You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
8.1 KiB
217 lines
8.1 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2018 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file gps_yaw_fusion.cpp |
|
* Definition of functions required to use yaw obtained from GPS dual antenna measurements. |
|
* Equations generated using EKF/python/ekf_derivation/main.py |
|
* |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
|
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
#include <cstdlib> |
|
|
|
void Ekf::fuseGpsYaw() |
|
{ |
|
// assign intermediate state variables |
|
const float &q0 = _state.quat_nominal(0); |
|
const float &q1 = _state.quat_nominal(1); |
|
const float &q2 = _state.quat_nominal(2); |
|
const float &q3 = _state.quat_nominal(3); |
|
|
|
// calculate the observed yaw angle of antenna array, converting a from body to antenna yaw measurement |
|
const float measured_hdg = wrap_pi(_gps_sample_delayed.yaw + _gps_yaw_offset); |
|
|
|
// define the predicted antenna array vector and rotate into earth frame |
|
const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f}; |
|
const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf; |
|
|
|
// check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading |
|
if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) { |
|
return; |
|
} |
|
|
|
// calculate predicted antenna yaw angle |
|
const float predicted_hdg = atan2f(ant_vec_ef(1),ant_vec_ef(0)); |
|
|
|
// using magnetic heading process noise |
|
// TODO extend interface to use yaw uncertainty provided by GPS if available |
|
const float R_YAW = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); |
|
|
|
// calculate intermediate variables |
|
const float HK0 = sinf(_gps_yaw_offset); |
|
const float HK1 = q0*q3; |
|
const float HK2 = q1*q2; |
|
const float HK3 = 2*HK0*(HK1 - HK2); |
|
const float HK4 = cosf(_gps_yaw_offset); |
|
const float HK5 = ecl::powf(q1, 2); |
|
const float HK6 = ecl::powf(q2, 2); |
|
const float HK7 = ecl::powf(q0, 2) - ecl::powf(q3, 2); |
|
const float HK8 = HK4*(HK5 - HK6 + HK7); |
|
const float HK9 = HK3 - HK8; |
|
if (fabsf(HK9) < 1e-3f) { |
|
return; |
|
} |
|
const float HK10 = 1.0F/HK9; |
|
const float HK11 = HK4*q0; |
|
const float HK12 = HK0*q3; |
|
const float HK13 = HK0*(-HK5 + HK6 + HK7) + 2*HK4*(HK1 + HK2); |
|
const float HK14 = HK10*HK13; |
|
const float HK15 = HK0*q0 + HK4*q3; |
|
const float HK16 = HK10*(HK14*(HK11 - HK12) + HK15); |
|
const float HK17 = ecl::powf(HK13, 2)/ecl::powf(HK9, 2) + 1; |
|
if (fabsf(HK17) < 1e-3f) { |
|
return; |
|
} |
|
const float HK18 = 2/HK17; |
|
// const float HK19 = 1.0F/(-HK3 + HK8); |
|
const float HK19_inverse = -HK3 + HK8; |
|
if (fabsf(HK19_inverse) < 1e-6f) { |
|
return; |
|
} |
|
const float HK19 = 1.0F/HK19_inverse; |
|
const float HK20 = HK4*q1; |
|
const float HK21 = HK0*q2; |
|
const float HK22 = HK13*HK19; |
|
const float HK23 = HK0*q1 - HK4*q2; |
|
const float HK24 = HK19*(HK22*(HK20 + HK21) + HK23); |
|
const float HK25 = HK19*(-HK20 - HK21 + HK22*HK23); |
|
const float HK26 = HK10*(-HK11 + HK12 + HK14*HK15); |
|
const float HK27 = -HK16*P(0,0) - HK24*P(0,1) - HK25*P(0,2) + HK26*P(0,3); |
|
const float HK28 = -HK16*P(0,1) - HK24*P(1,1) - HK25*P(1,2) + HK26*P(1,3); |
|
const float HK29 = 4/ecl::powf(HK17, 2); |
|
const float HK30 = -HK16*P(0,2) - HK24*P(1,2) - HK25*P(2,2) + HK26*P(2,3); |
|
const float HK31 = -HK16*P(0,3) - HK24*P(1,3) - HK25*P(2,3) + HK26*P(3,3); |
|
// const float HK32 = HK18/(-HK16*HK27*HK29 - HK24*HK28*HK29 - HK25*HK29*HK30 + HK26*HK29*HK31 + R_YAW); |
|
|
|
// check if the innovation variance calculation is badly conditioned |
|
_heading_innov_var = (-HK16*HK27*HK29 - HK24*HK28*HK29 - HK25*HK29*HK30 + HK26*HK29*HK31 + R_YAW); |
|
|
|
if (_heading_innov_var < R_YAW) { |
|
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned |
|
_fault_status.flags.bad_hdg = true; |
|
|
|
// we reinitialise the covariance matrix and abort this fusion step |
|
initialiseCovariance(); |
|
ECL_ERR_TIMESTAMPED("GPS yaw numerical error - covariance reset"); |
|
return; |
|
} |
|
|
|
_fault_status.flags.bad_hdg = false; |
|
const float HK32 = HK18/_heading_innov_var; |
|
|
|
// calculate the innovation and define the innovation gate |
|
const float innov_gate = math::max(_params.heading_innov_gate, 1.0f); |
|
_heading_innov = predicted_hdg - measured_hdg; |
|
|
|
// wrap the innovation to the interval between +-pi |
|
_heading_innov = wrap_pi(_heading_innov); |
|
|
|
// innovation test ratio |
|
_yaw_test_ratio = sq(_heading_innov) / (sq(innov_gate) * _heading_innov_var); |
|
|
|
// we are no longer using 3-axis fusion so set the reported test levels to zero |
|
_mag_test_ratio.setZero(); |
|
|
|
if (_yaw_test_ratio > 1.0f) { |
|
_innov_check_fail_status.flags.reject_yaw = true; |
|
|
|
// if we are in air we don't want to fuse the measurement |
|
// we allow to use it when on the ground because the large innovation could be caused |
|
// by interference or a large initial gyro bias |
|
if (_control_status.flags.in_air) { |
|
return; |
|
|
|
} else { |
|
// constrain the innovation to the maximum set by the gate |
|
const float gate_limit = sqrtf((sq(innov_gate) * _heading_innov_var)); |
|
_heading_innov = math::constrain(_heading_innov, -gate_limit, gate_limit); |
|
} |
|
|
|
} else { |
|
_innov_check_fail_status.flags.reject_yaw = false; |
|
} |
|
|
|
// calculate observation jacobian |
|
// Observation jacobian and Kalman gain vectors |
|
SparseVector24f<0,1,2,3> Hfusion; |
|
Hfusion.at<0>() = -HK16*HK18; |
|
Hfusion.at<1>() = -HK18*HK24; |
|
Hfusion.at<2>() = -HK18*HK25; |
|
Hfusion.at<3>() = HK18*HK26; |
|
|
|
// calculate the Kalman gains |
|
// only calculate gains for states we are using |
|
Vector24f Kfusion; |
|
Kfusion(0) = HK27*HK32; |
|
Kfusion(1) = HK28*HK32; |
|
Kfusion(2) = HK30*HK32; |
|
Kfusion(3) = HK31*HK32; |
|
for (unsigned row = 4; row <= 23; row++) { |
|
Kfusion(row) = HK32*(-HK16*P(0,row) - HK24*P(1,row) - HK25*P(2,row) + HK26*P(3,row)); |
|
} |
|
|
|
const bool is_fused = measurementUpdate(Kfusion, Hfusion, _heading_innov); |
|
_fault_status.flags.bad_hdg = !is_fused; |
|
|
|
if (is_fused) { |
|
_time_last_gps_yaw_fuse = _time_last_imu; |
|
} |
|
} |
|
|
|
bool Ekf::resetYawToGps() |
|
{ |
|
// define the predicted antenna array vector and rotate into earth frame |
|
const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f}; |
|
const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf; |
|
|
|
// check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading |
|
if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) { |
|
return false; |
|
} |
|
|
|
// GPS yaw measurement is alreday compensated for antenna offset in the driver |
|
const float measured_yaw = _gps_sample_delayed.yaw; |
|
|
|
const float yaw_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); |
|
resetQuatStateYaw(measured_yaw, yaw_variance, true); |
|
|
|
_time_last_gps_yaw_fuse = _time_last_imu; |
|
|
|
return true; |
|
}
|
|
|