hgt_fuse{0}; ///< time the last fusion of vertical position measurements was performed (uSec)
uint64_t _time_last_hor_vel_fuse{0}; ///< time the last fusion of horizontal velocity measurements was performed (uSec)
uint64_t _time_last_ver_vel_fuse{0}; ///< time the last fusion of verticalvelocity measurements was performed (uSec)
uint64_t _time_last_delpos_fuse{0}; ///< time the last fusion of incremental horizontal position measurements was performed (uSec)
uint64_t _time_last_of_fuse{0}; ///< time the last fusion of optical flow measurements were performed (uSec)
uint64_t _time_last_flow_terrain_fuse{0}; ///< time the last fusion of optical flow measurements for terrain estimation were performed (uSec)
uint64_t _time_last_arsp_fuse{0}; ///< time the last fusion of airspeed measurements were performed (uSec)
uint64_t _time_last_beta_fuse{0}; ///< time the last fusion of synthetic sideslip measurements were performed (uSec)
uint64_t _time_last_fake_pos{0}; ///< last time we faked position measurements to constrain tilt errors during operation without external aiding (uSec)
uint64_t _time_last_gps_yaw_fuse{0}; ///< time the last fusion of GPS yaw measurements were performed (uSec)
Vector2f _last_known_posNE; ///< last known local NE position vector (m)
float _imu_collection_time_adj{0.0f}; ///< the amount of time the IMU collection needs to be advanced to meet the target set by FILTER_UPDATE_PERIOD_MS (sec)
uint64_t _time_acc_bias_check{0}; ///< last time the accel bias check passed (uSec)
uint64_t _delta_time_baro_us{0}; ///< delta time between two consecutive delayed baro samples from the buffer (uSec)
Vector3f _earth_rate_NED; ///< earth rotation vector (NED) in rad/s
Dcmf _R_to_earth; ///< transformation matrix from body frame to earth frame from last EKF prediction
// used by magnetometer fusion mode selection
Vector2f _accel_lpf_NE; ///< Low pass filtered horizontal earth frame acceleration (m/sec**2)
float _yaw_delta_ef{0.0f}; ///< Recent change in yaw angle measured about the earth frame D axis (rad)
float _yaw_rate_lpf_ef{0.0f}; ///< Filtered angular rate about earth frame D axis (rad/sec)
bool _mag_bias_observable{false}; ///< true when there is enough rotation to make magnetometer bias errors observable
bool _yaw_angle_observable{false}; ///< true when there is enough horizontal acceleration to make yaw observable
uint64_t _time_yaw_started{0}; ///< last system time in usec that a yaw rotation manoeuvre was detected
uint8_t _num_bad_flight_yaw_events{0}; ///< number of times a bad heading has been detected in flight and required a yaw reset
uint64_t _mag_use_not_inhibit_us{0}; ///< last system time in usec before magnetometer use was inhibited
bool _mag_inhibit_yaw_reset_req{false}; ///< true when magnetometer inhibit has been active for long enough to require a yaw reset when conditions improve.
float _last_static_yaw{0.0f}; ///< last yaw angle recorded when on ground motion checks were passing (rad)
bool _mag_yaw_reset_req{false}; ///< true when a reset of the yaw using the magnetometer data has been requested
bool _mag_decl_cov_reset{false}; ///< true after the fuseDeclination() function has been used to modify the earth field covariances after a magnetic field reset event.
bool _synthetic_mag_z_active{false}; ///< true if we are generating synthetic magnetometer Z measurements
bool _non_mag_yaw_aiding_running_prev{false}; ///< true when heading is being fused from other sources that are not the magnetometer (for example EV or GPS).
bool _is_yaw_fusion_inhibited{false}; ///< true when yaw sensor use is being inhibited
SquareMatrix24f P; ///< state covariance matrix
Vector3f _delta_vel_bias_var_accum; ///< kahan summation algorithm accumulator for delta velocity bias variance
Vector3f _delta_angle_bias_var_accum; ///< kahan summation algorithm accumulator for delta angle bias variance
Vector3f _last_vel_obs; ///< last velocity observation (m/s)
Vector3f _last_vel_obs_var; ///< last velocity observation variance (m/s)**2
Vector2f _last_fail_hvel_innov; ///< last failed horizontal velocity innovation (m/s)**2
float _vert_pos_innov_ratio; ///< vertical position innovation divided by estimated standard deviation of innovation
uint64_t _vert_pos_fuse_attempt_time_us; ///< last system time in usec vertical position measurement fuson was attempted
float _vert_vel_innov_ratio; ///< standard deviation of vertical velocity innovation
uint64_t _vert_vel_fuse_time_us; ///< last system time in usec time vertical velocity measurement fuson was attempted
Vector3f _gps_vel_innov; ///< GPS velocity innovations (m/sec)
Vector3f _gps_vel_innov_var; ///< GPS velocity innovation variances ((m/sec)**2)
Vector3f _gps_pos_innov; ///< GPS position innovations (m)
Vector3f _gps_pos_innov_var; ///< GPS position innovation variances (m**2)
Vector3f _ev_vel_innov; ///< external vision velocity innovations (m/sec)
Vector3f _ev_vel_innov_var; ///< external vision velocity innovation variances ((m/sec)**2)
Vector3f _ev_pos_innov; ///< external vision position innovations (m)
Vector3f _ev_pos_innov_var; ///< external vision position innovation variances (m**2)
Vector3f _baro_hgt_innov; ///< baro hgt innovations (m)
Vector3f _baro_hgt_innov_var; ///< baro hgt innovation variances (m**2)
Vector3f _rng_hgt_innov; ///< range hgt innovations (m)
Vector3f _rng_hgt_innov_var; ///< range hgt innovation variances (m**2)
Vector3f _aux_vel_innov; ///< horizontal auxiliary velocity innovations: (m/sec)
Vector3f _aux_vel_innov_var; ///< horizontal auxiliary velocity innovation variances: ((m/sec)**2)
float _heading_innov{0.0f}; ///< heading measurement innovation (rad)
float _heading_innov_var{0.0f}; ///< heading measurement innovation variance (rad**2)
Vector3f _mag_innov; ///< earth magnetic field innovations (Gauss)
Vector3f _mag_innov_var; ///< earth magnetic field innovation variance (Gauss**2)
Vector2f _drag_innov; ///< multirotor drag measurement innovation (m/sec**2)
Vector2f _drag_innov_var; ///< multirotor drag measurement innovation variance ((m/sec**2)**2)
float _airspeed_innov{0.0f}; ///< airspeed measurement innovation (m/sec)
float _airspeed_innov_var{0.0f}; ///< airspeed measurement innovation variance ((m/sec)**2)
float _beta_innov{0.0f}; ///< synthetic sideslip measurement innovation (rad)
float _beta_innov_var{0.0f}; ///< synthetic sideslip measurement innovation variance (rad**2)
float _hagl_innov{0.0f}; ///< innovation of the last height above terrain measurement (m)
float _hagl_innov_var{0.0f}; ///< innovation variance for the last height above terrain measurement (m**2)
// optical flow processing
Vector2f _flow_innov; ///< flow measurement innovation (rad/sec)
Vector2f _flow_innov_var; ///< flow innovation variance ((rad/sec)**2)
Vector3f _flow_gyro_bias; ///< bias errors in optical flow sensor rate gyro outputs (rad/sec)
Vector2f _flow_vel_body; ///< velocity from corrected flow measurement (body frame)(m/s)
Vector2f _flow_vel_ne; ///< velocity from corrected flow measurement (local frame) (m/s)
Vector3f _imu_del_ang_of; ///< bias corrected delta angle measurements accumulated across the same time frame as the optical flow rates (rad)
float _delta_time_of{0.0f}; ///< time in sec that _imu_del_ang_of was accumulated over (sec)
uint64_t _time_bad_motion_us{0}; ///< last system time that on-ground motion exceeded limits (uSec)
uint64_t _time_good_motion_us{0}; ///< last system time that on-ground motion was within limits (uSec)
bool _inhibit_flow_use{false}; ///< true when use of optical flow and range finder is being inhibited
Vector2f _flow_compensated_XY_rad; ///< measured delta angle of the image about the X and Y body axes after removal of body rotation (rad), RH rotation is positive
// output predictor states
Vector3f _delta_angle_corr; ///< delta angle correction vector (rad)
Vector3f _vel_err_integ; ///< integral of velocity tracking error (m)
Vector3f _pos_err_integ; ///< integral of position tracking error (m.s)
Vector3f _output_tracking_error; ///< contains the magnitude of the angle, velocity and position track errors (rad, m/s, m)
// variables used for the GPS quality checks
Vector3f _gps_pos_deriv_filt; ///< GPS NED position derivative (m/sec)
Vector2f _gps_velNE_filt; ///< filtered GPS North and East velocity (m/sec)
float _gps_velD_diff_filt{0.0f}; ///< GPS filtered Down velocity (m/sec)
uint64_t _last_gps_fail_us{0}; ///< last system time in usec that the GPS failed it's checks
uint64_t _last_gps_pass_us{0}; ///< last system time in usec that the GPS passed it's checks
float _gps_error_norm{1.0f}; ///< normalised gps error
uint32_t _min_gps_health_time_us{10000000}; ///< GPS is marked as healthy only after this amount of time
bool _gps_checks_passed{false}; ///> true when all active GPS checks have passed
// Variables used to publish the WGS-84 location of the EKF local NED origin
uint64_t _last_gps_origin_time_us{0}; ///< time the origin was last set (uSec)
float _gps_alt_ref{0.0f}; ///< WGS-84 height (m)
// Variables used by the initial filter alignment
bool _is_first_imu_sample{true};
uint32_t _baro_counter{0}; ///< number of baro samples read during initialisation
uint32_t _mag_counter{0}; ///< number of magnetometer samples read during initialisation
AlphaFilter<Vector3f> _accel_lpf{0.1f}; ///< filtered accelerometer measurement used to align tilt (m/s/s)
AlphaFilter<Vector3f> _gyro_lpf{0.1f}; ///< filtered gyro measurement used for alignment excessive movement check (rad/sec)
// Variables used to perform in flight resets and switch between height sources
AlphaFilter<Vector3f> _mag_lpf{0.1f}; ///< filtered magnetometer measurement for instant reset (Gauss)
float _hgt_sensor_offset{0.0f}; ///< set as necessary if desired to maintain the same height after a height reset (m)
float _baro_hgt_offset{0.0f}; ///< baro height reading at the local NED origin (m)
// Variables used to control activation of post takeoff functionality
float _last_on_ground_posD{0.0f}; ///< last vertical position when the in_air status was false (m)
uint64_t _flt_mag_align_start_time{0}; ///< time that inflight magnetic field alignment started (uSec)
uint64_t _time_last_mov_3d_mag_suitable{0}; ///< last system time that sufficient movement to use 3-axis magnetometer fusion was detected (uSec)
float _saved_mag_bf_variance[4] {}; ///< magnetic field state variances that have been saved for use at the next initialisation (Gauss**2)
Matrix2f _saved_mag_ef_covmat; ///< NE magnetic field state covariance sub-matrix saved for use at the next initialisation (Gauss**2)
bool _velpos_reset_request{false}; ///< true when a large yaw error has been fixed and a velocity and position state reset is required
gps_check_fail_status_u _gps_check_fail_status{};
// variables used to inhibit accel bias learning
bool _accel_bias_inhibit[3] {}; ///< true when the accel bias learning is being inhibited for the specified axis
Vector3f _accel_vec_filt; ///< acceleration vector after application of a low pass filter (m/sec**2)
float _accel_magnitude_filt{0.0f}; ///< acceleration magnitude after application of a decaying envelope filter (rad/sec)
float _ang_rate_magnitude_filt{0.0f}; ///< angular rate magnitude after application of a decaying envelope filter (rad/sec)
Vector3f _prev_dvel_bias_var; ///< saved delta velocity XYZ bias variances (m/sec)**2
// Terrain height state estimation
float _terrain_vpos{0.0f}; ///< estimated vertical position of the terrain underneath the vehicle in local NED frame (m)
float _terrain_var{1e4f}; ///< variance of terrain position estimate (m**2)
uint64_t _time_last_hagl_fuse{0}; ///< last system time that a range sample was fused by the terrain estimator
uint64_t _time_last_fake_hagl_fuse{0}; ///< last system time that a fake range sample was fused by the terrain estimator
bool _terrain_initialised{false}; ///< true when the terrain estimator has been initialized
bool _hagl_valid{false}; ///< true when the height above ground estimate is valid
terrain_fusion_status_u _hagl_sensor_status{}; ///< Struct indicating type of sensor used to estimate height above ground
// height sensor status
bool _baro_hgt_faulty{false}; ///< true if valid baro data is unavailable for use
bool _gps_hgt_intermittent{false}; ///< true if gps height into the buffer is intermittent
bool _is_gps_yaw_faulty{false}; ///< true if gps yaw data is rejected by the filter for too long
// imu fault status
uint64_t _time_bad_vert_accel{0}; ///< last time a bad vertical accel was detected (uSec)
uint64_t _time_good_vert_accel{0}; ///< last time a good vertical accel was detected (uSec)
bool _bad_vert_accel_detected{false}; ///< true when bad vertical accelerometer data has been detected
uint16_t _clip_counter{0}; ///< counter that increments when clipping ad decrements when not
// variables used to control range aid functionality
bool _is_range_aid_suitable{false}; ///< true when range finder can be used in flight as the height reference instead of the primary height sensor
float _height_rate_lpf{0.0f};
// update the real time complementary filter states. This includes the prediction
// and the correction step
void calculateOutputStates(const imuSample &imu);
void applyCorrectionToVerticalOutputBuffer(float vert_vel_correction);
void applyCorrectionToOutputBuffer(const Vector3f &vel_correction, const Vector3f &pos_correction);
// initialise filter states of both the delayed ekf and the real time complementary filter
bool initialiseFilter(void);
// initialise ekf covariance matrix
void initialiseCovariance();
// predict ekf state
void predictState();
// predict ekf covariance
void predictCovariance();
// ekf sequential fusion of magnetometer measurements
void fuseMag();
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer)
void fuseHeading();
// fuse the yaw angle defined as the first rotation in a 321 Tait-Bryan rotation sequence
// yaw : angle observation defined as the first rotation in a 321 Tait-Bryan rotation sequence (rad)
// yaw_variance : variance of the yaw angle observation (rad^2)
// zero_innovation : Fuse data with innovation set to zero
void fuseYaw321(const float yaw, const float yaw_variance, bool zero_innovation);
// fuse the yaw angle defined as the first rotation in a 312 Tait-Bryan rotation sequence
// yaw : angle observation defined as the first rotation in a 312 Tait-Bryan rotation sequence (rad)
// yaw_variance : variance of the yaw angle observation (rad^2)
// zero_innovation : Fuse data with innovation set to zero
void fuseYaw312(const float yaw, const float yaw_variance, bool zero_innovation);
// update quaternion states and covariances using an innovation, observation variance and Jacobian vector
// innovation : prediction - measurement
// variance : observaton variance
// gate_sigma : innovation consistency check gate size (Sigma)
// jacobian : 4x1 vector of partial derivatives of observation wrt each quaternion state
void updateQuaternion(const float innovation, const float variance, const float gate_sigma,
const Vector4f &yaw_jacobian);
// fuse the yaw angle obtained from a dual antenna GPS unit
void fuseGpsYaw();
// reset the quaternions states using the yaw angle obtained from a dual antenna GPS unit
// return true if the reset was successful
bool resetYawToGps();
// fuse magnetometer declination measurement
// argument passed in is the declination uncertainty in radians
void fuseDeclination(float decl_sigma);
// apply sensible limits to the declination and length of the NE mag field states estimates
void limitDeclination();
// fuse airspeed measurement
void fuseAirspeed();
// fuse synthetic zero sideslip measurement
void fuseSideslip();
// fuse body frame drag specific forces for multi-rotor wind estimation
void fuseDrag();
// fuse single velocity and position measurement
void fuseVelPosHeight(const float innov, const float innov_var, const int obs_index);
void resetVelocity();
void resetVelocityToGps();
inline void resetHorizontalVelocityToOpticalFlow();
inline void resetVelocityToVision();
inline void resetHorizontalVelocityToZero();
inline void resetVelocityTo(const Vector3f &vel);
inline void resetHorizontalVelocityTo(const Vector2f &new_horz_vel);
inline void resetVerticalVelocityTo(float new_vert_vel);
void resetHorizontalPosition();
void resetHorizontalPositionToGps();
inline void resetHorizontalPositionToVision();
inline void resetHorizontalPositionTo(const Vector2f &new_horz_pos);
inline void resetVerticalPositionTo(const float &new_vert_pos);
void resetHeight();
// fuse optical flow line of sight rate measurements
void fuseOptFlow();
bool fuseHorizontalVelocity(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio);
bool fuseVerticalVelocity(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio);
bool fuseHorizontalPosition(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratiov, bool inhibit_gate = false);
bool fuseVerticalPosition(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio);
// calculate optical flow body angular rate compensation
// returns false if bias corrected body rate data is unavailable
bool calcOptFlowBodyRateComp();
// initialise the terrain vertical position estimator
// return true if the initialisation is successful
bool initHagl();
bool shouldUseRangeFinderForHagl() const { return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseRangeFinder); }
bool shouldUseOpticalFlowForHagl() const { return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseOpticalFlow); }
// run the terrain estimator
void runTerrainEstimator();
// update the terrain vertical position estimate using a height above ground measurement from the range finder
void fuseHagl();
// update the terrain vertical position estimate using an optical flow measurement
void fuseFlowForTerrain();
// reset the heading and magnetic field states using the declination and magnetometer/external vision measurements
// return true if successful
bool resetMagHeading(const Vector3f &mag_init, bool increase_yaw_var = true, bool update_buffer = true);
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS.
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle.
bool realignYawGPS();
// Return the magnetic declination in radians to be used by the alignment and fusion processing
float getMagDeclination();
// modify output filter to match the the EKF state at the fusion time horizon
void alignOutputFilter();
// update the rotation matrix which transforms EV navigation frame measurements into NED
void calcExtVisRotMat();
Vector3f getVisionVelocityInEkfFrame() const;
Vector3f getVisionVelocityVarianceInEkfFrame() const;
// matrix vector multiplication for computing K<24,1> * H<1,24> * P<24,24>
// that is optimized by exploring the sparsity in H
template <size_t ...Idxs>
SquareMatrix24f computeKHP(const Vector24f &K, const SparseVector24f<Idxs...> &H) const
{
SquareMatrix24f KHP;
constexpr size_t non_zeros = sizeof...(Idxs);
float KH[non_zeros];
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned i = 0; i < H.non_zeros(); i++) {
KH[i] = K(row) * H.atCompressedIndex(i);
}
for (unsigned column = 0; column < _k_num_states; column++) {
float tmp = 0.f;
for (unsigned i = 0; i < H.non_zeros(); i++) {
const size_t index = H.index(i);
tmp += KH[i] * P(index, column);
}
KHP(row, column) = tmp;
}
}
return KHP;
}
// measurement update with a single measurement
// returns true if fusion is performed
template <size_t ...Idxs>
bool measurementUpdate(Vector24f &K, const SparseVector24f<Idxs...> &H, float innovation)
{
for (unsigned i = 0; i < 3; i++) {
if (_accel_bias_inhibit[i]) {
K(13 + i) = 0.0f;
}
}
// apply covariance correction via P_new = (I -K*H)*P
// first calculate expression for KHP
// then calculate P - KHP
const SquareMatrix24f KHP = computeKHP(K, H);
const bool is_healthy = checkAndFixCovarianceUpdate(KHP);
if (is_healthy) {
// apply the covariance corrections
P -= KHP;
fixCovarianceErrors(true);
// apply the state corrections
fuse(K, innovation);
}
return is_healthy;
}
// if the covariance correction will result in a negative variance, then
// the covariance matrix is unhealthy and must be corrected
bool checkAndFixCovarianceUpdate(const SquareMatrix24f &KHP);
// limit the diagonal of the covariance matrix
// force symmetry when the argument is true
void fixCovarianceErrors(bool force_symmetry);
// constrain the ekf states
void constrainStates();
// generic function which will perform a fusion step given a kalman gain K
// and a scalar innovation value
void fuse(const Vector24f &K, float innovation);
float compensateBaroForDynamicPressure(float baro_alt_uncompensated) const override;
// calculate the earth rotation vector from a given latitude
Vector3f calcEarthRateNED(float lat_rad) const;
// return true id the GPS quality is good enough to set an origin and start aiding
bool gps_is_good(const gps_message &gps);
// Control the filter fusion modes
void controlFusionModes();
// control fusion of external vision observations
void controlExternalVisionFusion();
// control fusion of optical flow observations
void controlOpticalFlowFusion();
void updateOnGroundMotionForOpticalFlowChecks();
void resetOnGroundMotionForOpticalFlowChecks();
// control fusion of GPS observations
void controlGpsFusion();
void controlGpsYawFusion();
// control fusion of magnetometer observations
void controlMagFusion();
bool noOtherYawAidingThanMag() const;
bool otherHeadingSourcesHaveStopped();
void checkHaglYawResetReq();
float getTerrainVPos() const { return isTerrainEstimateValid() ? _terrain_vpos : _last_on_ground_posD; }
void runOnGroundYawReset();
bool isYawResetAuthorized() const { return !_is_yaw_fusion_inhibited; }
bool canResetMagHeading() const;
void runInAirYawReset();
bool canRealignYawUsingGps() const { return _control_status.flags.fixed_wing; }
void runVelPosReset();
void selectMagAuto();
void check3DMagFusionSuitability();
void checkYawAngleObservability();
void checkMagBiasObservability();
bool isYawAngleObservable() const { return _yaw_angle_observable; }
bool isMagBiasObservable() const { return _mag_bias_observable; }
bool canUse3DMagFusion() const;
void checkMagDeclRequired();
void checkMagInhibition();
bool shouldInhibitMag() const;
void checkMagFieldStrength();
bool isStrongMagneticDisturbance() const { return _control_status.flags.mag_field_disturbed; }
bool isMeasuredMatchingGpsMagStrength() const;
bool isMeasuredMatchingAverageMagStrength() const;
static bool isMeasuredMatchingExpected(float measured, float expected, float gate);
void runMagAndMagDeclFusions();
void run3DMagAndDeclFusions();
// control fusion of range finder observations
void controlRangeFinderFusion();
// control fusion of air data observations
void controlAirDataFusion();
// control fusion of synthetic sideslip observations
void controlBetaFusion();
// control fusion of multi-rotor drag specific force observations
void controlDragFusion();
// control fusion of pressure altitude observations
void controlBaroFusion();
// control fusion of fake position observations to constrain drift
void controlFakePosFusion();
// control fusion of auxiliary velocity observations
void controlAuxVelFusion();
// control for height sensor timeouts, sensor changes and state resets
void controlHeightSensorTimeouts();
void checkVerticalAccelerationHealth();
// control for combined height fusion mode (implemented for switching between baro and range height)
void controlHeightFusion();
// determine if flight condition is suitable to use range finder instead of the primary height sensor
void checkRangeAidSuitability();
bool isRangeAidSuitable() const { return _is_range_aid_suitable; }
// set control flags to use baro height
void setControlBaroHeight();
// set control flags to use range height
void setControlRangeHeight();
// set control flags to use GPS height
void setControlGPSHeight();
// set control flags to use external vision height
void setControlEVHeight();
void stopMagFusion();
void stopMag3DFusion();
void stopMagHdgFusion();
void startMagHdgFusion();
void startMag3DFusion();
void startBaroHgtFusion();
void startGpsHgtFusion();
void updateBaroHgtOffset();
// return an estimation of the GPS altitude variance
float getGpsHeightVariance();
// calculate the measurement variance for the optical flow sensor
float calcOptFlowMeasVar();
// rotate quaternion covariances into variances for an equivalent rotation vector
Vector3f calcRotVecVariances();
// initialise the quaternion covariances using rotation vector variances
// do not call before quaternion states are initialised
void initialiseQuatCovariances(Vector3f &rot_vec_var);
// perform a limited reset of the magnetic field related state covariances
void resetMagRelatedCovariances();
void resetQuatCov();
void zeroQuatCov();
void resetMagCov();
// perform a limited reset of the wind state covariances
void resetWindCovariance();
// perform a reset of the wind states
void resetWindStates();
// check that the range finder data is continuous
void updateRangeDataContinuity();
// Increase the yaw error variance of the quaternions
// Argument is additional yaw variance in rad**2
void increaseQuatYawErrVariance(float yaw_variance);
// load and save mag field state covariance data for re-use
void loadMagCovData();
void saveMagCovData();
void clearMagCov();
void zeroMagCov();
// uncorrelate quaternion states from other states
void uncorrelateQuatFromOtherStates();
// calculate a synthetic value for the magnetometer Z component, given the 3D magnetomter
// sensor measurement
float calculate_synthetic_mag_z_measurement(const Vector3f &mag_meas, const Vector3f &mag_earth_predicted);
bool isTimedOut(uint64_t last_sensor_timestamp, uint64_t timeout_period) const
{
return last_sensor_timestamp + timeout_period < _time_last_imu;
}
bool isRecent(uint64_t sensor_timestamp, uint64_t acceptance_interval) const
{
return sensor_timestamp + acceptance_interval > _time_last_imu;
}
void startGpsFusion();
void stopGpsFusion();
void stopGpsPosFusion();
void stopGpsVelFusion();
void startGpsYawFusion();
void stopGpsYawFusion();
void startEvPosFusion();
void startEvVelFusion();
void startEvYawFusion();
void stopEvFusion();
void stopEvPosFusion();
void stopEvVelFusion();
void stopEvYawFusion();
void stopAuxVelFusion();
void stopFlowFusion();
void setVelPosFaultStatus(const int index, const bool status);
// reset the quaternion states and covariances to the new yaw value, preserving the roll and pitch
// yaw : Euler yaw angle (rad)
// yaw_variance : yaw error variance (rad^2)
// update_buffer : true if the state change should be also applied to the output observer buffer
void resetQuatStateYaw(float yaw, float yaw_variance, bool update_buffer);
// Declarations used to control use of the EKF-GSF yaw estimator
// yaw estimator instance
EKFGSF_yaw _yawEstimator;
int64_t _ekfgsf_yaw_reset_time{0}; ///< timestamp of last emergency yaw reset (uSec)
bool _do_ekfgsf_yaw_reset{false}; // true when an emergency yaw reset has been requested
uint8_t _ekfgsf_yaw_reset_count{0}; // number of times the yaw has been reset to the EKF-GSF estimate
// Call once per _imu_sample_delayed update after all main EKF data fusion oeprations have been completed
void runYawEKFGSF();
// Resets the main Nav EKf yaw to the estimator from the EKF-GSF yaw estimator
// Resets the horizontal velocity and position to the default navigation sensor
// Returns true if the reset was successful
bool resetYawToEKFGSF();
void resetGpsDriftCheckFilters();
};