You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1639 lines
57 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf_helper.cpp
* Definition of ekf helper functions.
*
* @author Roman Bast <bapstroman@gmail.com>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <cstdlib>
void Ekf::resetVelocity()
{
if (_control_status.flags.gps && isTimedOut(_last_gps_fail_us, (uint64_t)_min_gps_health_time_us)) {
// this reset is only called if we have new gps data at the fusion time horizon
resetVelocityToGps();
} else if (_control_status.flags.opt_flow) {
resetHorizontalVelocityToOpticalFlow();
} else if (_control_status.flags.ev_vel) {
resetVelocityToVision();
} else {
resetHorizontalVelocityToZero();
}
}
void Ekf::resetVelocityToGps()
{
ECL_INFO_TIMESTAMPED("reset velocity to GPS");
resetVelocityTo(_gps_sample_delayed.vel);
P.uncorrelateCovarianceSetVariance<3>(4, sq(_gps_sample_delayed.sacc));
}
void Ekf::resetHorizontalVelocityToOpticalFlow()
{
ECL_INFO_TIMESTAMPED("reset velocity to flow");
// constrain height above ground to be above minimum possible
const float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);
// calculate absolute distance from focal point to centre of frame assuming a flat earth
const float range = heightAboveGndEst / _range_sensor.getCosTilt();
if ((range - _params.rng_gnd_clearance) > 0.3f) {
// we should have reliable OF measurements so
// calculate X and Y body relative velocities from OF measurements
Vector3f vel_optflow_body;
vel_optflow_body(0) = - range * _flow_compensated_XY_rad(1) / _flow_sample_delayed.dt;
vel_optflow_body(1) = range * _flow_compensated_XY_rad(0) / _flow_sample_delayed.dt;
vel_optflow_body(2) = 0.0f;
// rotate from body to earth frame
const Vector3f vel_optflow_earth = _R_to_earth * vel_optflow_body;
resetHorizontalVelocityTo(Vector2f(vel_optflow_earth));
} else {
resetHorizontalVelocityTo(Vector2f{0.f, 0.f});
}
// reset the horizontal velocity variance using the optical flow noise variance
P.uncorrelateCovarianceSetVariance<2>(4, sq(range) * calcOptFlowMeasVar());
}
void Ekf::resetVelocityToVision()
{
ECL_INFO_TIMESTAMPED("reset to vision velocity");
resetVelocityTo(getVisionVelocityInEkfFrame());
P.uncorrelateCovarianceSetVariance<3>(4, getVisionVelocityVarianceInEkfFrame());
}
void Ekf::resetHorizontalVelocityToZero()
{
ECL_INFO_TIMESTAMPED("reset velocity to zero");
// Used when falling back to non-aiding mode of operation
resetHorizontalVelocityTo(Vector2f{0.f, 0.f});
P.uncorrelateCovarianceSetVariance<2>(4, 25.0f);
}
void Ekf::resetVelocityTo(const Vector3f &new_vel)
{
resetHorizontalVelocityTo(Vector2f(new_vel));
resetVerticalVelocityTo(new_vel(2));
}
void Ekf::resetHorizontalVelocityTo(const Vector2f &new_horz_vel)
{
const Vector2f delta_horz_vel = new_horz_vel - Vector2f(_state.vel);
_state.vel.xy() = new_horz_vel;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].vel.xy() += delta_horz_vel;
}
_output_new.vel.xy() += delta_horz_vel;
_state_reset_status.velNE_change = delta_horz_vel;
_state_reset_status.velNE_counter++;
}
void Ekf::resetVerticalVelocityTo(float new_vert_vel)
{
const float delta_vert_vel = new_vert_vel - _state.vel(2);
_state.vel(2) = new_vert_vel;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].vel(2) += delta_vert_vel;
_output_vert_buffer[index].vert_vel += delta_vert_vel;
}
_output_new.vel(2) += delta_vert_vel;
_output_vert_new.vert_vel += delta_vert_vel;
_state_reset_status.velD_change = delta_vert_vel;
_state_reset_status.velD_counter++;
}
void Ekf::resetHorizontalPosition()
{
// let the next odometry update know that the previous value of states cannot be used to calculate the change in position
_hpos_prev_available = false;
if (_control_status.flags.gps) {
// this reset is only called if we have new gps data at the fusion time horizon
resetHorizontalPositionToGps();
} else if (_control_status.flags.ev_pos) {
// this reset is only called if we have new ev data at the fusion time horizon
resetHorizontalPositionToVision();
} else if (_control_status.flags.opt_flow) {
ECL_INFO_TIMESTAMPED("reset position to last known position");
if (!_control_status.flags.in_air) {
// we are likely starting OF for the first time so reset the horizontal position
resetHorizontalPositionTo(Vector2f(0.f, 0.f));
} else {
resetHorizontalPositionTo(_last_known_posNE);
}
// estimate is relative to initial position in this mode, so we start with zero error.
P.uncorrelateCovarianceSetVariance<2>(7, 0.0f);
} else {
ECL_INFO_TIMESTAMPED("reset position to last known position");
// Used when falling back to non-aiding mode of operation
resetHorizontalPositionTo(_last_known_posNE);
P.uncorrelateCovarianceSetVariance<2>(7, sq(_params.pos_noaid_noise));
}
}
void Ekf::resetHorizontalPositionToGps()
{
ECL_INFO_TIMESTAMPED("reset position to GPS");
resetHorizontalPositionTo(_gps_sample_delayed.pos);
P.uncorrelateCovarianceSetVariance<2>(7, sq(_gps_sample_delayed.hacc));
}
void Ekf::resetHorizontalPositionToVision()
{
ECL_INFO_TIMESTAMPED("reset position to ev position");
Vector3f _ev_pos = _ev_sample_delayed.pos;
if (_params.fusion_mode & MASK_ROTATE_EV) {
_ev_pos = _R_ev_to_ekf * _ev_sample_delayed.pos;
}
resetHorizontalPositionTo(Vector2f(_ev_pos));
P.uncorrelateCovarianceSetVariance<2>(7, _ev_sample_delayed.posVar.slice<2, 1>(0, 0));
}
void Ekf::resetHorizontalPositionTo(const Vector2f &new_horz_pos)
{
const Vector2f delta_horz_pos{new_horz_pos - Vector2f{_state.pos}};
_state.pos.xy() = new_horz_pos;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].pos.xy() += delta_horz_pos;
}
_output_new.pos.xy() += delta_horz_pos;
_state_reset_status.posNE_change = delta_horz_pos;
_state_reset_status.posNE_counter++;
}
void Ekf::resetVerticalPositionTo(const float &new_vert_pos)
{
const float old_vert_pos = _state.pos(2);
_state.pos(2) = new_vert_pos;
// store the reset amount and time to be published
_state_reset_status.posD_change = new_vert_pos - old_vert_pos;
_state_reset_status.posD_counter++;
// apply the change in height / height rate to our newest height / height rate estimate
// which have already been taken out from the output buffer
_output_new.pos(2) += _state_reset_status.posD_change;
// add the reset amount to the output observer buffered data
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].pos(2) += _state_reset_status.posD_change;
_output_vert_buffer[i].vert_vel_integ += _state_reset_status.posD_change;
}
// add the reset amount to the output observer vertical position state
_output_vert_new.vert_vel_integ = _state.pos(2);
}
// Reset height state using the last height measurement
void Ekf::resetHeight()
{
// Get the most recent GPS data
const gpsSample &gps_newest = _gps_buffer.get_newest();
// reset the vertical position
if (_control_status.flags.rng_hgt) {
// update the state and associated variance
resetVerticalPositionTo(_hgt_sensor_offset - _range_sensor.getDistBottom());
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.range_noise));
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else if (_control_status.flags.baro_hgt) {
// initialize vertical position with newest baro measurement
const baroSample &baro_newest = _baro_buffer.get_newest();
if (!_baro_hgt_faulty) {
resetVerticalPositionTo(-baro_newest.hgt + _baro_hgt_offset);
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(9, sq(_params.baro_noise));
} else {
// TODO: reset to last known baro based estimate
}
} else if (_control_status.flags.gps_hgt) {
// initialize vertical position and velocity with newest gps measurement
if (!_gps_hgt_intermittent) {
resetVerticalPositionTo(_hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref);
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(9, sq(gps_newest.vacc));
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else {
// TODO: reset to last known gps based estimate
}
} else if (_control_status.flags.ev_hgt) {
// initialize vertical position with newest measurement
const extVisionSample &ev_newest = _ext_vision_buffer.get_newest();
// use the most recent data if it's time offset from the fusion time horizon is smaller
if (ev_newest.time_us >= _ev_sample_delayed.time_us) {
resetVerticalPositionTo(ev_newest.pos(2));
} else {
resetVerticalPositionTo(_ev_sample_delayed.pos(2));
}
}
// reset the vertical velocity state
if (_control_status.flags.gps && !_gps_hgt_intermittent) {
// If we are using GPS, then use it to reset the vertical velocity
resetVerticalVelocityTo(gps_newest.vel(2));
// the state variance is the same as the observation
P.uncorrelateCovarianceSetVariance<1>(6, sq(1.5f * gps_newest.sacc));
} else {
// we don't know what the vertical velocity is, so set it to zero
resetVerticalVelocityTo(0.0f);
// Set the variance to a value large enough to allow the state to converge quickly
// that does not destabilise the filter
P.uncorrelateCovarianceSetVariance<1>(6, 10.0f);
}
}
// align output filter states to match EKF states at the fusion time horizon
void Ekf::alignOutputFilter()
{
const outputSample &output_delayed = _output_buffer.get_oldest();
// calculate the quaternion rotation delta from the EKF to output observer states at the EKF fusion time horizon
Quatf q_delta{_state.quat_nominal * output_delayed.quat_nominal.inversed()};
q_delta.normalize();
// calculate the velocity and position deltas between the output and EKF at the EKF fusion time horizon
const Vector3f vel_delta = _state.vel - output_delayed.vel;
const Vector3f pos_delta = _state.pos - output_delayed.pos;
// loop through the output filter state history and add the deltas
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal = q_delta * _output_buffer[i].quat_nominal;
_output_buffer[i].quat_nominal.normalize();
_output_buffer[i].vel += vel_delta;
_output_buffer[i].pos += pos_delta;
}
_output_new = _output_buffer.get_newest();
}
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS.
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only.
bool Ekf::realignYawGPS()
{
const float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1)));
// Need at least 5 m/s of GPS horizontal speed and
// ratio of velocity error to velocity < 0.15 for a reliable alignment
const bool gps_yaw_alignment_possible = (gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed));
if (!gps_yaw_alignment_possible) {
// attempt a normal alignment using the magnetometer
return resetMagHeading(_mag_lpf.getState());
}
// check for excessive horizontal GPS velocity innovations
const bool badVelInnov = (_gps_vel_test_ratio(0) > 1.0f) && _control_status.flags.gps;
// calculate GPS course over ground angle
const float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
// calculate course yaw angle
const float ekfCOG = atan2f(_state.vel(1), _state.vel(0));
// Check the EKF and GPS course over ground for consistency
const float courseYawError = wrap_pi(gpsCOG - ekfCOG);
// If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
const bool badYawErr = fabsf(courseYawError) > 0.5f;
const bool badMagYaw = (badYawErr && badVelInnov);
if (badMagYaw) {
_num_bad_flight_yaw_events ++;
}
// correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned
if (badMagYaw || !_control_status.flags.yaw_align) {
ECL_WARN_TIMESTAMPED("bad yaw, using GPS course");
// declare the magnetometer as failed if a bad yaw has occurred more than once
if (_control_status.flags.mag_aligned_in_flight && (_num_bad_flight_yaw_events >= 2)
&& !_control_status.flags.mag_fault) {
ECL_WARN_TIMESTAMPED("stopping mag use");
_control_status.flags.mag_fault = true;
}
// calculate new yaw estimate
float yaw_new;
if (!_control_status.flags.mag_aligned_in_flight) {
// This is our first flight alignment so we can assume that the recent change in velocity has occurred due to a
// forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error
const float current_yaw = getEuler321Yaw(_state.quat_nominal);
yaw_new = current_yaw + courseYawError;
_control_status.flags.mag_aligned_in_flight = true;
} else if (_control_status.flags.wind) {
// we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is
// aligned with the wind relative GPS velocity vector
yaw_new = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)),
(_gps_sample_delayed.vel(0) - _state.wind_vel(0)));
} else {
// we don't have wind estimates, so align yaw to the GPS velocity vector
yaw_new = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
}
// use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment
const float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P(4, 4) + P(5, 5);
const float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f);
const float yaw_variance_new = sq(asinf(sineYawError));
// Apply updated yaw and yaw variance to states and covariances
resetQuatStateYaw(yaw_new, yaw_variance_new, true);
// Use the last magnetometer measurements to reset the field states
_state.mag_B.zero();
_R_to_earth = Dcmf(_state.quat_nominal);
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
resetMagCov();
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
// If heading was bad, then we also need to reset the velocity and position states
_velpos_reset_request = badMagYaw;
return true;
} else {
// align mag states only
// calculate initial earth magnetic field states
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
resetMagCov();
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
return true;
}
}
// Reset heading and magnetic field states
bool Ekf::resetMagHeading(const Vector3f &mag_init, bool increase_yaw_var, bool update_buffer)
{
// prevent a reset being performed more than once on the same frame
if (_imu_sample_delayed.time_us == _flt_mag_align_start_time) {
return true;
}
if (_params.mag_fusion_type >= MAG_FUSE_TYPE_NONE) {
stopMagFusion();
return false;
}
// calculate the observed yaw angle and yaw variance
float yaw_new;
float yaw_new_variance = 0.0f;
if (_control_status.flags.ev_yaw) {
yaw_new = getEuler312Yaw(_ev_sample_delayed.quat);
if (increase_yaw_var) {
yaw_new_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f));
}
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
const Dcmf R_to_earth = updateYawInRotMat(0.f, _R_to_earth);
// the angle of the projection onto the horizontal gives the yaw angle
const Vector3f mag_earth_pred = R_to_earth * mag_init;
yaw_new = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination();
if (increase_yaw_var) {
yaw_new_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f));
}
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR && _is_yaw_fusion_inhibited) {
// we are operating temporarily without knowing the earth frame yaw angle
return true;
} else {
// there is no yaw observation
return false;
}
// update quaternion states and corresponding covarainces
resetQuatStateYaw(yaw_new, yaw_new_variance, update_buffer);
// set the earth magnetic field states using the updated rotation
_state.mag_I = _R_to_earth * mag_init;
resetMagCov();
// record the time for the magnetic field alignment event
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
return true;
}
// Return the magnetic declination in radians to be used by the alignment and fusion processing
float Ekf::getMagDeclination()
{
// set source of magnetic declination for internal use
if (_control_status.flags.mag_aligned_in_flight) {
// Use value consistent with earth field state
return atan2f(_state.mag_I(1), _state.mag_I(0));
} else if (_params.mag_declination_source & MASK_USE_GEO_DECL) {
// use parameter value until GPS is available, then use value returned by geo library
if (_NED_origin_initialised || ISFINITE(_mag_declination_gps)) {
return _mag_declination_gps;
} else {
return math::radians(_params.mag_declination_deg);
}
} else {
// always use the parameter value
return math::radians(_params.mag_declination_deg);
}
}
void Ekf::constrainStates()
{
_state.quat_nominal = matrix::constrain(_state.quat_nominal, -1.0f, 1.0f);
_state.vel = matrix::constrain(_state.vel, -1000.0f, 1000.0f);
_state.pos = matrix::constrain(_state.pos, -1.e6f, 1.e6f);
const float delta_ang_bias_limit = math::radians(20.f) * _dt_ekf_avg;
_state.delta_ang_bias = matrix::constrain(_state.delta_ang_bias, -delta_ang_bias_limit, delta_ang_bias_limit);
const float delta_vel_bias_limit = _params.acc_bias_lim * _dt_ekf_avg;
_state.delta_vel_bias = matrix::constrain(_state.delta_vel_bias, -delta_vel_bias_limit, delta_vel_bias_limit);
_state.mag_I = matrix::constrain(_state.mag_I, -1.0f, 1.0f);
_state.mag_B = matrix::constrain(_state.mag_B, -0.5f, 0.5f);
_state.wind_vel = matrix::constrain(_state.wind_vel, -100.0f, 100.0f);
}
float Ekf::compensateBaroForDynamicPressure(const float baro_alt_uncompensated) const
{
// calculate static pressure error = Pmeas - Ptruth
// model position error sensitivity as a body fixed ellipse with a different scale in the positive and
// negative X and Y directions. Used to correct baro data for positional errors
const matrix::Dcmf R_to_body(_output_new.quat_nominal.inversed());
// Calculate airspeed in body frame
const Vector3f velocity_earth = _output_new.vel - _vel_imu_rel_body_ned;
const Vector3f wind_velocity_earth(_state.wind_vel(0), _state.wind_vel(1), 0.0f);
const Vector3f airspeed_earth = velocity_earth - wind_velocity_earth;
const Vector3f airspeed_body = R_to_body * airspeed_earth;
const Vector3f K_pstatic_coef(airspeed_body(0) >= 0.0f ? _params.static_pressure_coef_xp :
_params.static_pressure_coef_xn,
airspeed_body(1) >= 0.0f ? _params.static_pressure_coef_yp : _params.static_pressure_coef_yn,
_params.static_pressure_coef_z);
const Vector3f airspeed_squared = matrix::min(airspeed_body.emult(airspeed_body), sq(_params.max_correction_airspeed));
const float pstatic_err = 0.5f * _air_density * (airspeed_squared.dot(K_pstatic_coef));
// correct baro measurement using pressure error estimate and assuming sea level gravity
return baro_alt_uncompensated + pstatic_err / (_air_density * CONSTANTS_ONE_G);
}
// calculate the earth rotation vector
Vector3f Ekf::calcEarthRateNED(float lat_rad) const
{
return Vector3f(CONSTANTS_EARTH_SPIN_RATE * cosf(lat_rad),
0.0f,
-CONSTANTS_EARTH_SPIN_RATE * sinf(lat_rad));
}
void Ekf::getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _gps_vel_innov(0);
hvel[1] = _gps_vel_innov(1);
vvel = _gps_vel_innov(2);
hpos[0] = _gps_pos_innov(0);
hpos[1] = _gps_pos_innov(1);
vpos = _gps_pos_innov(2);
}
void Ekf::getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _gps_vel_innov_var(0);
hvel[1] = _gps_vel_innov_var(1);
vvel = _gps_vel_innov_var(2);
hpos[0] = _gps_pos_innov_var(0);
hpos[1] = _gps_pos_innov_var(1);
vpos = _gps_pos_innov_var(2);
}
void Ekf::getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const
{
hvel = _gps_vel_test_ratio(0);
vvel = _gps_vel_test_ratio(1);
hpos = _gps_pos_test_ratio(0);
vpos = _gps_pos_test_ratio(1);
}
void Ekf::getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _ev_vel_innov(0);
hvel[1] = _ev_vel_innov(1);
vvel = _ev_vel_innov(2);
hpos[0] = _ev_pos_innov(0);
hpos[1] = _ev_pos_innov(1);
vpos = _ev_pos_innov(2);
}
void Ekf::getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const
{
hvel[0] = _ev_vel_innov_var(0);
hvel[1] = _ev_vel_innov_var(1);
vvel = _ev_vel_innov_var(2);
hpos[0] = _ev_pos_innov_var(0);
hpos[1] = _ev_pos_innov_var(1);
vpos = _ev_pos_innov_var(2);
}
void Ekf::getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const
{
hvel = _ev_vel_test_ratio(0);
vvel = _ev_vel_test_ratio(1);
hpos = _ev_pos_test_ratio(0);
vpos = _ev_pos_test_ratio(1);
}
void Ekf::getAuxVelInnov(float aux_vel_innov[2]) const
{
aux_vel_innov[0] = _aux_vel_innov(0);
aux_vel_innov[1] = _aux_vel_innov(1);
}
void Ekf::getAuxVelInnovVar(float aux_vel_innov_var[2]) const
{
aux_vel_innov_var[0] = _aux_vel_innov_var(0);
aux_vel_innov_var[1] = _aux_vel_innov_var(1);
}
// get the state vector at the delayed time horizon
matrix::Vector<float, 24> Ekf::getStateAtFusionHorizonAsVector() const
{
matrix::Vector<float, 24> state;
state.slice<4, 1>(0, 0) = _state.quat_nominal;
state.slice<3, 1>(4, 0) = _state.vel;
state.slice<3, 1>(7, 0) = _state.pos;
state.slice<3, 1>(10, 0) = _state.delta_ang_bias;
state.slice<3, 1>(13, 0) = _state.delta_vel_bias;
state.slice<3, 1>(16, 0) = _state.mag_I;
state.slice<3, 1>(19, 0) = _state.mag_B;
state.slice<2, 1>(22, 0) = _state.wind_vel;
return state;
}
bool Ekf::getEkfGlobalOrigin(uint64_t &origin_time, double &latitude, double &longitude, float &origin_alt) const
{
origin_time = _last_gps_origin_time_us;
latitude = math::degrees(_pos_ref.lat_rad);
longitude = math::degrees(_pos_ref.lon_rad);
origin_alt = _gps_alt_ref;
return _NED_origin_initialised;
}
bool Ekf::setEkfGlobalOrigin(const double latitude, const double longitude, const float altitude)
{
bool current_pos_available = false;
double current_lat = static_cast<double>(NAN);
double current_lon = static_cast<double>(NAN);
float current_alt = 0.f;
// if we are already doing aiding, correct for the change in position since the EKF started navigating
if (map_projection_initialized(&_pos_ref) && isHorizontalAidingActive()) {
map_projection_reproject(&_pos_ref, _state.pos(0), _state.pos(1), &current_lat, &current_lon);
current_alt = -_state.pos(2) + _gps_alt_ref;
current_pos_available = true;
}
// reinitialize map projection to latitude, longitude, altitude, and reset position
if (map_projection_init_timestamped(&_pos_ref, latitude, longitude, _time_last_imu) == 0) {
if (current_pos_available) {
// reset horizontal position
Vector2f position;
map_projection_project(&_pos_ref, current_lat, current_lon, &position(0), &position(1));
resetHorizontalPositionTo(position);
// reset altitude
_gps_alt_ref = altitude;
resetVerticalPositionTo(_gps_alt_ref - current_alt);
} else {
// reset altitude
_gps_alt_ref = altitude;
}
return true;
}
return false;
}
/*
First argument returns GPS drift metrics in the following array locations
0 : Horizontal position drift rate (m/s)
1 : Vertical position drift rate (m/s)
2 : Filtered horizontal velocity (m/s)
Second argument returns true when IMU movement is blocking the drift calculation
Function returns true if the metrics have been updated and not returned previously by this function
*/
bool Ekf::get_gps_drift_metrics(float drift[3], bool *blocked)
{
memcpy(drift, _gps_drift_metrics, 3 * sizeof(float));
*blocked = !_control_status.flags.vehicle_at_rest;
if (_gps_drift_updated) {
_gps_drift_updated = false;
return true;
}
return false;
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) const
{
// report absolute accuracy taking into account the uncertainty in location of the origin
// If not aiding, return 0 for horizontal position estimate as no estimate is available
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P(7, 7) + P(8, 8) + sq(_gps_origin_eph));
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning && (_control_status.flags.gps)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1))));
} else if (_is_dead_reckoning && (_control_status.flags.ev_pos)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1))));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P(9, 9) + sq(_gps_origin_epv));
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) const
{
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P(7, 7) + P(8, 8));
// If we are dead-reckoning for too long, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_deadreckon_time_exceeded && _control_status.flags.gps) {
hpos_err = math::max(hpos_err, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1))));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P(9, 9));
}
// get the 1-sigma horizontal and vertical velocity uncertainty
void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) const
{
float hvel_err = sqrtf(P(4, 4) + P(5, 5));
// If we are dead-reckoning for too long, use the innovations as a conservative alternate measure of the horizontal velocity error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_deadreckon_time_exceeded) {
float vel_err_conservative = 0.0f;
if (_control_status.flags.opt_flow) {
float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f);
vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * _flow_innov.norm();
}
if (_control_status.flags.gps) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_gps_pos_innov(0)) + sq(_gps_pos_innov(1))));
} else if (_control_status.flags.ev_pos) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_pos_innov(0)) + sq(_ev_pos_innov(1))));
}
if (_control_status.flags.ev_vel) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_ev_vel_innov(0)) + sq(_ev_vel_innov(1))));
}
hvel_err = math::max(hvel_err, vel_err_conservative);
}
*ekf_evh = hvel_err;
*ekf_evv = sqrtf(P(6, 6));
}
/*
Returns the following vehicle control limits required by the estimator to keep within sensor limitations.
vxy_max : Maximum ground relative horizontal speed (meters/sec). NaN when limiting is not needed.
vz_max : Maximum ground relative vertical speed (meters/sec). NaN when limiting is not needed.
hagl_min : Minimum height above ground (meters). NaN when limiting is not needed.
hagl_max : Maximum height above ground (meters). NaN when limiting is not needed.
*/
void Ekf::get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) const
{
// Calculate range finder limits
const float rangefinder_hagl_min = _range_sensor.getValidMinVal();
// Allow use of 75% of rangefinder maximum range to allow for angular motion
const float rangefinder_hagl_max = 0.75f * _range_sensor.getValidMaxVal();
// Calculate optical flow limits
// Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion
const float flow_vxy_max = fmaxf(0.5f * _flow_max_rate * (_terrain_vpos - _state.pos(2)), 0.0f);
const float flow_hagl_min = _flow_min_distance;
const float flow_hagl_max = _flow_max_distance;
// TODO : calculate visual odometry limits
const bool relying_on_rangefinder = _control_status.flags.rng_hgt && !_params.range_aid;
const bool relying_on_optical_flow = isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow);
// Do not require limiting by default
*vxy_max = NAN;
*vz_max = NAN;
*hagl_min = NAN;
*hagl_max = NAN;
// Keep within range sensor limit when using rangefinder as primary height source
if (relying_on_rangefinder) {
*vxy_max = NAN;
*vz_max = NAN;
*hagl_min = rangefinder_hagl_min;
*hagl_max = rangefinder_hagl_max;
}
// Keep within flow AND range sensor limits when exclusively using optical flow
if (relying_on_optical_flow) {
*vxy_max = flow_vxy_max;
*vz_max = NAN;
*hagl_min = fmaxf(rangefinder_hagl_min, flow_hagl_min);
*hagl_max = fminf(rangefinder_hagl_max, flow_hagl_max);
}
}
void Ekf::resetImuBias()
{
resetGyroBias();
resetAccelBias();
}
void Ekf::resetGyroBias()
{
// Zero the delta angle and delta velocity bias states
_state.delta_ang_bias.zero();
// Zero the corresponding covariances and set
// variances to the values use for initial alignment
P.uncorrelateCovarianceSetVariance<3>(10, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S));
}
void Ekf::resetAccelBias()
{
// Zero the delta angle and delta velocity bias states
_state.delta_vel_bias.zero();
// Zero the corresponding covariances and set
// variances to the values use for initial alignment
P.uncorrelateCovarianceSetVariance<3>(13, sq(_params.switch_on_accel_bias * FILTER_UPDATE_PERIOD_S));
// Set previous frame values
_prev_dvel_bias_var = P.slice<3, 3>(13, 13).diag();
}
void Ekf::resetMagBias()
{
// Zero the magnetometer bias states
_state.mag_B.zero();
// Zero the corresponding covariances and set
// variances to the values use for initial alignment
P.uncorrelateCovarianceSetVariance<3>(19, sq(_params.mag_noise));
// reset any saved covariance data for re-use when auto-switching between heading and 3-axis fusion
// _saved_mag_bf_variance[0] is the the D earth axis
_saved_mag_bf_variance[1] = 0;
_saved_mag_bf_variance[2] = 0;
_saved_mag_bf_variance[3] = 0;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned.
void Ekf::get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas,
float &hagl, float &beta) const
{
// return the integer bitmask containing the consistency check pass/fail status
status = _innov_check_fail_status.value;
// return the largest magnetometer innovation test ratio
mag = sqrtf(math::max(_yaw_test_ratio, _mag_test_ratio.max()));
// return the largest velocity innovation test ratio
vel = math::max(sqrtf(math::max(_gps_vel_test_ratio(0), _gps_vel_test_ratio(1))),
sqrtf(math::max(_ev_vel_test_ratio(0), _ev_vel_test_ratio(1))));
// return the largest position innovation test ratio
pos = math::max(sqrtf(_gps_pos_test_ratio(0)), sqrtf(_ev_pos_test_ratio(0)));
// return the vertical position innovation test ratio
hgt = sqrtf(_gps_pos_test_ratio(0));
// return the airspeed fusion innovation test ratio
tas = sqrtf(_tas_test_ratio);
// return the terrain height innovation test ratio
hagl = sqrtf(_hagl_test_ratio);
// return the synthetic sideslip innovation test ratio
beta = sqrtf(_beta_test_ratio);
}
// return a bitmask integer that describes which state estimates are valid
void Ekf::get_ekf_soln_status(uint16_t *status) const
{
ekf_solution_status soln_status;
// TODO: Is this accurate enough?
soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0);
soln_status.flags.velocity_horiz = (isHorizontalAidingActive() || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0);
soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0);
soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert;
soln_status.flags.pos_vert_agl = isTerrainEstimateValid();
soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz;
soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel;
soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs;
const bool gps_vel_innov_bad = (_gps_vel_test_ratio(0) > 1.0f) || (_gps_vel_test_ratio(1) > 1.0f);
const bool gps_pos_innov_bad = (_gps_pos_test_ratio(0) > 1.0f);
const bool mag_innov_good = (_mag_test_ratio.max() < 1.0f) && (_yaw_test_ratio < 1.0f);
soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good;
soln_status.flags.accel_error = _fault_status.flags.bad_acc_vertical;
*status = soln_status.value;
}
void Ekf::fuse(const Vector24f &K, float innovation)
{
_state.quat_nominal -= K.slice<4, 1>(0, 0) * innovation;
_state.quat_nominal.normalize();
_state.vel -= K.slice<3, 1>(4, 0) * innovation;
_state.pos -= K.slice<3, 1>(7, 0) * innovation;
_state.delta_ang_bias -= K.slice<3, 1>(10, 0) * innovation;
_state.delta_vel_bias -= K.slice<3, 1>(13, 0) * innovation;
_state.mag_I -= K.slice<3, 1>(16, 0) * innovation;
_state.mag_B -= K.slice<3, 1>(19, 0) * innovation;
_state.wind_vel -= K.slice<2, 1>(22, 0) * innovation;
}
void Ekf::uncorrelateQuatFromOtherStates()
{
P.slice<_k_num_states - 4, 4>(4, 0) = 0.f;
P.slice<4, _k_num_states - 4>(0, 4) = 0.f;
}
// return true if we are totally reliant on inertial dead-reckoning for position
void Ekf::update_deadreckoning_status()
{
const bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.ev_vel)
&& (isRecent(_time_last_hor_pos_fuse, _params.no_aid_timeout_max)
|| isRecent(_time_last_hor_vel_fuse, _params.no_aid_timeout_max)
|| isRecent(_time_last_delpos_fuse, _params.no_aid_timeout_max));
const bool optFlowAiding = _control_status.flags.opt_flow && isRecent(_time_last_of_fuse, _params.no_aid_timeout_max);
const bool airDataAiding = _control_status.flags.wind &&
isRecent(_time_last_arsp_fuse, _params.no_aid_timeout_max) &&
isRecent(_time_last_beta_fuse, _params.no_aid_timeout_max);
_is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding;
_is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding;
if (!_is_dead_reckoning) {
_time_last_aiding = _time_last_imu - _params.no_aid_timeout_max;
}
// report if we have been deadreckoning for too long, initial state is deadreckoning until aiding is present
_deadreckon_time_exceeded = (_time_last_aiding == 0)
|| isTimedOut(_time_last_aiding, (uint64_t)_params.valid_timeout_max);
}
// calculate the variances for the rotation vector equivalent
Vector3f Ekf::calcRotVecVariances()
{
Vector3f rot_var_vec;
float q0, q1, q2, q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float t2 = q0*q0;
float t3 = acosf(q0);
float t4 = -t2+1.0f;
float t5 = t2-1.0f;
if ((t4 > 1e-9f) && (t5 < -1e-9f)) {
float t6 = 1.0f/t5;
float t7 = q1*t6*2.0f;
float t8 = 1.0f/powf(t4,1.5f);
float t9 = q0*q1*t3*t8*2.0f;
float t10 = t7+t9;
float t11 = 1.0f/sqrtf(t4);
float t12 = q2*t6*2.0f;
float t13 = q0*q2*t3*t8*2.0f;
float t14 = t12+t13;
float t15 = q3*t6*2.0f;
float t16 = q0*q3*t3*t8*2.0f;
float t17 = t15+t16;
rot_var_vec(0) = t10*(P(0,0)*t10+P(1,0)*t3*t11*2.0f)+t3*t11*(P(0,1)*t10+P(1,1)*t3*t11*2.0f)*2.0f;
rot_var_vec(1) = t14*(P(0,0)*t14+P(2,0)*t3*t11*2.0f)+t3*t11*(P(0,2)*t14+P(2,2)*t3*t11*2.0f)*2.0f;
rot_var_vec(2) = t17*(P(0,0)*t17+P(3,0)*t3*t11*2.0f)+t3*t11*(P(0,3)*t17+P(3,3)*t3*t11*2.0f)*2.0f;
} else {
rot_var_vec = 4.0f * P.slice<3,3>(1,1).diag();
}
return rot_var_vec;
}
// initialise the quaternion covariances using rotation vector variances
// do not call before quaternion states are initialised
void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var)
{
// calculate an equivalent rotation vector from the quaternion
float q0,q1,q2,q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float delta = 2.0f*acosf(q0);
float scaler = (delta/sinf(delta*0.5f));
float rotX = scaler*q1;
float rotY = scaler*q2;
float rotZ = scaler*q3;
// autocode generated using matlab symbolic toolbox
float t2 = rotX*rotX;
float t4 = rotY*rotY;
float t5 = rotZ*rotZ;
float t6 = t2+t4+t5;
if (t6 > 1e-9f) {
float t7 = sqrtf(t6);
float t8 = t7*0.5f;
float t3 = sinf(t8);
float t9 = t3*t3;
float t10 = 1.0f/t6;
float t11 = 1.0f/sqrtf(t6);
float t12 = cosf(t8);
float t13 = 1.0f/powf(t6,1.5f);
float t14 = t3*t11;
float t15 = rotX*rotY*t3*t13;
float t16 = rotX*rotZ*t3*t13;
float t17 = rotY*rotZ*t3*t13;
float t18 = t2*t10*t12*0.5f;
float t27 = t2*t3*t13;
float t19 = t14+t18-t27;
float t23 = rotX*rotY*t10*t12*0.5f;
float t28 = t15-t23;
float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f;
float t25 = rotX*rotZ*t10*t12*0.5f;
float t31 = t16-t25;
float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f;
float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f;
float t24 = t15-t23;
float t26 = t16-t25;
float t29 = t4*t10*t12*0.5f;
float t34 = t3*t4*t13;
float t30 = t14+t29-t34;
float t32 = t5*t10*t12*0.5f;
float t40 = t3*t5*t13;
float t33 = t14+t32-t40;
float t36 = rotY*rotZ*t10*t12*0.5f;
float t39 = t17-t36;
float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f;
float t37 = t15-t23;
float t38 = t17-t36;
float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25);
float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39;
float t43 = t16-t25;
float t44 = t17-t36;
// zero all the quaternion covariances
P.uncorrelateCovarianceSetVariance<2>(0, 0.0f);
P.uncorrelateCovarianceSetVariance<2>(2, 0.0f);
// Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox
P(0,0) = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f;
P(0,1) = t22;
P(0,2) = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f;
P(0,3) = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f;
P(1,0) = t22;
P(1,1) = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26);
P(1,2) = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P(1,3) = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P(2,0) = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f;
P(2,1) = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P(2,2) = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38);
P(2,3) = t42;
P(3,0) = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f;
P(3,1) = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P(3,2) = t42;
P(3,3) = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44);
} else {
// the equations are badly conditioned so use a small angle approximation
P.uncorrelateCovarianceSetVariance<1>(0, 0.0f);
P.uncorrelateCovarianceSetVariance<3>(1, 0.25f * rot_vec_var);
}
}
void Ekf::setControlBaroHeight()
{
_control_status.flags.baro_hgt = true;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlRangeHeight()
{
_control_status.flags.rng_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlGPSHeight()
{
_control_status.flags.gps_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlEVHeight()
{
_control_status.flags.ev_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
}
void Ekf::stopMagFusion()
{
stopMag3DFusion();
stopMagHdgFusion();
clearMagCov();
}
void Ekf::stopMag3DFusion()
{
// save covariance data for re-use if currently doing 3-axis fusion
if (_control_status.flags.mag_3D) {
saveMagCovData();
_control_status.flags.mag_3D = false;
}
}
void Ekf::stopMagHdgFusion()
{
_control_status.flags.mag_hdg = false;
}
void Ekf::startMagHdgFusion()
{
stopMag3DFusion();
_control_status.flags.mag_hdg = true;
}
void Ekf::startMag3DFusion()
{
if (!_control_status.flags.mag_3D) {
stopMagHdgFusion();
zeroMagCov();
loadMagCovData();
_control_status.flags.mag_3D = true;
}
}
void Ekf::startBaroHgtFusion()
{
setControlBaroHeight();
// We don't need to set a height sensor offset
// since we track a separate _baro_hgt_offset
_hgt_sensor_offset = 0.0f;
// Turn off ground effect compensation if it times out
if (_control_status.flags.gnd_effect) {
if (isTimedOut(_time_last_gnd_effect_on, GNDEFFECT_TIMEOUT)) {
_control_status.flags.gnd_effect = false;
}
}
}
void Ekf::startGpsHgtFusion()
{
setControlGPSHeight();
// we have just switched to using gps height, calculate height sensor offset such that current
// measurement matches our current height estimate
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
}
}
void Ekf::updateBaroHgtOffset()
{
// calculate a filtered offset between the baro origin and local NED origin if we are not
// using the baro as a height reference
if (!_control_status.flags.baro_hgt && _baro_data_ready) {
const float local_time_step = math::constrain(1e-6f * _delta_time_baro_us, 0.0f, 1.0f);
// apply a 10 second first order low pass filter to baro offset
const float offset_rate_correction = 0.1f * (_baro_sample_delayed.hgt + _state.pos(2) -
_baro_hgt_offset);
_baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f);
}
}
float Ekf::getGpsHeightVariance()
{
// observation variance - receiver defined and parameter limited
// use 1.5 as a typical ratio of vacc/hacc
const float lower_limit = fmaxf(1.5f * _params.gps_pos_noise, 0.01f);
const float upper_limit = fmaxf(1.5f * _params.pos_noaid_noise, lower_limit);
const float gps_alt_var = sq(math::constrain(_gps_sample_delayed.vacc, lower_limit, upper_limit));
return gps_alt_var;
}
Vector3f Ekf::getVisionVelocityInEkfFrame() const
{
Vector3f vel;
// correct velocity for offset relative to IMU
const Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
const Vector3f vel_offset_body = _ang_rate_delayed_raw % pos_offset_body;
// rotate measurement into correct earth frame if required
switch(_ev_sample_delayed.vel_frame) {
case velocity_frame_t::BODY_FRAME_FRD:
vel = _R_to_earth * (_ev_sample_delayed.vel - vel_offset_body);
break;
case velocity_frame_t::LOCAL_FRAME_FRD:
const Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
if (_params.fusion_mode & MASK_ROTATE_EV)
{
vel = _R_ev_to_ekf *_ev_sample_delayed.vel - vel_offset_earth;
} else {
vel = _ev_sample_delayed.vel - vel_offset_earth;
}
break;
}
return vel;
}
Vector3f Ekf::getVisionVelocityVarianceInEkfFrame() const
{
Matrix3f ev_vel_cov = _ev_sample_delayed.velCov;
// rotate measurement into correct earth frame if required
switch(_ev_sample_delayed.vel_frame) {
case velocity_frame_t::BODY_FRAME_FRD:
ev_vel_cov = _R_to_earth * ev_vel_cov * _R_to_earth.transpose();
break;
case velocity_frame_t::LOCAL_FRAME_FRD:
if(_params.fusion_mode & MASK_ROTATE_EV)
{
ev_vel_cov = _R_ev_to_ekf * ev_vel_cov * _R_ev_to_ekf.transpose();
}
break;
}
return ev_vel_cov.diag();
}
// update the rotation matrix which rotates EV measurements into the EKF's navigation frame
void Ekf::calcExtVisRotMat()
{
// Calculate the quaternion delta that rotates from the EV to the EKF reference frame at the EKF fusion time horizon.
const Quatf q_error((_state.quat_nominal * _ev_sample_delayed.quat.inversed()).normalized());
_R_ev_to_ekf = Dcmf(q_error);
}
// Increase the yaw error variance of the quaternions
// Argument is additional yaw variance in rad**2
void Ekf::increaseQuatYawErrVariance(float yaw_variance)
{
// See DeriveYawResetEquations.m for derivation which produces code fragments in C_code4.txt file
// The auto-code was cleaned up and had terms multiplied by zero removed to give the following:
// Intermediate variables
float SG[3];
SG[0] = sq(_state.quat_nominal(0)) - sq(_state.quat_nominal(1)) - sq(_state.quat_nominal(2)) + sq(_state.quat_nominal(3));
SG[1] = 2*_state.quat_nominal(0)*_state.quat_nominal(2) - 2*_state.quat_nominal(1)*_state.quat_nominal(3);
SG[2] = 2*_state.quat_nominal(0)*_state.quat_nominal(1) + 2*_state.quat_nominal(2)*_state.quat_nominal(3);
float SQ[4];
SQ[0] = 0.5f * ((_state.quat_nominal(1)*SG[0]) - (_state.quat_nominal(0)*SG[2]) + (_state.quat_nominal(3)*SG[1]));
SQ[1] = 0.5f * ((_state.quat_nominal(0)*SG[1]) - (_state.quat_nominal(2)*SG[0]) + (_state.quat_nominal(3)*SG[2]));
SQ[2] = 0.5f * ((_state.quat_nominal(3)*SG[0]) - (_state.quat_nominal(1)*SG[1]) + (_state.quat_nominal(2)*SG[2]));
SQ[3] = 0.5f * ((_state.quat_nominal(0)*SG[0]) + (_state.quat_nominal(1)*SG[2]) + (_state.quat_nominal(2)*SG[1]));
// Limit yaw variance increase to prevent a badly conditioned covariance matrix
yaw_variance = fminf(yaw_variance, 1.0e-2f);
// Add covariances for additonal yaw uncertainty to existing covariances.
// This assumes that the additional yaw error is uncorrrelated to existing errors
P(0,0) += yaw_variance*sq(SQ[2]);
P(0,1) += yaw_variance*SQ[1]*SQ[2];
P(1,1) += yaw_variance*sq(SQ[1]);
P(0,2) += yaw_variance*SQ[0]*SQ[2];
P(1,2) += yaw_variance*SQ[0]*SQ[1];
P(2,2) += yaw_variance*sq(SQ[0]);
P(0,3) -= yaw_variance*SQ[2]*SQ[3];
P(1,3) -= yaw_variance*SQ[1]*SQ[3];
P(2,3) -= yaw_variance*SQ[0]*SQ[3];
P(3,3) += yaw_variance*sq(SQ[3]);
P(1,0) += yaw_variance*SQ[1]*SQ[2];
P(2,0) += yaw_variance*SQ[0]*SQ[2];
P(2,1) += yaw_variance*SQ[0]*SQ[1];
P(3,0) -= yaw_variance*SQ[2]*SQ[3];
P(3,1) -= yaw_variance*SQ[1]*SQ[3];
P(3,2) -= yaw_variance*SQ[0]*SQ[3];
}
// save covariance data for re-use when auto-switching between heading and 3-axis fusion
void Ekf::saveMagCovData()
{
// save variances for the D earth axis and XYZ body axis field
for (uint8_t index = 0; index <= 3; index ++) {
_saved_mag_bf_variance[index] = P(index + 18, index + 18);
}
// save the NE axis covariance sub-matrix
_saved_mag_ef_covmat = P.slice<2, 2>(16, 16);
}
void Ekf::loadMagCovData()
{
// re-instate variances for the D earth axis and XYZ body axis field
for (uint8_t index = 0; index <= 3; index ++) {
P(index + 18, index + 18) = _saved_mag_bf_variance[index];
}
// re-instate the NE axis covariance sub-matrix
P.slice<2, 2>(16, 16) = _saved_mag_ef_covmat;
}
void Ekf::startGpsFusion()
{
resetHorizontalPositionToGps();
// when using optical flow,
// velocity reset is not necessary
if (!_control_status.flags.opt_flow) {
resetVelocityToGps();
}
ECL_INFO_TIMESTAMPED("starting GPS fusion");
_control_status.flags.gps = true;
}
void Ekf::stopGpsFusion()
{
stopGpsPosFusion();
stopGpsVelFusion();
stopGpsYawFusion();
}
void Ekf::stopGpsPosFusion()
{
_control_status.flags.gps = false;
_control_status.flags.gps_hgt = false;
_gps_pos_innov.setZero();
_gps_pos_innov_var.setZero();
_gps_pos_test_ratio.setZero();
}
void Ekf::stopGpsVelFusion()
{
_gps_vel_innov.setZero();
_gps_vel_innov_var.setZero();
_gps_vel_test_ratio.setZero();
}
void Ekf::startGpsYawFusion()
{
_control_status.flags.mag_dec = false;
stopEvYawFusion();
stopMagHdgFusion();
stopMag3DFusion();
_control_status.flags.gps_yaw = true;
}
void Ekf::stopGpsYawFusion()
{
_control_status.flags.gps_yaw = false;
}
void Ekf::startEvPosFusion()
{
_control_status.flags.ev_pos = true;
resetHorizontalPosition();
ECL_INFO_TIMESTAMPED("starting vision pos fusion");
}
void Ekf::startEvVelFusion()
{
_control_status.flags.ev_vel = true;
resetVelocity();
ECL_INFO_TIMESTAMPED("starting vision vel fusion");
}
void Ekf::startEvYawFusion()
{
// reset the yaw angle to the value from the vision quaternion
const float yaw = getEuler321Yaw(_ev_sample_delayed.quat);
const float yaw_variance = fmaxf(_ev_sample_delayed.angVar, sq(1.0e-2f));
resetQuatStateYaw(yaw, yaw_variance, true);
// flag the yaw as aligned
_control_status.flags.yaw_align = true;
// turn on fusion of external vision yaw measurements and disable all magnetometer fusion
_control_status.flags.ev_yaw = true;
_control_status.flags.mag_dec = false;
stopMagHdgFusion();
stopMag3DFusion();
ECL_INFO_TIMESTAMPED("starting vision yaw fusion");
}
void Ekf::stopEvFusion()
{
stopEvPosFusion();
stopEvVelFusion();
stopEvYawFusion();
}
void Ekf::stopEvPosFusion()
{
_control_status.flags.ev_pos = false;
_ev_pos_innov.setZero();
_ev_pos_innov_var.setZero();
_ev_pos_test_ratio.setZero();
}
void Ekf::stopEvVelFusion()
{
_control_status.flags.ev_vel = false;
_ev_vel_innov.setZero();
_ev_vel_innov_var.setZero();
_ev_vel_test_ratio.setZero();
}
void Ekf::stopEvYawFusion()
{
_control_status.flags.ev_yaw = false;
}
void Ekf::stopAuxVelFusion()
{
_aux_vel_innov.setZero();
_aux_vel_innov_var.setZero();
_aux_vel_test_ratio.setZero();
}
void Ekf::stopFlowFusion()
{
_control_status.flags.opt_flow = false;
_flow_innov.setZero();
_flow_innov_var.setZero();
_optflow_test_ratio = 0.0f;
}
void Ekf::resetQuatStateYaw(float yaw, float yaw_variance, bool update_buffer)
{
// save a copy of the quaternion state for later use in calculating the amount of reset change
const Quatf quat_before_reset = _state.quat_nominal;
// update transformation matrix from body to world frame using the current estimate
_R_to_earth = Dcmf(_state.quat_nominal);
// update the rotation matrix using the new yaw value
_R_to_earth = updateYawInRotMat(yaw, _R_to_earth);
// calculate the amount that the quaternion has changed by
const Quatf quat_after_reset(_R_to_earth);
const Quatf q_error((quat_after_reset * quat_before_reset.inversed()).normalized());
// update quaternion states
_state.quat_nominal = quat_after_reset;
uncorrelateQuatFromOtherStates();
// record the state change
_state_reset_status.quat_change = q_error;
// update the yaw angle variance
if (yaw_variance > FLT_EPSILON) {
increaseQuatYawErrVariance(yaw_variance);
}
// add the reset amount to the output observer buffered data
if (update_buffer) {
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal;
}
// apply the change in attitude quaternion to our newest quaternion estimate
// which was already taken out from the output buffer
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;
}
// capture the reset event
_state_reset_status.quat_counter++;
}
// Resets the main Nav EKf yaw to the estimator from the EKF-GSF yaw estimator
// Resets the horizontal velocity and position to the default navigation sensor
// Returns true if the reset was successful
bool Ekf::resetYawToEKFGSF()
{
// don't allow reet using the EKF-GSF estimate until the filter has started fusing velocity
// data and the yaw estimate has converged
float new_yaw, new_yaw_variance;
if (!_yawEstimator.getYawData(&new_yaw, &new_yaw_variance)) {
return false;
}
const bool has_converged = new_yaw_variance < sq(_params.EKFGSF_yaw_err_max);
if (!has_converged) {
return false;
}
resetQuatStateYaw(new_yaw, new_yaw_variance, true);
// reset velocity and position states to GPS - if yaw is fixed then the filter should start to operate correctly
resetVelocity();
resetHorizontalPosition();
// record a magnetic field alignment event to prevent possibility of the EKF trying to reset the yaw to the mag later in flight
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
_control_status.flags.yaw_align = true;
if (_params.mag_fusion_type == MAG_FUSE_TYPE_NONE) {
ECL_INFO_TIMESTAMPED("Yaw aligned using IMU and GPS");
} else {
// stop using the magnetometer in the main EKF otherwise it's fusion could drag the yaw around
// and cause another navigation failure
_control_status.flags.mag_fault = true;
ECL_INFO_TIMESTAMPED("Emergency yaw reset - mag use stopped");
}
return true;
}
bool Ekf::getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF],
float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF])
{
return _yawEstimator.getLogData(yaw_composite, yaw_variance, yaw, innov_VN, innov_VE, weight);
}
void Ekf::runYawEKFGSF()
{
float TAS;
if (isTimedOut(_airspeed_sample_delayed.time_us, 1000000) && _control_status.flags.fixed_wing) {
TAS = _params.EKFGSF_tas_default;
} else {
TAS = _airspeed_sample_delayed.true_airspeed;
}
const Vector3f imu_gyro_bias = getGyroBias();
_yawEstimator.update(_imu_sample_delayed, _control_status.flags.in_air, TAS, imu_gyro_bias);
// basic sanity check on GPS velocity data
if (_gps_data_ready && _gps_sample_delayed.vacc > FLT_EPSILON &&
ISFINITE(_gps_sample_delayed.vel(0)) && ISFINITE(_gps_sample_delayed.vel(1))) {
_yawEstimator.setVelocity(_gps_sample_delayed.vel.xy(), _gps_sample_delayed.vacc);
}
}
void Ekf::resetGpsDriftCheckFilters()
{
_gps_velNE_filt.setZero();
_gps_pos_deriv_filt.setZero();
}