You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
981 lines
46 KiB
981 lines
46 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf.h |
|
* Class for core functions for ekf attitude and position estimator. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#pragma once |
|
|
|
#include "estimator_interface.h" |
|
|
|
#include "EKFGSF_yaw.h" |
|
|
|
class Ekf final : public EstimatorInterface |
|
{ |
|
public: |
|
static constexpr uint8_t _k_num_states{24}; ///< number of EKF states |
|
typedef matrix::Vector<float, _k_num_states> Vector24f; |
|
typedef matrix::SquareMatrix<float, _k_num_states> SquareMatrix24f; |
|
typedef matrix::SquareMatrix<float, 2> Matrix2f; |
|
typedef matrix::Vector<float, 4> Vector4f; |
|
template<int ... Idxs> |
|
using SparseVector24f = matrix::SparseVectorf<24, Idxs...>; |
|
|
|
Ekf() = default; |
|
virtual ~Ekf() = default; |
|
|
|
// initialise variables to sane values (also interface class) |
|
bool init(uint64_t timestamp) override; |
|
|
|
// should be called every time new data is pushed into the filter |
|
bool update(); |
|
|
|
void getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const; |
|
void getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const; |
|
void getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const; |
|
|
|
void getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const; |
|
void getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const; |
|
void getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const; |
|
|
|
void getBaroHgtInnov(float &baro_hgt_innov) const { baro_hgt_innov = _baro_hgt_innov(2); } |
|
void getBaroHgtInnovVar(float &baro_hgt_innov_var) const { baro_hgt_innov_var = _baro_hgt_innov_var(2); } |
|
void getBaroHgtInnovRatio(float &baro_hgt_innov_ratio) const { baro_hgt_innov_ratio = _baro_hgt_test_ratio(1); } |
|
|
|
void getRngHgtInnov(float &rng_hgt_innov) const { rng_hgt_innov = _rng_hgt_innov(2); } |
|
void getRngHgtInnovVar(float &rng_hgt_innov_var) const { rng_hgt_innov_var = _rng_hgt_innov_var(2); } |
|
void getRngHgtInnovRatio(float &rng_hgt_innov_ratio) const { rng_hgt_innov_ratio = _rng_hgt_test_ratio(1); } |
|
|
|
void getAuxVelInnov(float aux_vel_innov[2]) const; |
|
void getAuxVelInnovVar(float aux_vel_innov[2]) const; |
|
void getAuxVelInnovRatio(float &aux_vel_innov_ratio) const { aux_vel_innov_ratio = _aux_vel_test_ratio(0); } |
|
|
|
void getFlowInnov(float flow_innov[2]) const { _flow_innov.copyTo(flow_innov); } |
|
void getFlowInnovVar(float flow_innov_var[2]) const { _flow_innov_var.copyTo(flow_innov_var); } |
|
void getFlowInnovRatio(float &flow_innov_ratio) const { flow_innov_ratio = _optflow_test_ratio; } |
|
const Vector2f &getFlowVelBody() const { return _flow_vel_body; } |
|
const Vector2f &getFlowVelNE() const { return _flow_vel_ne; } |
|
const Vector2f &getFlowCompensated() const { return _flow_compensated_XY_rad; } |
|
const Vector2f &getFlowUncompensated() const { return _flow_sample_delayed.flow_xy_rad; } |
|
const Vector3f &getFlowGyro() const { return _flow_sample_delayed.gyro_xyz; } |
|
|
|
void getHeadingInnov(float &heading_innov) const { heading_innov = _heading_innov; } |
|
void getHeadingInnovVar(float &heading_innov_var) const { heading_innov_var = _heading_innov_var; } |
|
|
|
void getHeadingInnovRatio(float &heading_innov_ratio) const { heading_innov_ratio = _yaw_test_ratio; } |
|
void getMagInnov(float mag_innov[3]) const { _mag_innov.copyTo(mag_innov); } |
|
void getMagInnovVar(float mag_innov_var[3]) const { _mag_innov_var.copyTo(mag_innov_var); } |
|
void getMagInnovRatio(float &mag_innov_ratio) const { mag_innov_ratio = _mag_test_ratio.max(); } |
|
|
|
void getDragInnov(float drag_innov[2]) const { _drag_innov.copyTo(drag_innov); } |
|
void getDragInnovVar(float drag_innov_var[2]) const { _drag_innov_var.copyTo(drag_innov_var); } |
|
void getDragInnovRatio(float drag_innov_ratio[2]) const { _drag_test_ratio.copyTo(drag_innov_ratio); } |
|
|
|
void getAirspeedInnov(float &airspeed_innov) const { airspeed_innov = _airspeed_innov; } |
|
void getAirspeedInnovVar(float &airspeed_innov_var) const { airspeed_innov_var = _airspeed_innov_var; } |
|
void getAirspeedInnovRatio(float &airspeed_innov_ratio) const { airspeed_innov_ratio = _tas_test_ratio; } |
|
|
|
void getBetaInnov(float &beta_innov) const { beta_innov = _beta_innov; } |
|
void getBetaInnovVar(float &beta_innov_var) const { beta_innov_var = _beta_innov_var; } |
|
void getBetaInnovRatio(float &beta_innov_ratio) const { beta_innov_ratio = _beta_test_ratio; } |
|
|
|
void getHaglInnov(float &hagl_innov) const { hagl_innov = _hagl_innov; } |
|
void getHaglInnovVar(float &hagl_innov_var) const { hagl_innov_var = _hagl_innov_var; } |
|
void getHaglInnovRatio(float &hagl_innov_ratio) const { hagl_innov_ratio = _hagl_test_ratio; } |
|
|
|
// get the state vector at the delayed time horizon |
|
matrix::Vector<float, 24> getStateAtFusionHorizonAsVector() const; |
|
|
|
// get the wind velocity in m/s |
|
const Vector2f &getWindVelocity() const { return _state.wind_vel; }; |
|
|
|
// get the wind velocity var |
|
Vector2f getWindVelocityVariance() const { return P.slice<2, 2>(22, 22).diag(); } |
|
|
|
// get the true airspeed in m/s |
|
void get_true_airspeed(float *tas) const; |
|
|
|
// get the full covariance matrix |
|
const matrix::SquareMatrix<float, 24> &covariances() const { return P; } |
|
|
|
// get the diagonal elements of the covariance matrix |
|
matrix::Vector<float, 24> covariances_diagonal() const { return P.diag(); } |
|
|
|
// get the orientation (quaterion) covariances |
|
matrix::SquareMatrix<float, 4> orientation_covariances() const { return P.slice<4, 4>(0, 0); } |
|
|
|
// get the linear velocity covariances |
|
matrix::SquareMatrix<float, 3> velocity_covariances() const { return P.slice<3, 3>(4, 4); } |
|
|
|
// get the position covariances |
|
matrix::SquareMatrix<float, 3> position_covariances() const { return P.slice<3, 3>(7, 7); } |
|
|
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined |
|
bool collect_gps(const gps_message &gps) override; |
|
|
|
// get the ekf WGS-84 origin position and height and the system time it was last set |
|
// return true if the origin is valid |
|
bool getEkfGlobalOrigin(uint64_t &origin_time, double &latitude, double &longitude, float &origin_alt) const; |
|
bool setEkfGlobalOrigin(const double latitude, const double longitude, const float altitude); |
|
|
|
float getEkfGlobalOriginAltitude() const { return _gps_alt_ref; } |
|
bool setEkfGlobalOriginAltitude(const float altitude); |
|
|
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position |
|
void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) const; |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position |
|
void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) const; |
|
|
|
// get the 1-sigma horizontal and vertical velocity uncertainty |
|
void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) const; |
|
|
|
// get the vehicle control limits required by the estimator to keep within sensor limitations |
|
void get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) const; |
|
|
|
// Reset all IMU bias states and covariances to initial alignment values. |
|
void resetImuBias(); |
|
void resetGyroBias(); |
|
void resetAccelBias(); |
|
|
|
// Reset all magnetometer bias states and covariances to initial alignment values. |
|
void resetMagBias(); |
|
|
|
Vector3f getVelocityVariance() const { return P.slice<3, 3>(4, 4).diag(); }; |
|
|
|
Vector3f getPositionVariance() const { return P.slice<3, 3>(7, 7).diag(); } |
|
|
|
// return an array containing the output predictor angular, velocity and position tracking |
|
// error magnitudes (rad), (m/sec), (m) |
|
const Vector3f &getOutputTrackingError() const { return _output_tracking_error; } |
|
|
|
/* |
|
First argument returns GPS drift metrics in the following array locations |
|
0 : Horizontal position drift rate (m/s) |
|
1 : Vertical position drift rate (m/s) |
|
2 : Filtered horizontal velocity (m/s) |
|
Second argument returns true when IMU movement is blocking the drift calculation |
|
Function returns true if the metrics have been updated and not returned previously by this function |
|
*/ |
|
bool get_gps_drift_metrics(float drift[3], bool *blocked); |
|
|
|
// return true if the global position estimate is valid |
|
// return true if the origin is set we are not doing unconstrained free inertial navigation |
|
// and have not started using synthetic position observations to constrain drift |
|
bool global_position_is_valid() const |
|
{ |
|
return (_NED_origin_initialised && local_position_is_valid()); |
|
} |
|
|
|
// return true if the local position estimate is valid |
|
bool local_position_is_valid() const |
|
{ |
|
return (!_deadreckon_time_exceeded && !_using_synthetic_position); |
|
} |
|
|
|
bool isTerrainEstimateValid() const { return _hagl_valid; }; |
|
|
|
uint8_t getTerrainEstimateSensorBitfield() const { return _hagl_sensor_status.value; } |
|
|
|
// get the estimated terrain vertical position relative to the NED origin |
|
float getTerrainVertPos() const { return _terrain_vpos; }; |
|
|
|
// get the terrain variance |
|
float get_terrain_var() const { return _terrain_var; } |
|
|
|
Vector3f getGyroBias() const { return _state.delta_ang_bias / _dt_ekf_avg; } // get the gyroscope bias in rad/s |
|
Vector3f getAccelBias() const { return _state.delta_vel_bias / _dt_ekf_avg; } // get the accelerometer bias in m/s**2 |
|
const Vector3f &getMagBias() const { return _state.mag_B; } |
|
|
|
Vector3f getGyroBiasVariance() const { return Vector3f{P(10, 10), P(11, 11), P(12, 12)} / _dt_ekf_avg; } // get the gyroscope bias variance in rad/s |
|
Vector3f getAccelBiasVariance() const { return Vector3f{P(13, 13), P(14, 14), P(15, 15)} / _dt_ekf_avg; } // get the accelerometer bias variance in m/s**2 |
|
Vector3f getMagBiasVariance() const { return Vector3f{P(19, 19), P(20, 20), P(21, 21)}; } |
|
|
|
// get GPS check status |
|
void get_gps_check_status(uint16_t *val) const { *val = _gps_check_fail_status.value; } |
|
|
|
const auto &state_reset_status() const { return _state_reset_status; } |
|
|
|
// return the amount the local vertical position changed in the last reset and the number of reset events |
|
void get_posD_reset(float *delta, uint8_t *counter) const |
|
{ |
|
*delta = _state_reset_status.posD_change; |
|
*counter = _state_reset_status.posD_counter; |
|
} |
|
|
|
// return the amount the local vertical velocity changed in the last reset and the number of reset events |
|
void get_velD_reset(float *delta, uint8_t *counter) const |
|
{ |
|
*delta = _state_reset_status.velD_change; |
|
*counter = _state_reset_status.velD_counter; |
|
} |
|
|
|
// return the amount the local horizontal position changed in the last reset and the number of reset events |
|
void get_posNE_reset(float delta[2], uint8_t *counter) const |
|
{ |
|
_state_reset_status.posNE_change.copyTo(delta); |
|
*counter = _state_reset_status.posNE_counter; |
|
} |
|
|
|
// return the amount the local horizontal velocity changed in the last reset and the number of reset events |
|
void get_velNE_reset(float delta[2], uint8_t *counter) const |
|
{ |
|
_state_reset_status.velNE_change.copyTo(delta); |
|
*counter = _state_reset_status.velNE_counter; |
|
} |
|
|
|
// return the amount the quaternion has changed in the last reset and the number of reset events |
|
void get_quat_reset(float delta_quat[4], uint8_t *counter) const |
|
{ |
|
_state_reset_status.quat_change.copyTo(delta_quat); |
|
*counter = _state_reset_status.quat_counter; |
|
} |
|
|
|
// get EKF innovation consistency check status information comprising of: |
|
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check |
|
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold. |
|
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF |
|
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned. |
|
void get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas, |
|
float &hagl, float &beta) const; |
|
|
|
// return a bitmask integer that describes which state estimates can be used for flight control |
|
void get_ekf_soln_status(uint16_t *status) const; |
|
|
|
// return the quaternion defining the rotation from the External Vision to the EKF reference frame |
|
matrix::Quatf getVisionAlignmentQuaternion() const { return Quatf(_R_ev_to_ekf); }; |
|
|
|
// use the latest IMU data at the current time horizon. |
|
Quatf calculate_quaternion() const; |
|
|
|
// set minimum continuous period without GPS fail required to mark a healthy GPS status |
|
void set_min_required_gps_health_time(uint32_t time_us) { _min_gps_health_time_us = time_us; } |
|
|
|
// get solution data from the EKF-GSF emergency yaw estimator |
|
// returns false when data is not available |
|
bool getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], |
|
float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]); |
|
|
|
private: |
|
|
|
// set the internal states and status to their default value |
|
void reset(); |
|
|
|
bool initialiseTilt(); |
|
|
|
// Request the EKF reset the yaw to the estimate from the internal EKF-GSF filter |
|
// and reset the velocity and position states to the GPS. This will cause the EKF |
|
// to ignore the magnetometer for the remainder of flight. |
|
// This should only be used as a last resort before activating a loss of navigation failsafe |
|
void requestEmergencyNavReset() { _do_ekfgsf_yaw_reset = true; } |
|
|
|
// check if the EKF is dead reckoning horizontal velocity using inertial data only |
|
void update_deadreckoning_status(); |
|
|
|
void updateTerrainValidity(); |
|
|
|
struct { |
|
uint8_t velNE_counter; ///< number of horizontal position reset events (allow to wrap if count exceeds 255) |
|
uint8_t velD_counter; ///< number of vertical velocity reset events (allow to wrap if count exceeds 255) |
|
uint8_t posNE_counter; ///< number of horizontal position reset events (allow to wrap if count exceeds 255) |
|
uint8_t posD_counter; ///< number of vertical position reset events (allow to wrap if count exceeds 255) |
|
uint8_t quat_counter; ///< number of quaternion reset events (allow to wrap if count exceeds 255) |
|
Vector2f velNE_change; ///< North East velocity change due to last reset (m) |
|
float velD_change; ///< Down velocity change due to last reset (m/sec) |
|
Vector2f posNE_change; ///< North, East position change due to last reset (m) |
|
float posD_change; ///< Down position change due to last reset (m) |
|
Quatf quat_change; ///< quaternion delta due to last reset - multiply pre-reset quaternion by this to get post-reset quaternion |
|
} _state_reset_status{}; ///< reset event monitoring structure containing velocity, position, height and yaw reset information |
|
|
|
float _dt_ekf_avg{FILTER_UPDATE_PERIOD_S}; ///< average update rate of the ekf |
|
|
|
Vector3f _ang_rate_delayed_raw; ///< uncorrected angular rate vector at fusion time horizon (rad/sec) |
|
|
|
stateSample _state{}; ///< state struct of the ekf running at the delayed time horizon |
|
|
|
bool _filter_initialised{false}; ///< true when the EKF sttes and covariances been initialised |
|
|
|
// variables used when position data is being fused using a relative position odometry model |
|
bool _fuse_hpos_as_odom{false}; ///< true when the NE position data is being fused using an odometry assumption |
|
Vector3f _pos_meas_prev; ///< previous value of NED position measurement fused using odometry assumption (m) |
|
Vector2f _hpos_pred_prev; ///< previous value of NE position state used by odometry fusion (m) |
|
bool _hpos_prev_available{false}; ///< true when previous values of the estimate and measurement are available for use |
|
Dcmf _R_ev_to_ekf; ///< transformation matrix that rotates observations from the EV to the EKF navigation frame, initialized with Identity |
|
|
|
// booleans true when fresh sensor data is available at the fusion time horizon |
|
bool _gps_data_ready{false}; ///< true when new GPS data has fallen behind the fusion time horizon and is available to be fused |
|
bool _mag_data_ready{false}; ///< true when new magnetometer data has fallen behind the fusion time horizon and is available to be fused |
|
bool _baro_data_ready{false}; ///< true when new baro height data has fallen behind the fusion time horizon and is available to be fused |
|
bool _flow_data_ready{false}; ///< true when the leading edge of the optical flow integration period has fallen behind the fusion time horizon |
|
bool _ev_data_ready{false}; ///< true when new external vision system data has fallen behind the fusion time horizon and is available to be fused |
|
bool _tas_data_ready{false}; ///< true when new true airspeed data has fallen behind the fusion time horizon and is available to be fused |
|
bool _flow_for_terrain_data_ready{false}; /// same flag as "_flow_data_ready" but used for separate terrain estimator |
|
|
|
uint64_t _time_prev_gps_us{0}; ///< time stamp of previous GPS data retrieved from the buffer (uSec) |
|
uint64_t _time_last_aiding{0}; ///< amount of time we have been doing inertial only deadreckoning (uSec) |
|
bool _using_synthetic_position{false}; ///< true if we are using a synthetic position to constrain drift |
|
|
|
uint64_t _time_last_hor_pos_fuse{0}; ///< time the last fusion of horizontal position measurements was performed (uSec) |
|
uint64_t _time_last_hgt_fuse{0}; ///< time the last fusion of vertical position measurements was performed (uSec) |
|
uint64_t _time_last_hor_vel_fuse{0}; ///< time the last fusion of horizontal velocity measurements was performed (uSec) |
|
uint64_t _time_last_ver_vel_fuse{0}; ///< time the last fusion of verticalvelocity measurements was performed (uSec) |
|
uint64_t _time_last_delpos_fuse{0}; ///< time the last fusion of incremental horizontal position measurements was performed (uSec) |
|
uint64_t _time_last_of_fuse{0}; ///< time the last fusion of optical flow measurements were performed (uSec) |
|
uint64_t _time_last_flow_terrain_fuse{0}; ///< time the last fusion of optical flow measurements for terrain estimation were performed (uSec) |
|
uint64_t _time_last_arsp_fuse{0}; ///< time the last fusion of airspeed measurements were performed (uSec) |
|
uint64_t _time_last_beta_fuse{0}; ///< time the last fusion of synthetic sideslip measurements were performed (uSec) |
|
uint64_t _time_last_fake_pos{0}; ///< last time we faked position measurements to constrain tilt errors during operation without external aiding (uSec) |
|
|
|
uint64_t _time_last_gps_yaw_fuse{0}; ///< time the last fusion of GPS yaw measurements were performed (uSec) |
|
|
|
Vector2f _last_known_posNE; ///< last known local NE position vector (m) |
|
float _imu_collection_time_adj{0.0f}; ///< the amount of time the IMU collection needs to be advanced to meet the target set by FILTER_UPDATE_PERIOD_MS (sec) |
|
|
|
uint64_t _time_acc_bias_check{0}; ///< last time the accel bias check passed (uSec) |
|
uint64_t _delta_time_baro_us{0}; ///< delta time between two consecutive delayed baro samples from the buffer (uSec) |
|
|
|
Vector3f _earth_rate_NED; ///< earth rotation vector (NED) in rad/s |
|
|
|
Dcmf _R_to_earth; ///< transformation matrix from body frame to earth frame from last EKF prediction |
|
|
|
// used by magnetometer fusion mode selection |
|
Vector2f _accel_lpf_NE; ///< Low pass filtered horizontal earth frame acceleration (m/sec**2) |
|
float _yaw_delta_ef{0.0f}; ///< Recent change in yaw angle measured about the earth frame D axis (rad) |
|
float _yaw_rate_lpf_ef{0.0f}; ///< Filtered angular rate about earth frame D axis (rad/sec) |
|
bool _mag_bias_observable{false}; ///< true when there is enough rotation to make magnetometer bias errors observable |
|
bool _yaw_angle_observable{false}; ///< true when there is enough horizontal acceleration to make yaw observable |
|
uint64_t _time_yaw_started{0}; ///< last system time in usec that a yaw rotation manoeuvre was detected |
|
uint8_t _num_bad_flight_yaw_events{0}; ///< number of times a bad heading has been detected in flight and required a yaw reset |
|
uint64_t _mag_use_not_inhibit_us{0}; ///< last system time in usec before magnetometer use was inhibited |
|
bool _mag_inhibit_yaw_reset_req{false}; ///< true when magnetometer inhibit has been active for long enough to require a yaw reset when conditions improve. |
|
float _last_static_yaw{0.0f}; ///< last yaw angle recorded when on ground motion checks were passing (rad) |
|
bool _mag_yaw_reset_req{false}; ///< true when a reset of the yaw using the magnetometer data has been requested |
|
bool _mag_decl_cov_reset{false}; ///< true after the fuseDeclination() function has been used to modify the earth field covariances after a magnetic field reset event. |
|
bool _synthetic_mag_z_active{false}; ///< true if we are generating synthetic magnetometer Z measurements |
|
bool _non_mag_yaw_aiding_running_prev{false}; ///< true when heading is being fused from other sources that are not the magnetometer (for example EV or GPS). |
|
|
|
bool _is_yaw_fusion_inhibited{false}; ///< true when yaw sensor use is being inhibited |
|
|
|
SquareMatrix24f P; ///< state covariance matrix |
|
|
|
Vector3f _delta_vel_bias_var_accum; ///< kahan summation algorithm accumulator for delta velocity bias variance |
|
Vector3f _delta_angle_bias_var_accum; ///< kahan summation algorithm accumulator for delta angle bias variance |
|
|
|
Vector3f _last_vel_obs; ///< last velocity observation (m/s) |
|
Vector3f _last_vel_obs_var; ///< last velocity observation variance (m/s)**2 |
|
Vector2f _last_fail_hvel_innov; ///< last failed horizontal velocity innovation (m/s)**2 |
|
float _vert_pos_innov_ratio; ///< vertical position innovation divided by estimated standard deviation of innovation |
|
uint64_t _vert_pos_fuse_attempt_time_us; ///< last system time in usec vertical position measurement fuson was attempted |
|
float _vert_vel_innov_ratio; ///< standard deviation of vertical velocity innovation |
|
uint64_t _vert_vel_fuse_time_us; ///< last system time in usec time vertical velocity measurement fuson was attempted |
|
|
|
Vector3f _gps_vel_innov; ///< GPS velocity innovations (m/sec) |
|
Vector3f _gps_vel_innov_var; ///< GPS velocity innovation variances ((m/sec)**2) |
|
|
|
Vector3f _gps_pos_innov; ///< GPS position innovations (m) |
|
Vector3f _gps_pos_innov_var; ///< GPS position innovation variances (m**2) |
|
|
|
Vector3f _ev_vel_innov; ///< external vision velocity innovations (m/sec) |
|
Vector3f _ev_vel_innov_var; ///< external vision velocity innovation variances ((m/sec)**2) |
|
|
|
Vector3f _ev_pos_innov; ///< external vision position innovations (m) |
|
Vector3f _ev_pos_innov_var; ///< external vision position innovation variances (m**2) |
|
|
|
Vector3f _baro_hgt_innov; ///< baro hgt innovations (m) |
|
Vector3f _baro_hgt_innov_var; ///< baro hgt innovation variances (m**2) |
|
|
|
Vector3f _rng_hgt_innov; ///< range hgt innovations (m) |
|
Vector3f _rng_hgt_innov_var; ///< range hgt innovation variances (m**2) |
|
|
|
Vector3f _aux_vel_innov; ///< horizontal auxiliary velocity innovations: (m/sec) |
|
Vector3f _aux_vel_innov_var; ///< horizontal auxiliary velocity innovation variances: ((m/sec)**2) |
|
|
|
float _heading_innov{0.0f}; ///< heading measurement innovation (rad) |
|
float _heading_innov_var{0.0f}; ///< heading measurement innovation variance (rad**2) |
|
|
|
Vector3f _mag_innov; ///< earth magnetic field innovations (Gauss) |
|
Vector3f _mag_innov_var; ///< earth magnetic field innovation variance (Gauss**2) |
|
|
|
Vector2f _drag_innov; ///< multirotor drag measurement innovation (m/sec**2) |
|
Vector2f _drag_innov_var; ///< multirotor drag measurement innovation variance ((m/sec**2)**2) |
|
|
|
float _airspeed_innov{0.0f}; ///< airspeed measurement innovation (m/sec) |
|
float _airspeed_innov_var{0.0f}; ///< airspeed measurement innovation variance ((m/sec)**2) |
|
|
|
float _beta_innov{0.0f}; ///< synthetic sideslip measurement innovation (rad) |
|
float _beta_innov_var{0.0f}; ///< synthetic sideslip measurement innovation variance (rad**2) |
|
|
|
float _hagl_innov{0.0f}; ///< innovation of the last height above terrain measurement (m) |
|
float _hagl_innov_var{0.0f}; ///< innovation variance for the last height above terrain measurement (m**2) |
|
|
|
// optical flow processing |
|
Vector2f _flow_innov; ///< flow measurement innovation (rad/sec) |
|
Vector2f _flow_innov_var; ///< flow innovation variance ((rad/sec)**2) |
|
Vector3f _flow_gyro_bias; ///< bias errors in optical flow sensor rate gyro outputs (rad/sec) |
|
Vector2f _flow_vel_body; ///< velocity from corrected flow measurement (body frame)(m/s) |
|
Vector2f _flow_vel_ne; ///< velocity from corrected flow measurement (local frame) (m/s) |
|
Vector3f _imu_del_ang_of; ///< bias corrected delta angle measurements accumulated across the same time frame as the optical flow rates (rad) |
|
float _delta_time_of{0.0f}; ///< time in sec that _imu_del_ang_of was accumulated over (sec) |
|
uint64_t _time_bad_motion_us{0}; ///< last system time that on-ground motion exceeded limits (uSec) |
|
uint64_t _time_good_motion_us{0}; ///< last system time that on-ground motion was within limits (uSec) |
|
bool _inhibit_flow_use{false}; ///< true when use of optical flow and range finder is being inhibited |
|
Vector2f _flow_compensated_XY_rad; ///< measured delta angle of the image about the X and Y body axes after removal of body rotation (rad), RH rotation is positive |
|
|
|
// output predictor states |
|
Vector3f _delta_angle_corr; ///< delta angle correction vector (rad) |
|
Vector3f _vel_err_integ; ///< integral of velocity tracking error (m) |
|
Vector3f _pos_err_integ; ///< integral of position tracking error (m.s) |
|
Vector3f _output_tracking_error; ///< contains the magnitude of the angle, velocity and position track errors (rad, m/s, m) |
|
|
|
// variables used for the GPS quality checks |
|
Vector3f _gps_pos_deriv_filt; ///< GPS NED position derivative (m/sec) |
|
Vector2f _gps_velNE_filt; ///< filtered GPS North and East velocity (m/sec) |
|
float _gps_velD_diff_filt{0.0f}; ///< GPS filtered Down velocity (m/sec) |
|
uint64_t _last_gps_fail_us{0}; ///< last system time in usec that the GPS failed it's checks |
|
uint64_t _last_gps_pass_us{0}; ///< last system time in usec that the GPS passed it's checks |
|
float _gps_error_norm{1.0f}; ///< normalised gps error |
|
uint32_t _min_gps_health_time_us{10000000}; ///< GPS is marked as healthy only after this amount of time |
|
bool _gps_checks_passed{false}; ///> true when all active GPS checks have passed |
|
|
|
// Variables used to publish the WGS-84 location of the EKF local NED origin |
|
uint64_t _last_gps_origin_time_us{0}; ///< time the origin was last set (uSec) |
|
float _gps_alt_ref{0.0f}; ///< WGS-84 height (m) |
|
|
|
// Variables used by the initial filter alignment |
|
bool _is_first_imu_sample{true}; |
|
uint32_t _baro_counter{0}; ///< number of baro samples read during initialisation |
|
uint32_t _mag_counter{0}; ///< number of magnetometer samples read during initialisation |
|
AlphaFilter<Vector3f> _accel_lpf{0.1f}; ///< filtered accelerometer measurement used to align tilt (m/s/s) |
|
AlphaFilter<Vector3f> _gyro_lpf{0.1f}; ///< filtered gyro measurement used for alignment excessive movement check (rad/sec) |
|
|
|
// Variables used to perform in flight resets and switch between height sources |
|
AlphaFilter<Vector3f> _mag_lpf{0.1f}; ///< filtered magnetometer measurement for instant reset (Gauss) |
|
float _hgt_sensor_offset{0.0f}; ///< set as necessary if desired to maintain the same height after a height reset (m) |
|
float _baro_hgt_offset{0.0f}; ///< baro height reading at the local NED origin (m) |
|
|
|
// Variables used to control activation of post takeoff functionality |
|
float _last_on_ground_posD{0.0f}; ///< last vertical position when the in_air status was false (m) |
|
uint64_t _flt_mag_align_start_time{0}; ///< time that inflight magnetic field alignment started (uSec) |
|
uint64_t _time_last_mov_3d_mag_suitable{0}; ///< last system time that sufficient movement to use 3-axis magnetometer fusion was detected (uSec) |
|
float _saved_mag_bf_variance[4] {}; ///< magnetic field state variances that have been saved for use at the next initialisation (Gauss**2) |
|
Matrix2f _saved_mag_ef_covmat; ///< NE magnetic field state covariance sub-matrix saved for use at the next initialisation (Gauss**2) |
|
bool _velpos_reset_request{false}; ///< true when a large yaw error has been fixed and a velocity and position state reset is required |
|
|
|
gps_check_fail_status_u _gps_check_fail_status{}; |
|
|
|
// variables used to inhibit accel bias learning |
|
bool _accel_bias_inhibit[3] {}; ///< true when the accel bias learning is being inhibited for the specified axis |
|
Vector3f _accel_vec_filt; ///< acceleration vector after application of a low pass filter (m/sec**2) |
|
float _accel_magnitude_filt{0.0f}; ///< acceleration magnitude after application of a decaying envelope filter (rad/sec) |
|
float _ang_rate_magnitude_filt{0.0f}; ///< angular rate magnitude after application of a decaying envelope filter (rad/sec) |
|
Vector3f _prev_dvel_bias_var; ///< saved delta velocity XYZ bias variances (m/sec)**2 |
|
|
|
// Terrain height state estimation |
|
float _terrain_vpos{0.0f}; ///< estimated vertical position of the terrain underneath the vehicle in local NED frame (m) |
|
float _terrain_var{1e4f}; ///< variance of terrain position estimate (m**2) |
|
uint64_t _time_last_hagl_fuse{0}; ///< last system time that a range sample was fused by the terrain estimator |
|
uint64_t _time_last_fake_hagl_fuse{0}; ///< last system time that a fake range sample was fused by the terrain estimator |
|
bool _terrain_initialised{false}; ///< true when the terrain estimator has been initialized |
|
bool _hagl_valid{false}; ///< true when the height above ground estimate is valid |
|
terrain_fusion_status_u _hagl_sensor_status{}; ///< Struct indicating type of sensor used to estimate height above ground |
|
|
|
// height sensor status |
|
bool _baro_hgt_faulty{false}; ///< true if valid baro data is unavailable for use |
|
bool _gps_hgt_intermittent{false}; ///< true if gps height into the buffer is intermittent |
|
bool _is_gps_yaw_faulty{false}; ///< true if gps yaw data is rejected by the filter for too long |
|
|
|
// imu fault status |
|
uint64_t _time_bad_vert_accel{0}; ///< last time a bad vertical accel was detected (uSec) |
|
uint64_t _time_good_vert_accel{0}; ///< last time a good vertical accel was detected (uSec) |
|
bool _bad_vert_accel_detected{false}; ///< true when bad vertical accelerometer data has been detected |
|
uint16_t _clip_counter{0}; ///< counter that increments when clipping ad decrements when not |
|
|
|
// variables used to control range aid functionality |
|
bool _is_range_aid_suitable{false}; ///< true when range finder can be used in flight as the height reference instead of the primary height sensor |
|
|
|
float _height_rate_lpf{0.0f}; |
|
|
|
// update the real time complementary filter states. This includes the prediction |
|
// and the correction step |
|
void calculateOutputStates(const imuSample &imu); |
|
void applyCorrectionToVerticalOutputBuffer(float vert_vel_correction); |
|
void applyCorrectionToOutputBuffer(const Vector3f &vel_correction, const Vector3f &pos_correction); |
|
|
|
// initialise filter states of both the delayed ekf and the real time complementary filter |
|
bool initialiseFilter(void); |
|
|
|
// initialise ekf covariance matrix |
|
void initialiseCovariance(); |
|
|
|
// predict ekf state |
|
void predictState(); |
|
|
|
// predict ekf covariance |
|
void predictCovariance(); |
|
|
|
// ekf sequential fusion of magnetometer measurements |
|
void fuseMag(); |
|
|
|
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer) |
|
void fuseHeading(); |
|
|
|
// fuse the yaw angle defined as the first rotation in a 321 Tait-Bryan rotation sequence |
|
// yaw : angle observation defined as the first rotation in a 321 Tait-Bryan rotation sequence (rad) |
|
// yaw_variance : variance of the yaw angle observation (rad^2) |
|
// zero_innovation : Fuse data with innovation set to zero |
|
void fuseYaw321(const float yaw, const float yaw_variance, bool zero_innovation); |
|
|
|
// fuse the yaw angle defined as the first rotation in a 312 Tait-Bryan rotation sequence |
|
// yaw : angle observation defined as the first rotation in a 312 Tait-Bryan rotation sequence (rad) |
|
// yaw_variance : variance of the yaw angle observation (rad^2) |
|
// zero_innovation : Fuse data with innovation set to zero |
|
void fuseYaw312(const float yaw, const float yaw_variance, bool zero_innovation); |
|
|
|
// update quaternion states and covariances using an innovation, observation variance and Jacobian vector |
|
// innovation : prediction - measurement |
|
// variance : observaton variance |
|
// gate_sigma : innovation consistency check gate size (Sigma) |
|
// jacobian : 4x1 vector of partial derivatives of observation wrt each quaternion state |
|
void updateQuaternion(const float innovation, const float variance, const float gate_sigma, |
|
const Vector4f &yaw_jacobian); |
|
|
|
// fuse the yaw angle obtained from a dual antenna GPS unit |
|
void fuseGpsYaw(); |
|
|
|
// reset the quaternions states using the yaw angle obtained from a dual antenna GPS unit |
|
// return true if the reset was successful |
|
bool resetYawToGps(); |
|
|
|
// fuse magnetometer declination measurement |
|
// argument passed in is the declination uncertainty in radians |
|
void fuseDeclination(float decl_sigma); |
|
|
|
// apply sensible limits to the declination and length of the NE mag field states estimates |
|
void limitDeclination(); |
|
|
|
// fuse airspeed measurement |
|
void fuseAirspeed(); |
|
|
|
// fuse synthetic zero sideslip measurement |
|
void fuseSideslip(); |
|
|
|
// fuse body frame drag specific forces for multi-rotor wind estimation |
|
void fuseDrag(); |
|
|
|
// fuse single velocity and position measurement |
|
void fuseVelPosHeight(const float innov, const float innov_var, const int obs_index); |
|
|
|
void resetVelocity(); |
|
|
|
void resetVelocityToGps(); |
|
|
|
inline void resetHorizontalVelocityToOpticalFlow(); |
|
|
|
inline void resetVelocityToVision(); |
|
|
|
inline void resetHorizontalVelocityToZero(); |
|
|
|
inline void resetVelocityTo(const Vector3f &vel); |
|
|
|
inline void resetHorizontalVelocityTo(const Vector2f &new_horz_vel); |
|
|
|
inline void resetVerticalVelocityTo(float new_vert_vel); |
|
|
|
void resetHorizontalPosition(); |
|
|
|
void resetHorizontalPositionToGps(); |
|
|
|
inline void resetHorizontalPositionToVision(); |
|
|
|
inline void resetHorizontalPositionTo(const Vector2f &new_horz_pos); |
|
|
|
inline void resetVerticalPositionTo(const float &new_vert_pos); |
|
|
|
void resetHeight(); |
|
|
|
// fuse optical flow line of sight rate measurements |
|
void fuseOptFlow(); |
|
|
|
bool fuseHorizontalVelocity(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var, |
|
Vector3f &innov_var, Vector2f &test_ratio); |
|
|
|
bool fuseVerticalVelocity(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var, |
|
Vector3f &innov_var, Vector2f &test_ratio); |
|
|
|
bool fuseHorizontalPosition(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var, |
|
Vector3f &innov_var, Vector2f &test_ratiov, bool inhibit_gate = false); |
|
|
|
bool fuseVerticalPosition(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var, |
|
Vector3f &innov_var, Vector2f &test_ratio); |
|
|
|
// calculate optical flow body angular rate compensation |
|
// returns false if bias corrected body rate data is unavailable |
|
bool calcOptFlowBodyRateComp(); |
|
|
|
// initialise the terrain vertical position estimator |
|
// return true if the initialisation is successful |
|
bool initHagl(); |
|
|
|
bool shouldUseRangeFinderForHagl() const { return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseRangeFinder); } |
|
bool shouldUseOpticalFlowForHagl() const { return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseOpticalFlow); } |
|
|
|
// run the terrain estimator |
|
void runTerrainEstimator(); |
|
|
|
// update the terrain vertical position estimate using a height above ground measurement from the range finder |
|
void fuseHagl(); |
|
|
|
// update the terrain vertical position estimate using an optical flow measurement |
|
void fuseFlowForTerrain(); |
|
|
|
// reset the heading and magnetic field states using the declination and magnetometer/external vision measurements |
|
// return true if successful |
|
bool resetMagHeading(const Vector3f &mag_init, bool increase_yaw_var = true, bool update_buffer = true); |
|
|
|
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS. |
|
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle. |
|
bool realignYawGPS(); |
|
|
|
// Return the magnetic declination in radians to be used by the alignment and fusion processing |
|
float getMagDeclination(); |
|
|
|
// modify output filter to match the the EKF state at the fusion time horizon |
|
void alignOutputFilter(); |
|
|
|
// update the rotation matrix which transforms EV navigation frame measurements into NED |
|
void calcExtVisRotMat(); |
|
|
|
Vector3f getVisionVelocityInEkfFrame() const; |
|
|
|
Vector3f getVisionVelocityVarianceInEkfFrame() const; |
|
|
|
// matrix vector multiplication for computing K<24,1> * H<1,24> * P<24,24> |
|
// that is optimized by exploring the sparsity in H |
|
template <size_t ...Idxs> |
|
SquareMatrix24f computeKHP(const Vector24f &K, const SparseVector24f<Idxs...> &H) const |
|
{ |
|
SquareMatrix24f KHP; |
|
constexpr size_t non_zeros = sizeof...(Idxs); |
|
float KH[non_zeros]; |
|
|
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned i = 0; i < H.non_zeros(); i++) { |
|
KH[i] = K(row) * H.atCompressedIndex(i); |
|
} |
|
|
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
float tmp = 0.f; |
|
|
|
for (unsigned i = 0; i < H.non_zeros(); i++) { |
|
const size_t index = H.index(i); |
|
tmp += KH[i] * P(index, column); |
|
} |
|
|
|
KHP(row, column) = tmp; |
|
} |
|
} |
|
|
|
return KHP; |
|
} |
|
|
|
// measurement update with a single measurement |
|
// returns true if fusion is performed |
|
template <size_t ...Idxs> |
|
bool measurementUpdate(Vector24f &K, const SparseVector24f<Idxs...> &H, float innovation) |
|
{ |
|
for (unsigned i = 0; i < 3; i++) { |
|
if (_accel_bias_inhibit[i]) { |
|
K(13 + i) = 0.0f; |
|
} |
|
} |
|
|
|
// apply covariance correction via P_new = (I -K*H)*P |
|
// first calculate expression for KHP |
|
// then calculate P - KHP |
|
const SquareMatrix24f KHP = computeKHP(K, H); |
|
|
|
const bool is_healthy = checkAndFixCovarianceUpdate(KHP); |
|
|
|
if (is_healthy) { |
|
// apply the covariance corrections |
|
P -= KHP; |
|
|
|
fixCovarianceErrors(true); |
|
|
|
// apply the state corrections |
|
fuse(K, innovation); |
|
} |
|
|
|
return is_healthy; |
|
} |
|
|
|
// if the covariance correction will result in a negative variance, then |
|
// the covariance matrix is unhealthy and must be corrected |
|
bool checkAndFixCovarianceUpdate(const SquareMatrix24f &KHP); |
|
|
|
// limit the diagonal of the covariance matrix |
|
// force symmetry when the argument is true |
|
void fixCovarianceErrors(bool force_symmetry); |
|
|
|
// constrain the ekf states |
|
void constrainStates(); |
|
|
|
// generic function which will perform a fusion step given a kalman gain K |
|
// and a scalar innovation value |
|
void fuse(const Vector24f &K, float innovation); |
|
|
|
float compensateBaroForDynamicPressure(float baro_alt_uncompensated) const override; |
|
|
|
// calculate the earth rotation vector from a given latitude |
|
Vector3f calcEarthRateNED(float lat_rad) const; |
|
|
|
// return true id the GPS quality is good enough to set an origin and start aiding |
|
bool gps_is_good(const gps_message &gps); |
|
|
|
// Control the filter fusion modes |
|
void controlFusionModes(); |
|
|
|
// control fusion of external vision observations |
|
void controlExternalVisionFusion(); |
|
|
|
// control fusion of optical flow observations |
|
void controlOpticalFlowFusion(); |
|
void updateOnGroundMotionForOpticalFlowChecks(); |
|
void resetOnGroundMotionForOpticalFlowChecks(); |
|
|
|
// control fusion of GPS observations |
|
void controlGpsFusion(); |
|
void controlGpsYawFusion(); |
|
|
|
// control fusion of magnetometer observations |
|
void controlMagFusion(); |
|
|
|
bool noOtherYawAidingThanMag() const; |
|
bool otherHeadingSourcesHaveStopped(); |
|
|
|
void checkHaglYawResetReq(); |
|
float getTerrainVPos() const { return isTerrainEstimateValid() ? _terrain_vpos : _last_on_ground_posD; } |
|
|
|
void runOnGroundYawReset(); |
|
bool isYawResetAuthorized() const { return !_is_yaw_fusion_inhibited; } |
|
bool canResetMagHeading() const; |
|
void runInAirYawReset(); |
|
bool canRealignYawUsingGps() const { return _control_status.flags.fixed_wing; } |
|
void runVelPosReset(); |
|
|
|
void selectMagAuto(); |
|
void check3DMagFusionSuitability(); |
|
void checkYawAngleObservability(); |
|
void checkMagBiasObservability(); |
|
bool isYawAngleObservable() const { return _yaw_angle_observable; } |
|
bool isMagBiasObservable() const { return _mag_bias_observable; } |
|
bool canUse3DMagFusion() const; |
|
|
|
void checkMagDeclRequired(); |
|
void checkMagInhibition(); |
|
bool shouldInhibitMag() const; |
|
void checkMagFieldStrength(); |
|
bool isStrongMagneticDisturbance() const { return _control_status.flags.mag_field_disturbed; } |
|
bool isMeasuredMatchingGpsMagStrength() const; |
|
bool isMeasuredMatchingAverageMagStrength() const; |
|
static bool isMeasuredMatchingExpected(float measured, float expected, float gate); |
|
void runMagAndMagDeclFusions(); |
|
void run3DMagAndDeclFusions(); |
|
|
|
// control fusion of range finder observations |
|
void controlRangeFinderFusion(); |
|
|
|
// control fusion of air data observations |
|
void controlAirDataFusion(); |
|
|
|
// control fusion of synthetic sideslip observations |
|
void controlBetaFusion(); |
|
|
|
// control fusion of multi-rotor drag specific force observations |
|
void controlDragFusion(); |
|
|
|
// control fusion of pressure altitude observations |
|
void controlBaroFusion(); |
|
|
|
// control fusion of fake position observations to constrain drift |
|
void controlFakePosFusion(); |
|
|
|
// control fusion of auxiliary velocity observations |
|
void controlAuxVelFusion(); |
|
|
|
// control for height sensor timeouts, sensor changes and state resets |
|
void controlHeightSensorTimeouts(); |
|
|
|
void checkVerticalAccelerationHealth(); |
|
|
|
// control for combined height fusion mode (implemented for switching between baro and range height) |
|
void controlHeightFusion(); |
|
|
|
// determine if flight condition is suitable to use range finder instead of the primary height sensor |
|
void checkRangeAidSuitability(); |
|
bool isRangeAidSuitable() const { return _is_range_aid_suitable; } |
|
|
|
// set control flags to use baro height |
|
void setControlBaroHeight(); |
|
|
|
// set control flags to use range height |
|
void setControlRangeHeight(); |
|
|
|
// set control flags to use GPS height |
|
void setControlGPSHeight(); |
|
|
|
// set control flags to use external vision height |
|
void setControlEVHeight(); |
|
|
|
void stopMagFusion(); |
|
void stopMag3DFusion(); |
|
void stopMagHdgFusion(); |
|
void startMagHdgFusion(); |
|
void startMag3DFusion(); |
|
|
|
void startBaroHgtFusion(); |
|
void startGpsHgtFusion(); |
|
|
|
void updateBaroHgtOffset(); |
|
|
|
// return an estimation of the GPS altitude variance |
|
float getGpsHeightVariance(); |
|
|
|
// calculate the measurement variance for the optical flow sensor |
|
float calcOptFlowMeasVar(); |
|
|
|
// rotate quaternion covariances into variances for an equivalent rotation vector |
|
Vector3f calcRotVecVariances(); |
|
|
|
// initialise the quaternion covariances using rotation vector variances |
|
// do not call before quaternion states are initialised |
|
void initialiseQuatCovariances(Vector3f &rot_vec_var); |
|
|
|
// perform a limited reset of the magnetic field related state covariances |
|
void resetMagRelatedCovariances(); |
|
|
|
void resetQuatCov(); |
|
void zeroQuatCov(); |
|
void resetMagCov(); |
|
|
|
// perform a limited reset of the wind state covariances |
|
void resetWindCovariance(); |
|
|
|
// perform a reset of the wind states |
|
void resetWindStates(); |
|
|
|
// check that the range finder data is continuous |
|
void updateRangeDataContinuity(); |
|
|
|
// Increase the yaw error variance of the quaternions |
|
// Argument is additional yaw variance in rad**2 |
|
void increaseQuatYawErrVariance(float yaw_variance); |
|
|
|
// load and save mag field state covariance data for re-use |
|
void loadMagCovData(); |
|
void saveMagCovData(); |
|
void clearMagCov(); |
|
void zeroMagCov(); |
|
|
|
// uncorrelate quaternion states from other states |
|
void uncorrelateQuatFromOtherStates(); |
|
|
|
// calculate a synthetic value for the magnetometer Z component, given the 3D magnetomter |
|
// sensor measurement |
|
float calculate_synthetic_mag_z_measurement(const Vector3f &mag_meas, const Vector3f &mag_earth_predicted); |
|
|
|
bool isTimedOut(uint64_t last_sensor_timestamp, uint64_t timeout_period) const |
|
{ |
|
return last_sensor_timestamp + timeout_period < _time_last_imu; |
|
} |
|
|
|
bool isRecent(uint64_t sensor_timestamp, uint64_t acceptance_interval) const |
|
{ |
|
return sensor_timestamp + acceptance_interval > _time_last_imu; |
|
} |
|
|
|
void startGpsFusion(); |
|
void stopGpsFusion(); |
|
void stopGpsPosFusion(); |
|
void stopGpsVelFusion(); |
|
|
|
void startGpsYawFusion(); |
|
void stopGpsYawFusion(); |
|
|
|
void startEvPosFusion(); |
|
void startEvVelFusion(); |
|
void startEvYawFusion(); |
|
|
|
void stopEvFusion(); |
|
void stopEvPosFusion(); |
|
void stopEvVelFusion(); |
|
void stopEvYawFusion(); |
|
|
|
void stopAuxVelFusion(); |
|
|
|
void stopFlowFusion(); |
|
|
|
void setVelPosFaultStatus(const int index, const bool status); |
|
|
|
// reset the quaternion states and covariances to the new yaw value, preserving the roll and pitch |
|
// yaw : Euler yaw angle (rad) |
|
// yaw_variance : yaw error variance (rad^2) |
|
// update_buffer : true if the state change should be also applied to the output observer buffer |
|
void resetQuatStateYaw(float yaw, float yaw_variance, bool update_buffer); |
|
|
|
// Declarations used to control use of the EKF-GSF yaw estimator |
|
|
|
// yaw estimator instance |
|
EKFGSF_yaw _yawEstimator; |
|
|
|
int64_t _ekfgsf_yaw_reset_time{0}; ///< timestamp of last emergency yaw reset (uSec) |
|
bool _do_ekfgsf_yaw_reset{false}; // true when an emergency yaw reset has been requested |
|
uint8_t _ekfgsf_yaw_reset_count{0}; // number of times the yaw has been reset to the EKF-GSF estimate |
|
|
|
// Call once per _imu_sample_delayed update after all main EKF data fusion oeprations have been completed |
|
void runYawEKFGSF(); |
|
|
|
// Resets the main Nav EKf yaw to the estimator from the EKF-GSF yaw estimator |
|
// Resets the horizontal velocity and position to the default navigation sensor |
|
// Returns true if the reset was successful |
|
bool resetYawToEKFGSF(); |
|
|
|
void resetGpsDriftCheckFilters(); |
|
};
|
|
|