You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1639 lines
57 KiB
1639 lines
57 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf_helper.cpp |
|
* Definition of ekf helper functions. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
|
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
#include <cstdlib> |
|
|
|
|
|
void Ekf::resetVelocity() |
|
{ |
|
if (_control_status.flags.gps && isTimedOut(_last_gps_fail_us, (uint64_t)_min_gps_health_time_us)) { |
|
// this reset is only called if we have new gps data at the fusion time horizon |
|
resetVelocityToGps(); |
|
|
|
} else if (_control_status.flags.opt_flow) { |
|
resetHorizontalVelocityToOpticalFlow(); |
|
|
|
} else if (_control_status.flags.ev_vel) { |
|
resetVelocityToVision(); |
|
|
|
} else { |
|
resetHorizontalVelocityToZero(); |
|
} |
|
} |
|
|
|
void Ekf::resetVelocityToGps() |
|
{ |
|
ECL_INFO_TIMESTAMPED("reset velocity to GPS"); |
|
resetVelocityTo(_gps_sample_delayed.vel); |
|
P.uncorrelateCovarianceSetVariance<3>(4, sq(_gps_sample_delayed.sacc)); |
|
} |
|
|
|
void Ekf::resetHorizontalVelocityToOpticalFlow() |
|
{ |
|
ECL_INFO_TIMESTAMPED("reset velocity to flow"); |
|
// constrain height above ground to be above minimum possible |
|
const float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance); |
|
|
|
// calculate absolute distance from focal point to centre of frame assuming a flat earth |
|
const float range = heightAboveGndEst / _range_sensor.getCosTilt(); |
|
|
|
if ((range - _params.rng_gnd_clearance) > 0.3f) { |
|
// we should have reliable OF measurements so |
|
// calculate X and Y body relative velocities from OF measurements |
|
Vector3f vel_optflow_body; |
|
vel_optflow_body(0) = - range * _flow_compensated_XY_rad(1) / _flow_sample_delayed.dt; |
|
vel_optflow_body(1) = range * _flow_compensated_XY_rad(0) / _flow_sample_delayed.dt; |
|
vel_optflow_body(2) = 0.0f; |
|
|
|
// rotate from body to earth frame |
|
const Vector3f vel_optflow_earth = _R_to_earth * vel_optflow_body; |
|
|
|
resetHorizontalVelocityTo(Vector2f(vel_optflow_earth)); |
|
|
|
} else { |
|
resetHorizontalVelocityTo(Vector2f{0.f, 0.f}); |
|
} |
|
|
|
// reset the horizontal velocity variance using the optical flow noise variance |
|
P.uncorrelateCovarianceSetVariance<2>(4, sq(range) * calcOptFlowMeasVar()); |
|
} |
|
|
|
void Ekf::resetVelocityToVision() |
|
{ |
|
ECL_INFO_TIMESTAMPED("reset to vision velocity"); |
|
resetVelocityTo(getVisionVelocityInEkfFrame()); |
|
P.uncorrelateCovarianceSetVariance<3>(4, getVisionVelocityVarianceInEkfFrame()); |
|
} |
|
|
|
void Ekf::resetHorizontalVelocityToZero() |
|
{ |
|
ECL_INFO_TIMESTAMPED("reset velocity to zero"); |
|
// Used when falling back to non-aiding mode of operation |
|
resetHorizontalVelocityTo(Vector2f{0.f, 0.f}); |
|
P.uncorrelateCovarianceSetVariance<2>(4, 25.0f); |
|
} |
|
|
|
void Ekf::resetVelocityTo(const Vector3f &new_vel) |
|
{ |
|
resetHorizontalVelocityTo(Vector2f(new_vel)); |
|
resetVerticalVelocityTo(new_vel(2)); |
|
} |
|
|
|
void Ekf::resetHorizontalVelocityTo(const Vector2f &new_horz_vel) |
|
{ |
|
const Vector2f delta_horz_vel = new_horz_vel - Vector2f(_state.vel); |
|
_state.vel.xy() = new_horz_vel; |
|
|
|
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { |
|
_output_buffer[index].vel.xy() += delta_horz_vel; |
|
} |
|
|
|
_output_new.vel.xy() += delta_horz_vel; |
|
|
|
_state_reset_status.velNE_change = delta_horz_vel; |
|
_state_reset_status.velNE_counter++; |
|
} |
|
|
|
void Ekf::resetVerticalVelocityTo(float new_vert_vel) |
|
{ |
|
const float delta_vert_vel = new_vert_vel - _state.vel(2); |
|
_state.vel(2) = new_vert_vel; |
|
|
|
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { |
|
_output_buffer[index].vel(2) += delta_vert_vel; |
|
_output_vert_buffer[index].vert_vel += delta_vert_vel; |
|
} |
|
|
|
_output_new.vel(2) += delta_vert_vel; |
|
_output_vert_new.vert_vel += delta_vert_vel; |
|
|
|
_state_reset_status.velD_change = delta_vert_vel; |
|
_state_reset_status.velD_counter++; |
|
} |
|
|
|
void Ekf::resetHorizontalPosition() |
|
{ |
|
// let the next odometry update know that the previous value of states cannot be used to calculate the change in position |
|
_hpos_prev_available = false; |
|
|
|
if (_control_status.flags.gps) { |
|
// this reset is only called if we have new gps data at the fusion time horizon |
|
resetHorizontalPositionToGps(); |
|
|
|
} else if (_control_status.flags.ev_pos) { |
|
// this reset is only called if we have new ev data at the fusion time horizon |
|
resetHorizontalPositionToVision(); |
|
|
|
} else if (_control_status.flags.opt_flow) { |
|
ECL_INFO_TIMESTAMPED("reset position to last known position"); |
|
|
|
if (!_control_status.flags.in_air) { |
|
// we are likely starting OF for the first time so reset the horizontal position |
|
resetHorizontalPositionTo(Vector2f(0.f, 0.f)); |
|
|
|
} else { |
|
resetHorizontalPositionTo(_last_known_posNE); |
|
} |
|
|
|
// estimate is relative to initial position in this mode, so we start with zero error. |
|
P.uncorrelateCovarianceSetVariance<2>(7, 0.0f); |
|
|
|
} else { |
|
ECL_INFO_TIMESTAMPED("reset position to last known position"); |
|
// Used when falling back to non-aiding mode of operation |
|
resetHorizontalPositionTo(_last_known_posNE); |
|
P.uncorrelateCovarianceSetVariance<2>(7, sq(_params.pos_noaid_noise)); |
|
} |
|
} |
|
|
|
void Ekf::resetHorizontalPositionToGps() |
|
{ |
|
ECL_INFO_TIMESTAMPED("reset position to GPS"); |
|
resetHorizontalPositionTo(_gps_sample_delayed.pos); |
|
P.uncorrelateCovarianceSetVariance<2>(7, sq(_gps_sample_delayed.hacc)); |
|
} |
|
|
|
void Ekf::resetHorizontalPositionToVision() |
|
{ |
|
ECL_INFO_TIMESTAMPED("reset position to ev position"); |
|
Vector3f _ev_pos = _ev_sample_delayed.pos; |
|
|
|
if (_params.fusion_mode & MASK_ROTATE_EV) { |
|
_ev_pos = _R_ev_to_ekf * _ev_sample_delayed.pos; |
|
} |
|
|
|
resetHorizontalPositionTo(Vector2f(_ev_pos)); |
|
P.uncorrelateCovarianceSetVariance<2>(7, _ev_sample_delayed.posVar.slice<2, 1>(0, 0)); |
|
} |
|
|
|
void Ekf::resetHorizontalPositionTo(const Vector2f &new_horz_pos) |
|
{ |
|
const Vector2f delta_horz_pos{new_horz_pos - Vector2f{_state.pos}}; |
|
_state.pos.xy() = new_horz_pos; |
|
|
|
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { |
|
_output_buffer[index].pos.xy() += delta_horz_pos; |
|
} |
|
|
|
_output_new.pos.xy() += delta_horz_pos; |
|
|
|
_state_reset_status.posNE_change = delta_horz_pos; |
|
_state_reset_status.posNE_counter++; |
|
} |
|
|
|
void Ekf::resetVerticalPositionTo(const float &new_vert_pos) |
|
{ |
|
const float old_vert_pos = _state.pos(2); |
|
_state.pos(2) = new_vert_pos; |
|
|
|
// store the reset amount and time to be published |
|
_state_reset_status.posD_change = new_vert_pos - old_vert_pos; |
|
_state_reset_status.posD_counter++; |
|
|
|
// apply the change in height / height rate to our newest height / height rate estimate |
|
// which have already been taken out from the output buffer |
|
_output_new.pos(2) += _state_reset_status.posD_change; |
|
|
|
// add the reset amount to the output observer buffered data |
|
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { |
|
_output_buffer[i].pos(2) += _state_reset_status.posD_change; |
|
_output_vert_buffer[i].vert_vel_integ += _state_reset_status.posD_change; |
|
} |
|
|
|
// add the reset amount to the output observer vertical position state |
|
_output_vert_new.vert_vel_integ = _state.pos(2); |
|
} |
|
|
|
// Reset height state using the last height measurement |
|
void Ekf::resetHeight() |
|
{ |
|
// Get the most recent GPS data |
|
const gpsSample &gps_newest = _gps_buffer.get_newest(); |
|
|
|
// reset the vertical position |
|
if (_control_status.flags.rng_hgt) { |
|
// update the state and associated variance |
|
resetVerticalPositionTo(_hgt_sensor_offset - _range_sensor.getDistBottom()); |
|
|
|
// the state variance is the same as the observation |
|
P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.range_noise)); |
|
|
|
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup |
|
const baroSample &baro_newest = _baro_buffer.get_newest(); |
|
_baro_hgt_offset = baro_newest.hgt + _state.pos(2); |
|
|
|
} else if (_control_status.flags.baro_hgt) { |
|
// initialize vertical position with newest baro measurement |
|
const baroSample &baro_newest = _baro_buffer.get_newest(); |
|
|
|
if (!_baro_hgt_faulty) { |
|
resetVerticalPositionTo(-baro_newest.hgt + _baro_hgt_offset); |
|
|
|
// the state variance is the same as the observation |
|
P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.baro_noise)); |
|
|
|
} else { |
|
// TODO: reset to last known baro based estimate |
|
} |
|
|
|
} else if (_control_status.flags.gps_hgt) { |
|
// initialize vertical position and velocity with newest gps measurement |
|
if (!_gps_hgt_intermittent) { |
|
resetVerticalPositionTo(_hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref); |
|
|
|
// the state variance is the same as the observation |
|
P.uncorrelateCovarianceSetVariance<1>(9, sq(gps_newest.vacc)); |
|
|
|
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup |
|
const baroSample &baro_newest = _baro_buffer.get_newest(); |
|
_baro_hgt_offset = baro_newest.hgt + _state.pos(2); |
|
|
|
} else { |
|
// TODO: reset to last known gps based estimate |
|
} |
|
|
|
} else if (_control_status.flags.ev_hgt) { |
|
// initialize vertical position with newest measurement |
|
const extVisionSample &ev_newest = _ext_vision_buffer.get_newest(); |
|
|
|
// use the most recent data if it's time offset from the fusion time horizon is smaller |
|
if (ev_newest.time_us >= _ev_sample_delayed.time_us) { |
|
resetVerticalPositionTo(ev_newest.pos(2)); |
|
|
|
} else { |
|
resetVerticalPositionTo(_ev_sample_delayed.pos(2)); |
|
} |
|
} |
|
|
|
// reset the vertical velocity state |
|
if (_control_status.flags.gps && !_gps_hgt_intermittent) { |
|
// If we are using GPS, then use it to reset the vertical velocity |
|
resetVerticalVelocityTo(gps_newest.vel(2)); |
|
|
|
// the state variance is the same as the observation |
|
P.uncorrelateCovarianceSetVariance<1>(6, sq(1.5f * gps_newest.sacc)); |
|
|
|
} else { |
|
// we don't know what the vertical velocity is, so set it to zero |
|
resetVerticalVelocityTo(0.0f); |
|
|
|
// Set the variance to a value large enough to allow the state to converge quickly |
|
// that does not destabilise the filter |
|
P.uncorrelateCovarianceSetVariance<1>(6, 10.0f); |
|
} |
|
} |
|
|
|
// align output filter states to match EKF states at the fusion time horizon |
|
void Ekf::alignOutputFilter() |
|
{ |
|
const outputSample &output_delayed = _output_buffer.get_oldest(); |
|
|
|
// calculate the quaternion rotation delta from the EKF to output observer states at the EKF fusion time horizon |
|
Quatf q_delta{_state.quat_nominal * output_delayed.quat_nominal.inversed()}; |
|
q_delta.normalize(); |
|
|
|
// calculate the velocity and position deltas between the output and EKF at the EKF fusion time horizon |
|
const Vector3f vel_delta = _state.vel - output_delayed.vel; |
|
const Vector3f pos_delta = _state.pos - output_delayed.pos; |
|
|
|
// loop through the output filter state history and add the deltas |
|
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { |
|
_output_buffer[i].quat_nominal = q_delta * _output_buffer[i].quat_nominal; |
|
_output_buffer[i].quat_nominal.normalize(); |
|
_output_buffer[i].vel += vel_delta; |
|
_output_buffer[i].pos += pos_delta; |
|
} |
|
|
|
_output_new = _output_buffer.get_newest(); |
|
} |
|
|
|
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS. |
|
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only. |
|
bool Ekf::realignYawGPS() |
|
{ |
|
const float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1))); |
|
|
|
// Need at least 5 m/s of GPS horizontal speed and |
|
// ratio of velocity error to velocity < 0.15 for a reliable alignment |
|
const bool gps_yaw_alignment_possible = (gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed)); |
|
|
|
if (!gps_yaw_alignment_possible) { |
|
// attempt a normal alignment using the magnetometer |
|
return resetMagHeading(_mag_lpf.getState()); |
|
} |
|
|
|
// check for excessive horizontal GPS velocity innovations |
|
const bool badVelInnov = (_gps_vel_test_ratio(0) > 1.0f) && _control_status.flags.gps; |
|
|
|
// calculate GPS course over ground angle |
|
const float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0)); |
|
|
|
// calculate course yaw angle |
|
const float ekfCOG = atan2f(_state.vel(1), _state.vel(0)); |
|
|
|
// Check the EKF and GPS course over ground for consistency |
|
const float courseYawError = wrap_pi(gpsCOG - ekfCOG); |
|
|
|
// If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad |
|
const bool badYawErr = fabsf(courseYawError) > 0.5f; |
|
const bool badMagYaw = (badYawErr && badVelInnov); |
|
|
|
if (badMagYaw) { |
|
_num_bad_flight_yaw_events ++; |
|
} |
|
|
|
// correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned |
|
if (badMagYaw || !_control_status.flags.yaw_align) { |
|
ECL_WARN_TIMESTAMPED("bad yaw, using GPS course"); |
|
|
|
// declare the magnetometer as failed if a bad yaw has occurred more than once |
|
if (_control_status.flags.mag_aligned_in_flight && (_num_bad_flight_yaw_events >= 2) |
|
&& !_control_status.flags.mag_fault) { |
|
ECL_WARN_TIMESTAMPED("stopping mag use"); |
|
_control_status.flags.mag_fault = true; |
|
} |
|
|
|
// calculate new yaw estimate |
|
float yaw_new; |
|
|
|
if (!_control_status.flags.mag_aligned_in_flight) { |
|
// This is our first flight alignment so we can assume that the recent change in velocity has occurred due to a |
|
// forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error |
|
const float current_yaw = getEuler321Yaw(_state.quat_nominal); |
|
yaw_new = current_yaw + courseYawError; |
|
_control_status.flags.mag_aligned_in_flight = true; |
|
|
|
} else if (_control_status.flags.wind) { |
|
// we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is |
|
// aligned with the wind relative GPS velocity vector |
|
yaw_new = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)), |
|
(_gps_sample_delayed.vel(0) - _state.wind_vel(0))); |
|
|
|
} else { |
|
// we don't have wind estimates, so align yaw to the GPS velocity vector |
|
yaw_new = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0)); |
|
|
|
} |
|
|
|
// use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment |
|
const float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P(4, 4) + P(5, 5); |
|
const float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f); |
|
const float yaw_variance_new = sq(asinf(sineYawError)); |
|
|
|
// Apply updated yaw and yaw variance to states and covariances |
|
resetQuatStateYaw(yaw_new, yaw_variance_new, true); |
|
|
|
// Use the last magnetometer measurements to reset the field states |
|
_state.mag_B.zero(); |
|
_R_to_earth = Dcmf(_state.quat_nominal); |
|
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag; |
|
|
|
resetMagCov(); |
|
|
|
// record the start time for the magnetic field alignment |
|
_flt_mag_align_start_time = _imu_sample_delayed.time_us; |
|
|
|
// If heading was bad, then we also need to reset the velocity and position states |
|
_velpos_reset_request = badMagYaw; |
|
|
|
return true; |
|
|
|
} else { |
|
// align mag states only |
|
|
|
// calculate initial earth magnetic field states |
|
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag; |
|
|
|
resetMagCov(); |
|
|
|
// record the start time for the magnetic field alignment |
|
_flt_mag_align_start_time = _imu_sample_delayed.time_us; |
|
|
|
return true; |
|
} |
|
} |
|
|
|
// Reset heading and magnetic field states |
|
bool Ekf::resetMagHeading(const Vector3f &mag_init, bool increase_yaw_var, bool update_buffer) |
|
{ |
|
// prevent a reset being performed more than once on the same frame |
|
if (_imu_sample_delayed.time_us == _flt_mag_align_start_time) { |
|
return true; |
|
} |
|
|
|
if (_params.mag_fusion_type >= MAG_FUSE_TYPE_NONE) { |
|
stopMagFusion(); |
|
return false; |
|
} |
|
|
|
// calculate the observed yaw angle and yaw variance |
|
float yaw_new; |
|
float yaw_new_variance = 0.0f; |
|
|
|
if (_control_status.flags.ev_yaw) { |
|
yaw_new = getEuler312Yaw(_ev_sample_delayed.quat); |
|
|
|
if (increase_yaw_var) { |
|
yaw_new_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f)); |
|
} |
|
|
|
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) { |
|
// rotate the magnetometer measurements into earth frame using a zero yaw angle |
|
const Dcmf R_to_earth = updateYawInRotMat(0.f, _R_to_earth); |
|
|
|
// the angle of the projection onto the horizontal gives the yaw angle |
|
const Vector3f mag_earth_pred = R_to_earth * mag_init; |
|
yaw_new = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination(); |
|
|
|
if (increase_yaw_var) { |
|
yaw_new_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); |
|
} |
|
|
|
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR && _is_yaw_fusion_inhibited) { |
|
// we are operating temporarily without knowing the earth frame yaw angle |
|
return true; |
|
|
|
} else { |
|
// there is no yaw observation |
|
return false; |
|
} |
|
|
|
// update quaternion states and corresponding covarainces |
|
resetQuatStateYaw(yaw_new, yaw_new_variance, update_buffer); |
|
|
|
// set the earth magnetic field states using the updated rotation |
|
_state.mag_I = _R_to_earth * mag_init; |
|
|
|
resetMagCov(); |
|
|
|
// record the time for the magnetic field alignment event |
|
_flt_mag_align_start_time = _imu_sample_delayed.time_us; |
|
|
|
return true; |
|
} |
|
|
|
// Return the magnetic declination in radians to be used by the alignment and fusion processing |
|
float Ekf::getMagDeclination() |
|
{ |
|
// set source of magnetic declination for internal use |
|
if (_control_status.flags.mag_aligned_in_flight) { |
|
// Use value consistent with earth field state |
|
return atan2f(_state.mag_I(1), _state.mag_I(0)); |
|
|
|
} else if (_params.mag_declination_source & MASK_USE_GEO_DECL) { |
|
// use parameter value until GPS is available, then use value returned by geo library |
|
if (_NED_origin_initialised || ISFINITE(_mag_declination_gps)) { |
|
return _mag_declination_gps; |
|
|
|
} else { |
|
return math::radians(_params.mag_declination_deg); |
|
} |
|
|
|
} else { |
|
// always use the parameter value |
|
return math::radians(_params.mag_declination_deg); |
|
} |
|
} |
|
|
|
void Ekf::constrainStates() |
|
{ |
|
_state.quat_nominal = matrix::constrain(_state.quat_nominal, -1.0f, 1.0f); |
|
_state.vel = matrix::constrain(_state.vel, -1000.0f, 1000.0f); |
|
_state.pos = matrix::constrain(_state.pos, -1.e6f, 1.e6f); |
|
|
|
const float delta_ang_bias_limit = math::radians(20.f) * _dt_ekf_avg; |
|
_state.delta_ang_bias = matrix::constrain(_state.delta_ang_bias, -delta_ang_bias_limit, delta_ang_bias_limit); |
|
|
|
const float delta_vel_bias_limit = _params.acc_bias_lim * _dt_ekf_avg; |
|
_state.delta_vel_bias = matrix::constrain(_state.delta_vel_bias, -delta_vel_bias_limit, delta_vel_bias_limit); |
|
|
|
_state.mag_I = matrix::constrain(_state.mag_I, -1.0f, 1.0f); |
|
_state.mag_B = matrix::constrain(_state.mag_B, -0.5f, 0.5f); |
|
_state.wind_vel = matrix::constrain(_state.wind_vel, -100.0f, 100.0f); |
|
} |
|
|
|
float Ekf::compensateBaroForDynamicPressure(const float baro_alt_uncompensated) const |
|
{ |
|
// calculate static pressure error = Pmeas - Ptruth |
|
// model position error sensitivity as a body fixed ellipse with a different scale in the positive and |
|
// negative X and Y directions. Used to correct baro data for positional errors |
|
const matrix::Dcmf R_to_body(_output_new.quat_nominal.inversed()); |
|
|
|
// Calculate airspeed in body frame |
|
const Vector3f velocity_earth = _output_new.vel - _vel_imu_rel_body_ned; |
|
|
|
const Vector3f wind_velocity_earth(_state.wind_vel(0), _state.wind_vel(1), 0.0f); |
|
|
|
const Vector3f airspeed_earth = velocity_earth - wind_velocity_earth; |
|
|
|
const Vector3f airspeed_body = R_to_body * airspeed_earth; |
|
|
|
const Vector3f K_pstatic_coef(airspeed_body(0) >= 0.0f ? _params.static_pressure_coef_xp : |
|
_params.static_pressure_coef_xn, |
|
airspeed_body(1) >= 0.0f ? _params.static_pressure_coef_yp : _params.static_pressure_coef_yn, |
|
_params.static_pressure_coef_z); |
|
|
|
const Vector3f airspeed_squared = matrix::min(airspeed_body.emult(airspeed_body), sq(_params.max_correction_airspeed)); |
|
|
|
const float pstatic_err = 0.5f * _air_density * (airspeed_squared.dot(K_pstatic_coef)); |
|
|
|
// correct baro measurement using pressure error estimate and assuming sea level gravity |
|
return baro_alt_uncompensated + pstatic_err / (_air_density * CONSTANTS_ONE_G); |
|
} |
|
|
|
// calculate the earth rotation vector |
|
Vector3f Ekf::calcEarthRateNED(float lat_rad) const |
|
{ |
|
return Vector3f(CONSTANTS_EARTH_SPIN_RATE * cosf(lat_rad), |
|
0.0f, |
|
-CONSTANTS_EARTH_SPIN_RATE * sinf(lat_rad)); |
|
} |
|
|
|
void Ekf::getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const |
|
{ |
|
hvel[0] = _gps_vel_innov(0); |
|
hvel[1] = _gps_vel_innov(1); |
|
vvel = _gps_vel_innov(2); |
|
hpos[0] = _gps_pos_innov(0); |
|
hpos[1] = _gps_pos_innov(1); |
|
vpos = _gps_pos_innov(2); |
|
} |
|
|
|
void Ekf::getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const |
|
{ |
|
hvel[0] = _gps_vel_innov_var(0); |
|
hvel[1] = _gps_vel_innov_var(1); |
|
vvel = _gps_vel_innov_var(2); |
|
hpos[0] = _gps_pos_innov_var(0); |
|
hpos[1] = _gps_pos_innov_var(1); |
|
vpos = _gps_pos_innov_var(2); |
|
} |
|
|
|
void Ekf::getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const |
|
{ |
|
hvel = _gps_vel_test_ratio(0); |
|
vvel = _gps_vel_test_ratio(1); |
|
hpos = _gps_pos_test_ratio(0); |
|
vpos = _gps_pos_test_ratio(1); |
|
} |
|
|
|
void Ekf::getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const |
|
{ |
|
hvel[0] = _ev_vel_innov(0); |
|
hvel[1] = _ev_vel_innov(1); |
|
vvel = _ev_vel_innov(2); |
|
hpos[0] = _ev_pos_innov(0); |
|
hpos[1] = _ev_pos_innov(1); |
|
vpos = _ev_pos_innov(2); |
|
} |
|
|
|
void Ekf::getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const |
|
{ |
|
hvel[0] = _ev_vel_innov_var(0); |
|
hvel[1] = _ev_vel_innov_var(1); |
|
vvel = _ev_vel_innov_var(2); |
|
hpos[0] = _ev_pos_innov_var(0); |
|
hpos[1] = _ev_pos_innov_var(1); |
|
vpos = _ev_pos_innov_var(2); |
|
} |
|
|
|
void Ekf::getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const |
|
{ |
|
hvel = _ev_vel_test_ratio(0); |
|
vvel = _ev_vel_test_ratio(1); |
|
hpos = _ev_pos_test_ratio(0); |
|
vpos = _ev_pos_test_ratio(1); |
|
} |
|
|
|
void Ekf::getAuxVelInnov(float aux_vel_innov[2]) const |
|
{ |
|
aux_vel_innov[0] = _aux_vel_innov(0); |
|
aux_vel_innov[1] = _aux_vel_innov(1); |
|
} |
|
|
|
void Ekf::getAuxVelInnovVar(float aux_vel_innov_var[2]) const |
|
{ |
|
aux_vel_innov_var[0] = _aux_vel_innov_var(0); |
|
aux_vel_innov_var[1] = _aux_vel_innov_var(1); |
|
} |
|
|
|
// get the state vector at the delayed time horizon |
|
matrix::Vector<float, 24> Ekf::getStateAtFusionHorizonAsVector() const |
|
{ |
|
matrix::Vector<float, 24> state; |
|
state.slice<4, 1>(0, 0) = _state.quat_nominal; |
|
state.slice<3, 1>(4, 0) = _state.vel; |
|
state.slice<3, 1>(7, 0) = _state.pos; |
|
state.slice<3, 1>(10, 0) = _state.delta_ang_bias; |
|
state.slice<3, 1>(13, 0) = _state.delta_vel_bias; |
|
state.slice<3, 1>(16, 0) = _state.mag_I; |
|
state.slice<3, 1>(19, 0) = _state.mag_B; |
|
state.slice<2, 1>(22, 0) = _state.wind_vel; |
|
return state; |
|
} |
|
|
|
bool Ekf::getEkfGlobalOrigin(uint64_t &origin_time, double &latitude, double &longitude, float &origin_alt) const |
|
{ |
|
origin_time = _last_gps_origin_time_us; |
|
latitude = math::degrees(_pos_ref.lat_rad); |
|
longitude = math::degrees(_pos_ref.lon_rad); |
|
origin_alt = _gps_alt_ref; |
|
return _NED_origin_initialised; |
|
} |
|
|
|
bool Ekf::setEkfGlobalOrigin(const double latitude, const double longitude, const float altitude) |
|
{ |
|
bool current_pos_available = false; |
|
double current_lat = static_cast<double>(NAN); |
|
double current_lon = static_cast<double>(NAN); |
|
float current_alt = 0.f; |
|
|
|
// if we are already doing aiding, correct for the change in position since the EKF started navigating |
|
if (map_projection_initialized(&_pos_ref) && isHorizontalAidingActive()) { |
|
map_projection_reproject(&_pos_ref, _state.pos(0), _state.pos(1), ¤t_lat, ¤t_lon); |
|
current_alt = -_state.pos(2) + _gps_alt_ref; |
|
current_pos_available = true; |
|
} |
|
|
|
// reinitialize map projection to latitude, longitude, altitude, and reset position |
|
if (map_projection_init_timestamped(&_pos_ref, latitude, longitude, _time_last_imu) == 0) { |
|
if (current_pos_available) { |
|
// reset horizontal position |
|
Vector2f position; |
|
map_projection_project(&_pos_ref, current_lat, current_lon, &position(0), &position(1)); |
|
resetHorizontalPositionTo(position); |
|
|
|
// reset altitude |
|
_gps_alt_ref = altitude; |
|
resetVerticalPositionTo(_gps_alt_ref - current_alt); |
|
} else { |
|
// reset altitude |
|
_gps_alt_ref = altitude; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/* |
|
First argument returns GPS drift metrics in the following array locations |
|
0 : Horizontal position drift rate (m/s) |
|
1 : Vertical position drift rate (m/s) |
|
2 : Filtered horizontal velocity (m/s) |
|
Second argument returns true when IMU movement is blocking the drift calculation |
|
Function returns true if the metrics have been updated and not returned previously by this function |
|
*/ |
|
bool Ekf::get_gps_drift_metrics(float drift[3], bool *blocked) |
|
{ |
|
memcpy(drift, _gps_drift_metrics, 3 * sizeof(float)); |
|
*blocked = !_control_status.flags.vehicle_at_rest; |
|
|
|
if (_gps_drift_updated) { |
|
_gps_drift_updated = false; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position |
|
void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) const |
|
{ |
|
// report absolute accuracy taking into account the uncertainty in location of the origin |
|
// If not aiding, return 0 for horizontal position estimate as no estimate is available |
|
// TODO - allow for baro drift in vertical position error |
|
float hpos_err = sqrtf(P(7, 7) + P(8, 8) + sq(_gps_origin_eph)); |
|
|
|
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error |
|
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors |
|
// and using state variances for accuracy reporting is overly optimistic in these situations |
|
if (_is_dead_reckoning && (_control_status.flags.gps)) { |
|
hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1)))); |
|
|
|
} else if (_is_dead_reckoning && (_control_status.flags.ev_pos)) { |
|
hpos_err = math::max(hpos_err, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1)))); |
|
} |
|
|
|
*ekf_eph = hpos_err; |
|
*ekf_epv = sqrtf(P(9, 9) + sq(_gps_origin_epv)); |
|
} |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position |
|
void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) const |
|
{ |
|
// TODO - allow for baro drift in vertical position error |
|
float hpos_err = sqrtf(P(7, 7) + P(8, 8)); |
|
|
|
// If we are dead-reckoning for too long, use the innovations as a conservative alternate measure of the horizontal position error |
|
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors |
|
// and using state variances for accuracy reporting is overly optimistic in these situations |
|
if (_deadreckon_time_exceeded && _control_status.flags.gps) { |
|
hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1)))); |
|
} |
|
|
|
*ekf_eph = hpos_err; |
|
*ekf_epv = sqrtf(P(9, 9)); |
|
} |
|
|
|
// get the 1-sigma horizontal and vertical velocity uncertainty |
|
void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) const |
|
{ |
|
float hvel_err = sqrtf(P(4, 4) + P(5, 5)); |
|
|
|
// If we are dead-reckoning for too long, use the innovations as a conservative alternate measure of the horizontal velocity error |
|
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors |
|
// and using state variances for accuracy reporting is overly optimistic in these situations |
|
if (_deadreckon_time_exceeded) { |
|
float vel_err_conservative = 0.0f; |
|
|
|
if (_control_status.flags.opt_flow) { |
|
float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f); |
|
vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * _flow_innov.norm(); |
|
} |
|
|
|
if (_control_status.flags.gps) { |
|
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1)))); |
|
|
|
} else if (_control_status.flags.ev_pos) { |
|
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1)))); |
|
} |
|
|
|
if (_control_status.flags.ev_vel) { |
|
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_vel_innov(0)) + sq(_ev_vel_innov(1)))); |
|
} |
|
|
|
hvel_err = math::max(hvel_err, vel_err_conservative); |
|
} |
|
|
|
*ekf_evh = hvel_err; |
|
*ekf_evv = sqrtf(P(6, 6)); |
|
} |
|
|
|
/* |
|
Returns the following vehicle control limits required by the estimator to keep within sensor limitations. |
|
vxy_max : Maximum ground relative horizontal speed (meters/sec). NaN when limiting is not needed. |
|
vz_max : Maximum ground relative vertical speed (meters/sec). NaN when limiting is not needed. |
|
hagl_min : Minimum height above ground (meters). NaN when limiting is not needed. |
|
hagl_max : Maximum height above ground (meters). NaN when limiting is not needed. |
|
*/ |
|
void Ekf::get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) const |
|
{ |
|
// Calculate range finder limits |
|
const float rangefinder_hagl_min = _range_sensor.getValidMinVal(); |
|
// Allow use of 75% of rangefinder maximum range to allow for angular motion |
|
const float rangefinder_hagl_max = 0.75f * _range_sensor.getValidMaxVal(); |
|
|
|
// Calculate optical flow limits |
|
// Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion |
|
const float flow_vxy_max = fmaxf(0.5f * _flow_max_rate * (_terrain_vpos - _state.pos(2)), 0.0f); |
|
const float flow_hagl_min = _flow_min_distance; |
|
const float flow_hagl_max = _flow_max_distance; |
|
|
|
// TODO : calculate visual odometry limits |
|
|
|
const bool relying_on_rangefinder = _control_status.flags.rng_hgt && !_params.range_aid; |
|
|
|
const bool relying_on_optical_flow = isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow); |
|
|
|
// Do not require limiting by default |
|
*vxy_max = NAN; |
|
*vz_max = NAN; |
|
*hagl_min = NAN; |
|
*hagl_max = NAN; |
|
|
|
// Keep within range sensor limit when using rangefinder as primary height source |
|
if (relying_on_rangefinder) { |
|
*vxy_max = NAN; |
|
*vz_max = NAN; |
|
*hagl_min = rangefinder_hagl_min; |
|
*hagl_max = rangefinder_hagl_max; |
|
} |
|
|
|
// Keep within flow AND range sensor limits when exclusively using optical flow |
|
if (relying_on_optical_flow) { |
|
*vxy_max = flow_vxy_max; |
|
*vz_max = NAN; |
|
*hagl_min = fmaxf(rangefinder_hagl_min, flow_hagl_min); |
|
*hagl_max = fminf(rangefinder_hagl_max, flow_hagl_max); |
|
} |
|
} |
|
|
|
void Ekf::resetImuBias() |
|
{ |
|
resetGyroBias(); |
|
resetAccelBias(); |
|
} |
|
|
|
void Ekf::resetGyroBias() |
|
{ |
|
// Zero the delta angle and delta velocity bias states |
|
_state.delta_ang_bias.zero(); |
|
|
|
// Zero the corresponding covariances and set |
|
// variances to the values use for initial alignment |
|
P.uncorrelateCovarianceSetVariance<3>(10, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S)); |
|
} |
|
|
|
void Ekf::resetAccelBias() |
|
{ |
|
// Zero the delta angle and delta velocity bias states |
|
_state.delta_vel_bias.zero(); |
|
|
|
// Zero the corresponding covariances and set |
|
// variances to the values use for initial alignment |
|
P.uncorrelateCovarianceSetVariance<3>(13, sq(_params.switch_on_accel_bias * FILTER_UPDATE_PERIOD_S)); |
|
|
|
// Set previous frame values |
|
_prev_dvel_bias_var = P.slice<3, 3>(13, 13).diag(); |
|
} |
|
|
|
void Ekf::resetMagBias() |
|
{ |
|
// Zero the magnetometer bias states |
|
_state.mag_B.zero(); |
|
|
|
// Zero the corresponding covariances and set |
|
// variances to the values use for initial alignment |
|
P.uncorrelateCovarianceSetVariance<3>(19, sq(_params.mag_noise)); |
|
|
|
// reset any saved covariance data for re-use when auto-switching between heading and 3-axis fusion |
|
// _saved_mag_bf_variance[0] is the the D earth axis |
|
_saved_mag_bf_variance[1] = 0; |
|
_saved_mag_bf_variance[2] = 0; |
|
_saved_mag_bf_variance[3] = 0; |
|
} |
|
|
|
// get EKF innovation consistency check status information comprising of: |
|
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check |
|
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold. |
|
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF |
|
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned. |
|
void Ekf::get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas, |
|
float &hagl, float &beta) const |
|
{ |
|
// return the integer bitmask containing the consistency check pass/fail status |
|
status = _innov_check_fail_status.value; |
|
// return the largest magnetometer innovation test ratio |
|
mag = sqrtf(math::max(_yaw_test_ratio, _mag_test_ratio.max())); |
|
// return the largest velocity innovation test ratio |
|
vel = math::max(sqrtf(math::max(_gps_vel_test_ratio(0), _gps_vel_test_ratio(1))), |
|
sqrtf(math::max(_ev_vel_test_ratio(0), _ev_vel_test_ratio(1)))); |
|
// return the largest position innovation test ratio |
|
pos = math::max(sqrtf(_gps_pos_test_ratio(0)), sqrtf(_ev_pos_test_ratio(0))); |
|
|
|
// return the vertical position innovation test ratio |
|
hgt = sqrtf(_gps_pos_test_ratio(0)); |
|
// return the airspeed fusion innovation test ratio |
|
tas = sqrtf(_tas_test_ratio); |
|
// return the terrain height innovation test ratio |
|
hagl = sqrtf(_hagl_test_ratio); |
|
// return the synthetic sideslip innovation test ratio |
|
beta = sqrtf(_beta_test_ratio); |
|
} |
|
|
|
// return a bitmask integer that describes which state estimates are valid |
|
void Ekf::get_ekf_soln_status(uint16_t *status) const |
|
{ |
|
ekf_solution_status soln_status; |
|
// TODO: Is this accurate enough? |
|
soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0); |
|
soln_status.flags.velocity_horiz = (isHorizontalAidingActive() || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0); |
|
soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0); |
|
soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0); |
|
soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0); |
|
soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert; |
|
soln_status.flags.pos_vert_agl = isTerrainEstimateValid(); |
|
soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz; |
|
soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel; |
|
soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs; |
|
const bool gps_vel_innov_bad = (_gps_vel_test_ratio(0) > 1.0f) || (_gps_vel_test_ratio(1) > 1.0f); |
|
const bool gps_pos_innov_bad = (_gps_pos_test_ratio(0) > 1.0f); |
|
const bool mag_innov_good = (_mag_test_ratio.max() < 1.0f) && (_yaw_test_ratio < 1.0f); |
|
soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good; |
|
soln_status.flags.accel_error = _fault_status.flags.bad_acc_vertical; |
|
*status = soln_status.value; |
|
} |
|
|
|
void Ekf::fuse(const Vector24f &K, float innovation) |
|
{ |
|
_state.quat_nominal -= K.slice<4, 1>(0, 0) * innovation; |
|
_state.quat_nominal.normalize(); |
|
_state.vel -= K.slice<3, 1>(4, 0) * innovation; |
|
_state.pos -= K.slice<3, 1>(7, 0) * innovation; |
|
_state.delta_ang_bias -= K.slice<3, 1>(10, 0) * innovation; |
|
_state.delta_vel_bias -= K.slice<3, 1>(13, 0) * innovation; |
|
_state.mag_I -= K.slice<3, 1>(16, 0) * innovation; |
|
_state.mag_B -= K.slice<3, 1>(19, 0) * innovation; |
|
_state.wind_vel -= K.slice<2, 1>(22, 0) * innovation; |
|
} |
|
|
|
void Ekf::uncorrelateQuatFromOtherStates() |
|
{ |
|
P.slice<_k_num_states - 4, 4>(4, 0) = 0.f; |
|
P.slice<4, _k_num_states - 4>(0, 4) = 0.f; |
|
} |
|
|
|
// return true if we are totally reliant on inertial dead-reckoning for position |
|
void Ekf::update_deadreckoning_status() |
|
{ |
|
const bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.ev_vel) |
|
&& (isRecent(_time_last_hor_pos_fuse, _params.no_aid_timeout_max) |
|
|| isRecent(_time_last_hor_vel_fuse, _params.no_aid_timeout_max) |
|
|| isRecent(_time_last_delpos_fuse, _params.no_aid_timeout_max)); |
|
const bool optFlowAiding = _control_status.flags.opt_flow && isRecent(_time_last_of_fuse, _params.no_aid_timeout_max); |
|
const bool airDataAiding = _control_status.flags.wind && |
|
isRecent(_time_last_arsp_fuse, _params.no_aid_timeout_max) && |
|
isRecent(_time_last_beta_fuse, _params.no_aid_timeout_max); |
|
|
|
_is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding; |
|
_is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding; |
|
|
|
if (!_is_dead_reckoning) { |
|
_time_last_aiding = _time_last_imu - _params.no_aid_timeout_max; |
|
} |
|
|
|
// report if we have been deadreckoning for too long, initial state is deadreckoning until aiding is present |
|
_deadreckon_time_exceeded = (_time_last_aiding == 0) |
|
|| isTimedOut(_time_last_aiding, (uint64_t)_params.valid_timeout_max); |
|
} |
|
|
|
// calculate the variances for the rotation vector equivalent |
|
Vector3f Ekf::calcRotVecVariances() |
|
{ |
|
Vector3f rot_var_vec; |
|
float q0, q1, q2, q3; |
|
|
|
if (_state.quat_nominal(0) >= 0.0f) { |
|
q0 = _state.quat_nominal(0); |
|
q1 = _state.quat_nominal(1); |
|
q2 = _state.quat_nominal(2); |
|
q3 = _state.quat_nominal(3); |
|
|
|
} else { |
|
q0 = -_state.quat_nominal(0); |
|
q1 = -_state.quat_nominal(1); |
|
q2 = -_state.quat_nominal(2); |
|
q3 = -_state.quat_nominal(3); |
|
} |
|
float t2 = q0*q0; |
|
float t3 = acosf(q0); |
|
float t4 = -t2+1.0f; |
|
float t5 = t2-1.0f; |
|
if ((t4 > 1e-9f) && (t5 < -1e-9f)) { |
|
float t6 = 1.0f/t5; |
|
float t7 = q1*t6*2.0f; |
|
float t8 = 1.0f/powf(t4,1.5f); |
|
float t9 = q0*q1*t3*t8*2.0f; |
|
float t10 = t7+t9; |
|
float t11 = 1.0f/sqrtf(t4); |
|
float t12 = q2*t6*2.0f; |
|
float t13 = q0*q2*t3*t8*2.0f; |
|
float t14 = t12+t13; |
|
float t15 = q3*t6*2.0f; |
|
float t16 = q0*q3*t3*t8*2.0f; |
|
float t17 = t15+t16; |
|
rot_var_vec(0) = t10*(P(0,0)*t10+P(1,0)*t3*t11*2.0f)+t3*t11*(P(0,1)*t10+P(1,1)*t3*t11*2.0f)*2.0f; |
|
rot_var_vec(1) = t14*(P(0,0)*t14+P(2,0)*t3*t11*2.0f)+t3*t11*(P(0,2)*t14+P(2,2)*t3*t11*2.0f)*2.0f; |
|
rot_var_vec(2) = t17*(P(0,0)*t17+P(3,0)*t3*t11*2.0f)+t3*t11*(P(0,3)*t17+P(3,3)*t3*t11*2.0f)*2.0f; |
|
} else { |
|
rot_var_vec = 4.0f * P.slice<3,3>(1,1).diag(); |
|
} |
|
|
|
return rot_var_vec; |
|
} |
|
|
|
// initialise the quaternion covariances using rotation vector variances |
|
// do not call before quaternion states are initialised |
|
void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var) |
|
{ |
|
// calculate an equivalent rotation vector from the quaternion |
|
float q0,q1,q2,q3; |
|
if (_state.quat_nominal(0) >= 0.0f) { |
|
q0 = _state.quat_nominal(0); |
|
q1 = _state.quat_nominal(1); |
|
q2 = _state.quat_nominal(2); |
|
q3 = _state.quat_nominal(3); |
|
|
|
} else { |
|
q0 = -_state.quat_nominal(0); |
|
q1 = -_state.quat_nominal(1); |
|
q2 = -_state.quat_nominal(2); |
|
q3 = -_state.quat_nominal(3); |
|
} |
|
float delta = 2.0f*acosf(q0); |
|
float scaler = (delta/sinf(delta*0.5f)); |
|
float rotX = scaler*q1; |
|
float rotY = scaler*q2; |
|
float rotZ = scaler*q3; |
|
|
|
// autocode generated using matlab symbolic toolbox |
|
float t2 = rotX*rotX; |
|
float t4 = rotY*rotY; |
|
float t5 = rotZ*rotZ; |
|
float t6 = t2+t4+t5; |
|
if (t6 > 1e-9f) { |
|
float t7 = sqrtf(t6); |
|
float t8 = t7*0.5f; |
|
float t3 = sinf(t8); |
|
float t9 = t3*t3; |
|
float t10 = 1.0f/t6; |
|
float t11 = 1.0f/sqrtf(t6); |
|
float t12 = cosf(t8); |
|
float t13 = 1.0f/powf(t6,1.5f); |
|
float t14 = t3*t11; |
|
float t15 = rotX*rotY*t3*t13; |
|
float t16 = rotX*rotZ*t3*t13; |
|
float t17 = rotY*rotZ*t3*t13; |
|
float t18 = t2*t10*t12*0.5f; |
|
float t27 = t2*t3*t13; |
|
float t19 = t14+t18-t27; |
|
float t23 = rotX*rotY*t10*t12*0.5f; |
|
float t28 = t15-t23; |
|
float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f; |
|
float t25 = rotX*rotZ*t10*t12*0.5f; |
|
float t31 = t16-t25; |
|
float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f; |
|
float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f; |
|
float t24 = t15-t23; |
|
float t26 = t16-t25; |
|
float t29 = t4*t10*t12*0.5f; |
|
float t34 = t3*t4*t13; |
|
float t30 = t14+t29-t34; |
|
float t32 = t5*t10*t12*0.5f; |
|
float t40 = t3*t5*t13; |
|
float t33 = t14+t32-t40; |
|
float t36 = rotY*rotZ*t10*t12*0.5f; |
|
float t39 = t17-t36; |
|
float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f; |
|
float t37 = t15-t23; |
|
float t38 = t17-t36; |
|
float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25); |
|
float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39; |
|
float t43 = t16-t25; |
|
float t44 = t17-t36; |
|
|
|
// zero all the quaternion covariances |
|
P.uncorrelateCovarianceSetVariance<2>(0, 0.0f); |
|
P.uncorrelateCovarianceSetVariance<2>(2, 0.0f); |
|
|
|
|
|
// Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox |
|
P(0,0) = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f; |
|
P(0,1) = t22; |
|
P(0,2) = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f; |
|
P(0,3) = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f; |
|
P(1,0) = t22; |
|
P(1,1) = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26); |
|
P(1,2) = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; |
|
P(1,3) = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; |
|
P(2,0) = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f; |
|
P(2,1) = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; |
|
P(2,2) = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38); |
|
P(2,3) = t42; |
|
P(3,0) = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f; |
|
P(3,1) = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; |
|
P(3,2) = t42; |
|
P(3,3) = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44); |
|
|
|
} else { |
|
// the equations are badly conditioned so use a small angle approximation |
|
P.uncorrelateCovarianceSetVariance<1>(0, 0.0f); |
|
P.uncorrelateCovarianceSetVariance<3>(1, 0.25f * rot_vec_var); |
|
} |
|
} |
|
|
|
void Ekf::setControlBaroHeight() |
|
{ |
|
_control_status.flags.baro_hgt = true; |
|
|
|
_control_status.flags.gps_hgt = false; |
|
_control_status.flags.rng_hgt = false; |
|
_control_status.flags.ev_hgt = false; |
|
} |
|
|
|
void Ekf::setControlRangeHeight() |
|
{ |
|
_control_status.flags.rng_hgt = true; |
|
|
|
_control_status.flags.baro_hgt = false; |
|
_control_status.flags.gps_hgt = false; |
|
_control_status.flags.ev_hgt = false; |
|
} |
|
|
|
void Ekf::setControlGPSHeight() |
|
{ |
|
_control_status.flags.gps_hgt = true; |
|
|
|
_control_status.flags.baro_hgt = false; |
|
_control_status.flags.rng_hgt = false; |
|
_control_status.flags.ev_hgt = false; |
|
} |
|
|
|
void Ekf::setControlEVHeight() |
|
{ |
|
_control_status.flags.ev_hgt = true; |
|
|
|
_control_status.flags.baro_hgt = false; |
|
_control_status.flags.gps_hgt = false; |
|
_control_status.flags.rng_hgt = false; |
|
} |
|
|
|
void Ekf::stopMagFusion() |
|
{ |
|
stopMag3DFusion(); |
|
stopMagHdgFusion(); |
|
clearMagCov(); |
|
} |
|
|
|
void Ekf::stopMag3DFusion() |
|
{ |
|
// save covariance data for re-use if currently doing 3-axis fusion |
|
if (_control_status.flags.mag_3D) { |
|
saveMagCovData(); |
|
_control_status.flags.mag_3D = false; |
|
} |
|
} |
|
|
|
void Ekf::stopMagHdgFusion() |
|
{ |
|
_control_status.flags.mag_hdg = false; |
|
} |
|
|
|
void Ekf::startMagHdgFusion() |
|
{ |
|
stopMag3DFusion(); |
|
_control_status.flags.mag_hdg = true; |
|
} |
|
|
|
void Ekf::startMag3DFusion() |
|
{ |
|
if (!_control_status.flags.mag_3D) { |
|
stopMagHdgFusion(); |
|
zeroMagCov(); |
|
loadMagCovData(); |
|
_control_status.flags.mag_3D = true; |
|
} |
|
} |
|
|
|
void Ekf::startBaroHgtFusion() |
|
{ |
|
setControlBaroHeight(); |
|
|
|
// We don't need to set a height sensor offset |
|
// since we track a separate _baro_hgt_offset |
|
_hgt_sensor_offset = 0.0f; |
|
|
|
// Turn off ground effect compensation if it times out |
|
if (_control_status.flags.gnd_effect) { |
|
if (isTimedOut(_time_last_gnd_effect_on, GNDEFFECT_TIMEOUT)) { |
|
|
|
_control_status.flags.gnd_effect = false; |
|
} |
|
} |
|
} |
|
|
|
void Ekf::startGpsHgtFusion() |
|
{ |
|
setControlGPSHeight(); |
|
|
|
// we have just switched to using gps height, calculate height sensor offset such that current |
|
// measurement matches our current height estimate |
|
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) { |
|
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2); |
|
} |
|
} |
|
|
|
void Ekf::updateBaroHgtOffset() |
|
{ |
|
// calculate a filtered offset between the baro origin and local NED origin if we are not |
|
// using the baro as a height reference |
|
if (!_control_status.flags.baro_hgt && _baro_data_ready) { |
|
const float local_time_step = math::constrain(1e-6f * _delta_time_baro_us, 0.0f, 1.0f); |
|
|
|
// apply a 10 second first order low pass filter to baro offset |
|
const float offset_rate_correction = 0.1f * (_baro_sample_delayed.hgt + _state.pos(2) - |
|
_baro_hgt_offset); |
|
_baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f); |
|
} |
|
} |
|
|
|
float Ekf::getGpsHeightVariance() |
|
{ |
|
// observation variance - receiver defined and parameter limited |
|
// use 1.5 as a typical ratio of vacc/hacc |
|
const float lower_limit = fmaxf(1.5f * _params.gps_pos_noise, 0.01f); |
|
const float upper_limit = fmaxf(1.5f * _params.pos_noaid_noise, lower_limit); |
|
const float gps_alt_var = sq(math::constrain(_gps_sample_delayed.vacc, lower_limit, upper_limit)); |
|
return gps_alt_var; |
|
} |
|
|
|
Vector3f Ekf::getVisionVelocityInEkfFrame() const |
|
{ |
|
Vector3f vel; |
|
// correct velocity for offset relative to IMU |
|
const Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body; |
|
const Vector3f vel_offset_body = _ang_rate_delayed_raw % pos_offset_body; |
|
|
|
// rotate measurement into correct earth frame if required |
|
switch(_ev_sample_delayed.vel_frame) { |
|
case velocity_frame_t::BODY_FRAME_FRD: |
|
vel = _R_to_earth * (_ev_sample_delayed.vel - vel_offset_body); |
|
break; |
|
case velocity_frame_t::LOCAL_FRAME_FRD: |
|
const Vector3f vel_offset_earth = _R_to_earth * vel_offset_body; |
|
if (_params.fusion_mode & MASK_ROTATE_EV) |
|
{ |
|
vel = _R_ev_to_ekf *_ev_sample_delayed.vel - vel_offset_earth; |
|
} else { |
|
vel = _ev_sample_delayed.vel - vel_offset_earth; |
|
} |
|
break; |
|
} |
|
|
|
return vel; |
|
} |
|
|
|
Vector3f Ekf::getVisionVelocityVarianceInEkfFrame() const |
|
{ |
|
Matrix3f ev_vel_cov = _ev_sample_delayed.velCov; |
|
|
|
// rotate measurement into correct earth frame if required |
|
switch(_ev_sample_delayed.vel_frame) { |
|
case velocity_frame_t::BODY_FRAME_FRD: |
|
ev_vel_cov = _R_to_earth * ev_vel_cov * _R_to_earth.transpose(); |
|
break; |
|
|
|
case velocity_frame_t::LOCAL_FRAME_FRD: |
|
if(_params.fusion_mode & MASK_ROTATE_EV) |
|
{ |
|
ev_vel_cov = _R_ev_to_ekf * ev_vel_cov * _R_ev_to_ekf.transpose(); |
|
} |
|
break; |
|
} |
|
|
|
return ev_vel_cov.diag(); |
|
} |
|
|
|
// update the rotation matrix which rotates EV measurements into the EKF's navigation frame |
|
void Ekf::calcExtVisRotMat() |
|
{ |
|
// Calculate the quaternion delta that rotates from the EV to the EKF reference frame at the EKF fusion time horizon. |
|
const Quatf q_error((_state.quat_nominal * _ev_sample_delayed.quat.inversed()).normalized()); |
|
_R_ev_to_ekf = Dcmf(q_error); |
|
} |
|
|
|
// Increase the yaw error variance of the quaternions |
|
// Argument is additional yaw variance in rad**2 |
|
void Ekf::increaseQuatYawErrVariance(float yaw_variance) |
|
{ |
|
// See DeriveYawResetEquations.m for derivation which produces code fragments in C_code4.txt file |
|
// The auto-code was cleaned up and had terms multiplied by zero removed to give the following: |
|
|
|
// Intermediate variables |
|
float SG[3]; |
|
SG[0] = sq(_state.quat_nominal(0)) - sq(_state.quat_nominal(1)) - sq(_state.quat_nominal(2)) + sq(_state.quat_nominal(3)); |
|
SG[1] = 2*_state.quat_nominal(0)*_state.quat_nominal(2) - 2*_state.quat_nominal(1)*_state.quat_nominal(3); |
|
SG[2] = 2*_state.quat_nominal(0)*_state.quat_nominal(1) + 2*_state.quat_nominal(2)*_state.quat_nominal(3); |
|
|
|
float SQ[4]; |
|
SQ[0] = 0.5f * ((_state.quat_nominal(1)*SG[0]) - (_state.quat_nominal(0)*SG[2]) + (_state.quat_nominal(3)*SG[1])); |
|
SQ[1] = 0.5f * ((_state.quat_nominal(0)*SG[1]) - (_state.quat_nominal(2)*SG[0]) + (_state.quat_nominal(3)*SG[2])); |
|
SQ[2] = 0.5f * ((_state.quat_nominal(3)*SG[0]) - (_state.quat_nominal(1)*SG[1]) + (_state.quat_nominal(2)*SG[2])); |
|
SQ[3] = 0.5f * ((_state.quat_nominal(0)*SG[0]) + (_state.quat_nominal(1)*SG[2]) + (_state.quat_nominal(2)*SG[1])); |
|
|
|
// Limit yaw variance increase to prevent a badly conditioned covariance matrix |
|
yaw_variance = fminf(yaw_variance, 1.0e-2f); |
|
|
|
// Add covariances for additonal yaw uncertainty to existing covariances. |
|
// This assumes that the additional yaw error is uncorrrelated to existing errors |
|
P(0,0) += yaw_variance*sq(SQ[2]); |
|
P(0,1) += yaw_variance*SQ[1]*SQ[2]; |
|
P(1,1) += yaw_variance*sq(SQ[1]); |
|
P(0,2) += yaw_variance*SQ[0]*SQ[2]; |
|
P(1,2) += yaw_variance*SQ[0]*SQ[1]; |
|
P(2,2) += yaw_variance*sq(SQ[0]); |
|
P(0,3) -= yaw_variance*SQ[2]*SQ[3]; |
|
P(1,3) -= yaw_variance*SQ[1]*SQ[3]; |
|
P(2,3) -= yaw_variance*SQ[0]*SQ[3]; |
|
P(3,3) += yaw_variance*sq(SQ[3]); |
|
P(1,0) += yaw_variance*SQ[1]*SQ[2]; |
|
P(2,0) += yaw_variance*SQ[0]*SQ[2]; |
|
P(2,1) += yaw_variance*SQ[0]*SQ[1]; |
|
P(3,0) -= yaw_variance*SQ[2]*SQ[3]; |
|
P(3,1) -= yaw_variance*SQ[1]*SQ[3]; |
|
P(3,2) -= yaw_variance*SQ[0]*SQ[3]; |
|
} |
|
|
|
// save covariance data for re-use when auto-switching between heading and 3-axis fusion |
|
void Ekf::saveMagCovData() |
|
{ |
|
// save variances for the D earth axis and XYZ body axis field |
|
for (uint8_t index = 0; index <= 3; index ++) { |
|
_saved_mag_bf_variance[index] = P(index + 18, index + 18); |
|
} |
|
|
|
// save the NE axis covariance sub-matrix |
|
_saved_mag_ef_covmat = P.slice<2, 2>(16, 16); |
|
} |
|
|
|
void Ekf::loadMagCovData() |
|
{ |
|
// re-instate variances for the D earth axis and XYZ body axis field |
|
for (uint8_t index = 0; index <= 3; index ++) { |
|
P(index + 18, index + 18) = _saved_mag_bf_variance[index]; |
|
} |
|
|
|
// re-instate the NE axis covariance sub-matrix |
|
P.slice<2, 2>(16, 16) = _saved_mag_ef_covmat; |
|
} |
|
|
|
void Ekf::startGpsFusion() |
|
{ |
|
resetHorizontalPositionToGps(); |
|
|
|
// when using optical flow, |
|
// velocity reset is not necessary |
|
if (!_control_status.flags.opt_flow) { |
|
resetVelocityToGps(); |
|
} |
|
|
|
ECL_INFO_TIMESTAMPED("starting GPS fusion"); |
|
_control_status.flags.gps = true; |
|
} |
|
|
|
void Ekf::stopGpsFusion() |
|
{ |
|
stopGpsPosFusion(); |
|
stopGpsVelFusion(); |
|
stopGpsYawFusion(); |
|
} |
|
|
|
void Ekf::stopGpsPosFusion() |
|
{ |
|
_control_status.flags.gps = false; |
|
_control_status.flags.gps_hgt = false; |
|
_gps_pos_innov.setZero(); |
|
_gps_pos_innov_var.setZero(); |
|
_gps_pos_test_ratio.setZero(); |
|
} |
|
|
|
void Ekf::stopGpsVelFusion() |
|
{ |
|
_gps_vel_innov.setZero(); |
|
_gps_vel_innov_var.setZero(); |
|
_gps_vel_test_ratio.setZero(); |
|
} |
|
|
|
void Ekf::startGpsYawFusion() |
|
{ |
|
_control_status.flags.mag_dec = false; |
|
stopEvYawFusion(); |
|
stopMagHdgFusion(); |
|
stopMag3DFusion(); |
|
_control_status.flags.gps_yaw = true; |
|
} |
|
|
|
void Ekf::stopGpsYawFusion() |
|
{ |
|
_control_status.flags.gps_yaw = false; |
|
} |
|
|
|
void Ekf::startEvPosFusion() |
|
{ |
|
_control_status.flags.ev_pos = true; |
|
resetHorizontalPosition(); |
|
ECL_INFO_TIMESTAMPED("starting vision pos fusion"); |
|
} |
|
|
|
void Ekf::startEvVelFusion() |
|
{ |
|
_control_status.flags.ev_vel = true; |
|
resetVelocity(); |
|
ECL_INFO_TIMESTAMPED("starting vision vel fusion"); |
|
} |
|
|
|
void Ekf::startEvYawFusion() |
|
{ |
|
// reset the yaw angle to the value from the vision quaternion |
|
const float yaw = getEuler321Yaw(_ev_sample_delayed.quat); |
|
const float yaw_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f)); |
|
|
|
resetQuatStateYaw(yaw, yaw_variance, true); |
|
|
|
// flag the yaw as aligned |
|
_control_status.flags.yaw_align = true; |
|
|
|
// turn on fusion of external vision yaw measurements and disable all magnetometer fusion |
|
_control_status.flags.ev_yaw = true; |
|
_control_status.flags.mag_dec = false; |
|
|
|
stopMagHdgFusion(); |
|
stopMag3DFusion(); |
|
|
|
ECL_INFO_TIMESTAMPED("starting vision yaw fusion"); |
|
} |
|
|
|
void Ekf::stopEvFusion() |
|
{ |
|
stopEvPosFusion(); |
|
stopEvVelFusion(); |
|
stopEvYawFusion(); |
|
} |
|
|
|
void Ekf::stopEvPosFusion() |
|
{ |
|
_control_status.flags.ev_pos = false; |
|
_ev_pos_innov.setZero(); |
|
_ev_pos_innov_var.setZero(); |
|
_ev_pos_test_ratio.setZero(); |
|
} |
|
|
|
void Ekf::stopEvVelFusion() |
|
{ |
|
_control_status.flags.ev_vel = false; |
|
_ev_vel_innov.setZero(); |
|
_ev_vel_innov_var.setZero(); |
|
_ev_vel_test_ratio.setZero(); |
|
} |
|
|
|
void Ekf::stopEvYawFusion() |
|
{ |
|
_control_status.flags.ev_yaw = false; |
|
} |
|
|
|
void Ekf::stopAuxVelFusion() |
|
{ |
|
_aux_vel_innov.setZero(); |
|
_aux_vel_innov_var.setZero(); |
|
_aux_vel_test_ratio.setZero(); |
|
} |
|
|
|
void Ekf::stopFlowFusion() |
|
{ |
|
_control_status.flags.opt_flow = false; |
|
_flow_innov.setZero(); |
|
_flow_innov_var.setZero(); |
|
_optflow_test_ratio = 0.0f; |
|
} |
|
|
|
void Ekf::resetQuatStateYaw(float yaw, float yaw_variance, bool update_buffer) |
|
{ |
|
// save a copy of the quaternion state for later use in calculating the amount of reset change |
|
const Quatf quat_before_reset = _state.quat_nominal; |
|
|
|
// update transformation matrix from body to world frame using the current estimate |
|
_R_to_earth = Dcmf(_state.quat_nominal); |
|
|
|
// update the rotation matrix using the new yaw value |
|
_R_to_earth = updateYawInRotMat(yaw, _R_to_earth); |
|
|
|
// calculate the amount that the quaternion has changed by |
|
const Quatf quat_after_reset(_R_to_earth); |
|
const Quatf q_error((quat_after_reset * quat_before_reset.inversed()).normalized()); |
|
|
|
// update quaternion states |
|
_state.quat_nominal = quat_after_reset; |
|
uncorrelateQuatFromOtherStates(); |
|
|
|
// record the state change |
|
_state_reset_status.quat_change = q_error; |
|
|
|
// update the yaw angle variance |
|
if (yaw_variance > FLT_EPSILON) { |
|
increaseQuatYawErrVariance(yaw_variance); |
|
} |
|
|
|
// add the reset amount to the output observer buffered data |
|
if (update_buffer) { |
|
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { |
|
_output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal; |
|
} |
|
|
|
// apply the change in attitude quaternion to our newest quaternion estimate |
|
// which was already taken out from the output buffer |
|
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal; |
|
|
|
} |
|
|
|
// capture the reset event |
|
_state_reset_status.quat_counter++; |
|
} |
|
|
|
// Resets the main Nav EKf yaw to the estimator from the EKF-GSF yaw estimator |
|
// Resets the horizontal velocity and position to the default navigation sensor |
|
// Returns true if the reset was successful |
|
bool Ekf::resetYawToEKFGSF() |
|
{ |
|
// don't allow reet using the EKF-GSF estimate until the filter has started fusing velocity |
|
// data and the yaw estimate has converged |
|
float new_yaw, new_yaw_variance; |
|
|
|
if (!_yawEstimator.getYawData(&new_yaw, &new_yaw_variance)) { |
|
return false; |
|
} |
|
|
|
const bool has_converged = new_yaw_variance < sq(_params.EKFGSF_yaw_err_max); |
|
|
|
if (!has_converged) { |
|
return false; |
|
} |
|
|
|
resetQuatStateYaw(new_yaw, new_yaw_variance, true); |
|
|
|
// reset velocity and position states to GPS - if yaw is fixed then the filter should start to operate correctly |
|
resetVelocity(); |
|
resetHorizontalPosition(); |
|
|
|
// record a magnetic field alignment event to prevent possibility of the EKF trying to reset the yaw to the mag later in flight |
|
_flt_mag_align_start_time = _imu_sample_delayed.time_us; |
|
_control_status.flags.yaw_align = true; |
|
|
|
if (_params.mag_fusion_type == MAG_FUSE_TYPE_NONE) { |
|
ECL_INFO_TIMESTAMPED("Yaw aligned using IMU and GPS"); |
|
|
|
} else { |
|
// stop using the magnetometer in the main EKF otherwise it's fusion could drag the yaw around |
|
// and cause another navigation failure |
|
_control_status.flags.mag_fault = true; |
|
ECL_INFO_TIMESTAMPED("Emergency yaw reset - mag use stopped"); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Ekf::getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], |
|
float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]) |
|
{ |
|
return _yawEstimator.getLogData(yaw_composite, yaw_variance, yaw, innov_VN, innov_VE, weight); |
|
} |
|
|
|
void Ekf::runYawEKFGSF() |
|
{ |
|
float TAS; |
|
|
|
if (isTimedOut(_airspeed_sample_delayed.time_us, 1000000) && _control_status.flags.fixed_wing) { |
|
TAS = _params.EKFGSF_tas_default; |
|
|
|
} else { |
|
TAS = _airspeed_sample_delayed.true_airspeed; |
|
} |
|
|
|
const Vector3f imu_gyro_bias = getGyroBias(); |
|
_yawEstimator.update(_imu_sample_delayed, _control_status.flags.in_air, TAS, imu_gyro_bias); |
|
|
|
// basic sanity check on GPS velocity data |
|
if (_gps_data_ready && _gps_sample_delayed.vacc > FLT_EPSILON && |
|
ISFINITE(_gps_sample_delayed.vel(0)) && ISFINITE(_gps_sample_delayed.vel(1))) { |
|
_yawEstimator.setVelocity(_gps_sample_delayed.vel.xy(), _gps_sample_delayed.vacc); |
|
} |
|
} |
|
|
|
void Ekf::resetGpsDriftCheckFilters() |
|
{ |
|
_gps_velNE_filt.setZero(); |
|
_gps_pos_deriv_filt.setZero(); |
|
}
|
|
|