You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
4.9 KiB
128 lines
4.9 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2014-2020 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file geo_mag_declination.cpp |
|
* |
|
* Calculation / lookup table for Earth's magnetic field declination (deg), inclination (deg) and strength (mTesla). |
|
* Data generated by https://www.ngdc.noaa.gov/geomag-web/#igrfgrid IGRF calculator on 22 Jan 2018 |
|
* |
|
* XXX Lookup table currently too coarse in resolution (only full degrees) |
|
* and lat/lon res - needs extension medium term. |
|
* |
|
*/ |
|
|
|
#include "geo_mag_declination.h" |
|
|
|
#include "geo_magnetic_tables.hpp" |
|
|
|
#include <mathlib/mathlib.h> |
|
|
|
#include <math.h> |
|
#include <stdint.h> |
|
|
|
using math::constrain; |
|
|
|
static constexpr unsigned get_lookup_table_index(float *val, float min, float max) |
|
{ |
|
/* for the rare case of hitting the bounds exactly |
|
* the rounding logic wouldn't fit, so enforce it. |
|
*/ |
|
|
|
/* limit to table bounds - required for maxima even when table spans full globe range */ |
|
/* limit to (table bounds - 1) because bilinear interpolation requires checking (index + 1) */ |
|
*val = constrain(*val, min, max - SAMPLING_RES); |
|
|
|
return static_cast<unsigned>((-(min) + *val) / SAMPLING_RES); |
|
} |
|
|
|
static constexpr float get_table_data(float lat, float lon, const int16_t table[LAT_DIM][LON_DIM]) |
|
{ |
|
lat = math::constrain(lat, SAMPLING_MIN_LAT, SAMPLING_MAX_LAT); |
|
|
|
if (lon > SAMPLING_MAX_LON) { |
|
lon -= 360; |
|
} |
|
|
|
if (lon < SAMPLING_MIN_LON) { |
|
lon += 360; |
|
} |
|
|
|
/* round down to nearest sampling resolution */ |
|
float min_lat = floorf(lat / SAMPLING_RES) * SAMPLING_RES; |
|
float min_lon = floorf(lon / SAMPLING_RES) * SAMPLING_RES; |
|
|
|
/* find index of nearest low sampling point */ |
|
unsigned min_lat_index = get_lookup_table_index(&min_lat, SAMPLING_MIN_LAT, SAMPLING_MAX_LAT); |
|
unsigned min_lon_index = get_lookup_table_index(&min_lon, SAMPLING_MIN_LON, SAMPLING_MAX_LON); |
|
|
|
const float data_sw = table[min_lat_index][min_lon_index]; |
|
const float data_se = table[min_lat_index][min_lon_index + 1]; |
|
const float data_ne = table[min_lat_index + 1][min_lon_index + 1]; |
|
const float data_nw = table[min_lat_index + 1][min_lon_index]; |
|
|
|
/* perform bilinear interpolation on the four grid corners */ |
|
const float lat_scale = constrain((lat - min_lat) / SAMPLING_RES, 0.f, 1.f); |
|
const float lon_scale = constrain((lon - min_lon) / SAMPLING_RES, 0.f, 1.f); |
|
|
|
const float data_min = lon_scale * (data_se - data_sw) + data_sw; |
|
const float data_max = lon_scale * (data_ne - data_nw) + data_nw; |
|
|
|
return lat_scale * (data_max - data_min) + data_min; |
|
} |
|
|
|
float get_mag_declination_radians(float lat, float lon) { |
|
return get_table_data(lat, lon, declination_table) * 1e-4f; // declination table stored as 10^-4 radians |
|
} |
|
|
|
float get_mag_declination_degrees(float lat, float lon) { |
|
return math::degrees(get_mag_declination_radians(lat, lon)); |
|
} |
|
|
|
float get_mag_inclination_radians(float lat, float lon) { |
|
return get_table_data(lat, lon, inclination_table) * 1e-4f; // inclination table stored as 10^-4 radians |
|
} |
|
|
|
float get_mag_inclination_degrees(float lat, float lon) { |
|
return math::degrees(get_mag_inclination_radians(lat, lon)); |
|
} |
|
|
|
float get_mag_strength_gauss(float lat, float lon) |
|
{ |
|
return get_table_data(lat, lon, strength_table) * 1e-4f; // strength table table stored as milli-Gauss * 10 |
|
} |
|
|
|
float get_mag_strength_tesla(float lat, float lon) |
|
{ |
|
return get_mag_strength_gauss(lat, lon) * 1e-4f; // 1 Gauss == 0.0001 Tesla |
|
}
|
|
|