You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1553 lines
60 KiB
1553 lines
60 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file control.cpp |
|
* Control functions for ekf attitude and position estimator. |
|
* |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "../ecl.h" |
|
#include "ekf.h" |
|
#include <mathlib/mathlib.h> |
|
|
|
void Ekf::controlFusionModes() |
|
{ |
|
// Store the status to enable change detection |
|
_control_status_prev.value = _control_status.value; |
|
|
|
// Get the magnetic declination |
|
calcMagDeclination(); |
|
|
|
// monitor the tilt alignment |
|
if (!_control_status.flags.tilt_align) { |
|
// whilst we are aligning the tilt, monitor the variances |
|
Vector3f angle_err_var_vec = calcRotVecVariances(); |
|
|
|
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states |
|
// and declare the tilt alignment complete |
|
if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(0.05235f)) { |
|
_control_status.flags.tilt_align = true; |
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); |
|
|
|
// send alignment status message to the console |
|
if (_control_status.flags.baro_hgt) { |
|
ECL_INFO("EKF aligned, (pressure height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length); |
|
|
|
} else if (_control_status.flags.ev_hgt) { |
|
ECL_INFO("EKF aligned, (EV height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length); |
|
|
|
} else if (_control_status.flags.gps_hgt) { |
|
ECL_INFO("EKF aligned, (GPS height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length); |
|
|
|
} else if (_control_status.flags.rng_hgt) { |
|
ECL_INFO("EKF aligned, (range height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length); |
|
|
|
} else { |
|
ECL_ERR("EKF aligned, (unknown height, IMU buf: %i, OBS buf: %i)", (int)_imu_buffer_length, (int)_obs_buffer_length); |
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
// check faultiness (before pop_first_older_than) to see if we can change back to original height sensor |
|
const baroSample &baro_init = _baro_buffer.get_newest(); |
|
_baro_hgt_faulty = !((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); |
|
|
|
const gpsSample &gps_init = _gps_buffer.get_newest(); |
|
_gps_hgt_faulty = !((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); |
|
|
|
const rangeSample &rng_init = _range_buffer.get_newest(); |
|
_rng_hgt_faulty = !((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL); |
|
|
|
// check for arrival of new sensor data at the fusion time horizon |
|
_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed); |
|
_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed); |
|
|
|
_delta_time_baro_us = _baro_sample_delayed.time_us; |
|
_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed); |
|
|
|
// if we have a new baro sample save the delta time between this sample and the last sample which is |
|
// used below for baro offset calculations |
|
if (_baro_data_ready) { |
|
_delta_time_baro_us = _baro_sample_delayed.time_us - _delta_time_baro_us; |
|
} |
|
|
|
// calculate 2,2 element of rotation matrix from sensor frame to earth frame |
|
_R_rng_to_earth_2_2 = _R_to_earth(2, 0) * _sin_tilt_rng + _R_to_earth(2, 2) * _cos_tilt_rng; |
|
_range_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed) |
|
&& (_R_rng_to_earth_2_2 > _params.range_cos_max_tilt); |
|
|
|
checkForStuckRange(); |
|
|
|
// We don't fuse flow data immediately becasue we have to wait for the mid integration point to fall behind the fusion time horizon. |
|
// This means we stop looking for new data until the old data has been fused. |
|
if (!_flow_data_ready) { |
|
_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed) |
|
&& (_R_to_earth(2, 2) > 0.7071f); |
|
} |
|
|
|
_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed); |
|
_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed); |
|
|
|
// check for height sensor timeouts and reset and change sensor if necessary |
|
controlHeightSensorTimeouts(); |
|
|
|
// control use of observations for aiding |
|
controlMagFusion(); |
|
controlOpticalFlowFusion(); |
|
controlGpsFusion(); |
|
controlAirDataFusion(); |
|
controlBetaFusion(); |
|
controlDragFusion(); |
|
controlHeightFusion(); |
|
|
|
// For efficiency, fusion of direct state observations for position and velocity is performed sequentially |
|
// in a single function using sensor data from multiple sources (GPS, baro, range finder, etc) |
|
controlVelPosFusion(); |
|
|
|
// Additional data from an external vision pose estimator can be fused. |
|
controlExternalVisionFusion(); |
|
|
|
// Additional NE velocity data from an auxiliary sensor can be fused |
|
controlAuxVelFusion(); |
|
|
|
// check if we are no longer fusing measurements that directly constrain velocity drift |
|
update_deadreckoning_status(); |
|
} |
|
|
|
void Ekf::controlExternalVisionFusion() |
|
{ |
|
// Check for new exernal vision data |
|
if (_ev_data_ready) { |
|
|
|
// if the ev data is not in a NED reference frame, then the transformation between EV and EKF navigation frames |
|
// needs to be calculated and the observations rotated into the EKF frame of reference |
|
if ((_params.fusion_mode & MASK_ROTATE_EV) && (_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_yaw) { |
|
// rotate EV measurements into the EKF Navigation frame |
|
calcExtVisRotMat(); |
|
} |
|
|
|
// external vision position aiding selection logic |
|
if ((_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_pos && _control_status.flags.tilt_align |
|
&& _control_status.flags.yaw_align) { |
|
|
|
// check for a exernal vision measurement that has fallen behind the fusion time horizon |
|
if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) { |
|
// turn on use of external vision measurements for position |
|
_control_status.flags.ev_pos = true; |
|
ECL_INFO("EKF commencing external vision position fusion"); |
|
|
|
// reset the position if we are not already aiding using GPS, else use a relative position |
|
// method for fusing the position data |
|
if (_control_status.flags.gps) { |
|
_fuse_hpos_as_odom = true; |
|
|
|
} else { |
|
resetPosition(); |
|
resetVelocity(); |
|
|
|
} |
|
} |
|
} |
|
|
|
// external vision yaw aiding selection logic |
|
if (!_control_status.flags.gps && (_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) { |
|
// don't start using EV data unless daa is arriving frequently |
|
if (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL) { |
|
// reset the yaw angle to the value from the observaton quaternion |
|
// get the roll, pitch, yaw estimates from the quaternion states |
|
Quatf q_init(_state.quat_nominal); |
|
Eulerf euler_init(q_init); |
|
|
|
// get initial yaw from the observation quaternion |
|
const extVisionSample &ev_newest = _ext_vision_buffer.get_newest(); |
|
Quatf q_obs(ev_newest.quat); |
|
Eulerf euler_obs(q_obs); |
|
euler_init(2) = euler_obs(2); |
|
|
|
// save a copy of the quaternion state for later use in calculating the amount of reset change |
|
Quatf quat_before_reset = _state.quat_nominal; |
|
|
|
// calculate initial quaternion states for the ekf |
|
_state.quat_nominal = Quatf(euler_init); |
|
|
|
// calculate the amount that the quaternion has changed by |
|
_state_reset_status.quat_change = quat_before_reset.inversed() * _state.quat_nominal; |
|
|
|
// add the reset amount to the output observer buffered data |
|
// Note q1 *= q2 is equivalent to q1 = q2 * q1 |
|
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { |
|
_output_buffer[i].quat_nominal *= _state_reset_status.quat_change; |
|
} |
|
|
|
// apply the change in attitude quaternion to our newest quaternion estimate |
|
// which was already taken out from the output buffer |
|
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal; |
|
|
|
// capture the reset event |
|
_state_reset_status.quat_counter++; |
|
|
|
// flag the yaw as aligned |
|
_control_status.flags.yaw_align = true; |
|
|
|
// turn on fusion of external vision yaw measurements and disable all magnetoemter fusion |
|
_control_status.flags.ev_yaw = true; |
|
_control_status.flags.mag_hdg = false; |
|
_control_status.flags.mag_3D = false; |
|
_control_status.flags.mag_dec = false; |
|
|
|
ECL_INFO("EKF commencing external vision yaw fusion"); |
|
} |
|
} |
|
|
|
// determine if we should start using the height observations |
|
if (_params.vdist_sensor_type == VDIST_SENSOR_EV) { |
|
// don't start using EV data unless data is arriving frequently |
|
if (!_control_status.flags.ev_hgt && (_time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL)) { |
|
setControlEVHeight(); |
|
resetHeight(); |
|
} |
|
} |
|
|
|
// determine if we should use the vertical position observation |
|
if (_control_status.flags.ev_hgt) { |
|
_fuse_height = true; |
|
} |
|
|
|
// determine if we should use the horizontal position observations |
|
if (_control_status.flags.ev_pos) { |
|
_fuse_pos = true; |
|
|
|
// correct position and height for offset relative to IMU |
|
Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body; |
|
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body; |
|
_ev_sample_delayed.posNED(0) -= pos_offset_earth(0); |
|
_ev_sample_delayed.posNED(1) -= pos_offset_earth(1); |
|
_ev_sample_delayed.posNED(2) -= pos_offset_earth(2); |
|
|
|
// Use an incremental position fusion method for EV data if using GPS or if the observations are not in NED |
|
if (_control_status.flags.gps || (_params.fusion_mode & MASK_ROTATE_EV)) { |
|
_fuse_hpos_as_odom = true; |
|
|
|
} else { |
|
_fuse_hpos_as_odom = false; |
|
} |
|
|
|
if (_fuse_hpos_as_odom) { |
|
if (!_hpos_prev_available) { |
|
// no previous observation available to calculate position change |
|
_fuse_pos = false; |
|
_hpos_prev_available = true; |
|
|
|
} else { |
|
// calculate the change in position since the last measurement |
|
Vector3f ev_delta_pos = _ev_sample_delayed.posNED - _pos_meas_prev; |
|
|
|
// rotate measurement into body frame if required |
|
if (_params.fusion_mode & MASK_ROTATE_EV) { |
|
ev_delta_pos = _ev_rot_mat * ev_delta_pos; |
|
} |
|
|
|
// use the change in position since the last measurement |
|
_vel_pos_innov[3] = _state.pos(0) - _hpos_pred_prev(0) - ev_delta_pos(0); |
|
_vel_pos_innov[4] = _state.pos(1) - _hpos_pred_prev(1) - ev_delta_pos(1); |
|
|
|
} |
|
|
|
// record observation and estimate for use next time |
|
_pos_meas_prev = _ev_sample_delayed.posNED; |
|
_hpos_pred_prev(0) = _state.pos(0); |
|
_hpos_pred_prev(1) = _state.pos(1); |
|
|
|
} else { |
|
// use the absolute position |
|
_vel_pos_innov[3] = _state.pos(0) - _ev_sample_delayed.posNED(0); |
|
_vel_pos_innov[4] = _state.pos(1) - _ev_sample_delayed.posNED(1); |
|
|
|
// check if we have been deadreckoning too long |
|
if (_time_last_imu - _time_last_pos_fuse > _params.no_gps_timeout_max) { |
|
// don't reset velocity if we have another source of aiding constraining it |
|
if (_time_last_imu - _time_last_of_fuse > (uint64_t)1E6) { |
|
resetVelocity(); |
|
} |
|
|
|
resetPosition(); |
|
} |
|
} |
|
|
|
// observation 1-STD error |
|
_posObsNoiseNE = fmaxf(_ev_sample_delayed.posErr, 0.01f); |
|
|
|
// innovation gate size |
|
_posInnovGateNE = fmaxf(_params.ev_innov_gate, 1.0f); |
|
} |
|
|
|
// Fuse available NED position data into the main filter |
|
if (_fuse_height || _fuse_pos) { |
|
fuseVelPosHeight(); |
|
_fuse_pos = _fuse_height = false; |
|
_fuse_hpos_as_odom = false; |
|
|
|
} |
|
|
|
// determine if we should use the yaw observation |
|
if (_control_status.flags.ev_yaw) { |
|
fuseHeading(); |
|
|
|
} |
|
|
|
} else if (_control_status.flags.ev_pos |
|
&& (_time_last_imu >= _time_last_ext_vision) |
|
&& (_time_last_imu - _time_last_ext_vision > (uint64_t)_params.no_gps_timeout_max)) { |
|
|
|
// Turn off EV fusion mode if no data has been received |
|
_control_status.flags.ev_pos = false; |
|
ECL_INFO("EKF External Vision Data Stopped"); |
|
|
|
} |
|
} |
|
|
|
void Ekf::controlOpticalFlowFusion() |
|
{ |
|
// Check if on ground motion is un-suitable for use of optical flow |
|
if (!_control_status.flags.in_air) { |
|
// When on ground check if the vehicle is being shaken or moved in a way that could cause a loss of navigation |
|
float accel_norm = _accel_vec_filt.norm(); |
|
bool motion_is_excessive = ((accel_norm > 14.7f) // accel greater than 1.5g |
|
|| (accel_norm < 4.9f) // accel less than 0.5g |
|
|| (_ang_rate_mag_filt > _flow_max_rate) // angular rate exceeds flow sensor limit |
|
|| (_R_to_earth(2,2) < 0.866f)); // tilted more than 30 degrees |
|
if (motion_is_excessive) { |
|
_time_bad_motion_us = _imu_sample_delayed.time_us; |
|
|
|
} else { |
|
_time_good_motion_us = _imu_sample_delayed.time_us; |
|
} |
|
|
|
} else { |
|
_time_bad_motion_us = 0; |
|
_time_good_motion_us = _imu_sample_delayed.time_us; |
|
} |
|
|
|
// Accumulate autopilot gyro data across the same time interval as the flow sensor |
|
_imu_del_ang_of += _imu_sample_delayed.delta_ang - _state.gyro_bias; |
|
_delta_time_of += _imu_sample_delayed.delta_ang_dt; |
|
|
|
// New optical flow data is available and is ready to be fused when the midpoint of the sample falls behind the fusion time horizon |
|
if (_flow_data_ready) { |
|
// Inhibit flow use if motion is un-suitable or we have good quality GPS |
|
// Apply hysteresis to prevent rapid mode switching |
|
float gps_err_norm_lim; |
|
if (_control_status.flags.opt_flow) { |
|
gps_err_norm_lim = 0.7f; |
|
} else { |
|
gps_err_norm_lim = 1.0f; |
|
} |
|
|
|
// Check if we are in-air and require optical flow to control position drift |
|
bool flow_required = _control_status.flags.in_air && |
|
(_is_dead_reckoning // is doing inertial dead-reckoning so must constrain drift urgently |
|
|| (_control_status.flags.opt_flow && !_control_status.flags.gps && !_control_status.flags.ev_pos) // is completely reliant on optical flow |
|
|| (_control_status.flags.gps && (_gps_error_norm > gps_err_norm_lim))); // is using GPS, but GPS is bad |
|
|
|
if (!_inhibit_flow_use && _control_status.flags.opt_flow) { |
|
// inhibit use of optical flow if motion is unsuitable and we are not reliant on it for flight navigation |
|
bool preflight_motion_not_ok = !_control_status.flags.in_air && ((_imu_sample_delayed.time_us - _time_good_motion_us) > (uint64_t)1E5); |
|
bool flight_motion_not_ok = _control_status.flags.in_air && !_range_aid_mode_enabled; |
|
if ((preflight_motion_not_ok || flight_motion_not_ok) && !flow_required) { |
|
_inhibit_flow_use = true; |
|
} |
|
} else if (_inhibit_flow_use && !_control_status.flags.opt_flow){ |
|
// allow use of optical flow if motion is suitable or we are reliant on it for flight navigation |
|
bool preflight_motion_ok = !_control_status.flags.in_air && ((_imu_sample_delayed.time_us - _time_bad_motion_us) > (uint64_t)5E6); |
|
bool flight_motion_ok = _control_status.flags.in_air && _range_aid_mode_enabled; |
|
if (preflight_motion_ok || flight_motion_ok || flow_required) { |
|
_inhibit_flow_use = false; |
|
} |
|
} |
|
|
|
// Handle cases where we are using optical flow but are no longer able to because data is old |
|
// or its use has been inhibited. |
|
if (_control_status.flags.opt_flow) { |
|
if (_inhibit_flow_use) { |
|
_control_status.flags.opt_flow = false; |
|
_time_last_of_fuse = 0; |
|
|
|
} else if (_time_last_imu - _flow_sample_delayed.time_us > (uint64_t)_params.no_gps_timeout_max) { |
|
_control_status.flags.opt_flow = false; |
|
|
|
} |
|
} |
|
|
|
// optical flow fusion mode selection logic |
|
if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user |
|
&& !_control_status.flags.opt_flow // we are not yet using flow data |
|
&& _control_status.flags.tilt_align // we know our tilt attitude |
|
&& !_inhibit_flow_use |
|
&& get_terrain_valid()) // we have a valid distance to ground estimate |
|
{ |
|
// If the heading is not aligned, reset the yaw and magnetic field states |
|
if (!_control_status.flags.yaw_align) { |
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); |
|
} |
|
|
|
// If the heading is valid and use is not inhibited , start using optical flow aiding |
|
if (_control_status.flags.yaw_align) { |
|
// set the flag and reset the fusion timeout |
|
_control_status.flags.opt_flow = true; |
|
_time_last_of_fuse = _time_last_imu; |
|
|
|
// if we are not using GPS then the velocity and position states and covariances need to be set |
|
if (!_control_status.flags.gps || !_control_status.flags.ev_pos) { |
|
resetVelocity(); |
|
resetPosition(); |
|
|
|
// align the output observer to the EKF states |
|
alignOutputFilter(); |
|
|
|
} |
|
} |
|
|
|
} else if (!(_params.fusion_mode & MASK_USE_OF)) { |
|
_control_status.flags.opt_flow = false; |
|
|
|
} |
|
|
|
// handle the case when we have optical flow, are reliant on it, but have not been using it for an extended period |
|
if (_control_status.flags.opt_flow |
|
&& !_control_status.flags.gps |
|
&& !_control_status.flags.ev_pos) { |
|
|
|
bool do_reset = _time_last_imu - _time_last_of_fuse > _params.no_gps_timeout_max; |
|
|
|
if (do_reset) { |
|
resetVelocity(); |
|
resetPosition(); |
|
} |
|
} |
|
|
|
// Only fuse optical flow if valid body rate compensation data is available |
|
if (calcOptFlowBodyRateComp()) { |
|
|
|
bool flow_quality_good = (_flow_sample_delayed.quality >= _params.flow_qual_min); |
|
|
|
if (!flow_quality_good && !_control_status.flags.in_air) { |
|
// when on the ground with poor flow quality, assume zero ground relative velocity and LOS rate |
|
_flowRadXYcomp.zero(); |
|
} else { |
|
// compensate for body motion to give a LOS rate |
|
_flowRadXYcomp(0) = _flow_sample_delayed.flowRadXY(0) - _flow_sample_delayed.gyroXYZ(0); |
|
_flowRadXYcomp(1) = _flow_sample_delayed.flowRadXY(1) - _flow_sample_delayed.gyroXYZ(1); |
|
} |
|
} else { |
|
// don't use this flow data and wait for the next data to arrive |
|
_flow_data_ready = false; |
|
} |
|
} |
|
|
|
// Wait until the midpoint of the flow sample has fallen behind the fusion time horizon |
|
if (_flow_data_ready && (_imu_sample_delayed.time_us > _flow_sample_delayed.time_us - uint32_t(1e6f * _flow_sample_delayed.dt) / 2)) { |
|
// Fuse optical flow LOS rate observations into the main filter only if height above ground has been updated recently |
|
// but use a relaxed time criteria to enable it to coast through bad range finder data |
|
if (_control_status.flags.opt_flow && (_time_last_imu - _time_last_hagl_fuse < (uint64_t)10e6)) { |
|
fuseOptFlow(); |
|
_last_known_posNE(0) = _state.pos(0); |
|
_last_known_posNE(1) = _state.pos(1); |
|
} |
|
|
|
_flow_data_ready = false; |
|
} |
|
} |
|
|
|
void Ekf::controlGpsFusion() |
|
{ |
|
// Check for new GPS data that has fallen behind the fusion time horizon |
|
if (_gps_data_ready) { |
|
|
|
// Determine if we should use GPS aiding for velocity and horizontal position |
|
// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently |
|
bool gps_checks_passing = (_time_last_imu - _last_gps_fail_us > (uint64_t)5e6); |
|
bool gps_checks_failing = (_time_last_imu - _last_gps_pass_us > (uint64_t)5e6); |
|
if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) { |
|
if (_control_status.flags.tilt_align && _NED_origin_initialised && gps_checks_passing) { |
|
// If the heading is not aligned, reset the yaw and magnetic field states |
|
// Do not use external vision for yaw if using GPS because yaw needs to be |
|
// defined relative to an NED reference frame |
|
if (!_control_status.flags.yaw_align || _control_status.flags.ev_yaw || _mag_inhibit_yaw_reset_req) { |
|
_control_status.flags.yaw_align = false; |
|
_control_status.flags.ev_yaw = false; |
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); |
|
// Handle the special case where we have not been constraining yaw drift or learning yaw bias due |
|
// to assumed invalid mag field associated with indoor operation with a downwards looking flow sensor. |
|
if (_mag_inhibit_yaw_reset_req) { |
|
_mag_inhibit_yaw_reset_req = false; |
|
// Zero the yaw bias covariance and set the variance to the initial alignment uncertainty |
|
float dt = 0.001f * (float)FILTER_UPDATE_PERIOD_MS; |
|
setDiag(P, 12, 12, sq(_params.switch_on_gyro_bias * dt)); |
|
} |
|
} |
|
|
|
// If the heading is valid start using gps aiding |
|
if (_control_status.flags.yaw_align) { |
|
// if we are not already aiding with optical flow, then we need to reset the position and velocity |
|
// otherwise we only need to reset the position |
|
_control_status.flags.gps = true; |
|
|
|
if (!_control_status.flags.opt_flow) { |
|
if (!resetPosition() || !resetVelocity()) { |
|
_control_status.flags.gps = false; |
|
|
|
} |
|
|
|
} else if (!resetPosition()) { |
|
_control_status.flags.gps = false; |
|
|
|
} |
|
|
|
if (_control_status.flags.gps) { |
|
ECL_INFO("EKF commencing GPS fusion"); |
|
_time_last_gps = _time_last_imu; |
|
} |
|
} |
|
} |
|
|
|
} else if (!(_params.fusion_mode & MASK_USE_GPS)) { |
|
_control_status.flags.gps = false; |
|
|
|
} |
|
|
|
// Handle the case where we are using GPS and another source of aiding and GPS is failing checks |
|
if (_control_status.flags.gps && gps_checks_failing && (_control_status.flags.opt_flow || _control_status.flags.ev_pos)) { |
|
_control_status.flags.gps = false; |
|
ECL_WARN("EKF GPS data quality poor - stopping use"); |
|
} |
|
|
|
// handle the case when we now have GPS, but have not been using it for an extended period |
|
if (_control_status.flags.gps) { |
|
// We are relying on aiding to constrain drift so after a specified time |
|
// with no aiding we need to do something |
|
bool do_reset = (_time_last_imu - _time_last_pos_fuse > _params.no_gps_timeout_max) |
|
&& (_time_last_imu - _time_last_delpos_fuse > _params.no_gps_timeout_max) |
|
&& (_time_last_imu - _time_last_vel_fuse > _params.no_gps_timeout_max) |
|
&& (_time_last_imu - _time_last_of_fuse > _params.no_gps_timeout_max); |
|
|
|
// We haven't had an absolute position fix for a longer time so need to do something |
|
do_reset = do_reset || (_time_last_imu - _time_last_pos_fuse > 2 * _params.no_gps_timeout_max); |
|
|
|
if (do_reset) { |
|
// use GPS velocity data to check and correct yaw angle if a FW vehicle |
|
if (_control_status.flags.fixed_wing && _control_status.flags.in_air) { |
|
// if flying a fixed wing aircraft, do a complete reset that includes yaw |
|
realignYawGPS(); |
|
} |
|
|
|
resetVelocity(); |
|
resetPosition(); |
|
_velpos_reset_request = false; |
|
ECL_WARN("EKF GPS fusion timeout - reset to GPS"); |
|
|
|
// Reset the timeout counters |
|
_time_last_pos_fuse = _time_last_imu; |
|
_time_last_vel_fuse = _time_last_imu; |
|
|
|
} |
|
} |
|
|
|
// Only use GPS data for position and velocity aiding if enabled |
|
if (_control_status.flags.gps) { |
|
_fuse_pos = true; |
|
_fuse_vert_vel = true; |
|
_fuse_hor_vel = true; |
|
|
|
// correct velocity for offset relative to IMU |
|
Vector3f ang_rate = _imu_sample_delayed.delta_ang * (1.0f / _imu_sample_delayed.delta_ang_dt); |
|
Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body; |
|
Vector3f vel_offset_body = cross_product(ang_rate, pos_offset_body); |
|
Vector3f vel_offset_earth = _R_to_earth * vel_offset_body; |
|
_gps_sample_delayed.vel -= vel_offset_earth; |
|
|
|
// correct position and height for offset relative to IMU |
|
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body; |
|
_gps_sample_delayed.pos(0) -= pos_offset_earth(0); |
|
_gps_sample_delayed.pos(1) -= pos_offset_earth(1); |
|
_gps_sample_delayed.hgt += pos_offset_earth(2); |
|
|
|
// calculate observation process noise |
|
float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f); |
|
|
|
if (_control_status.flags.opt_flow || _control_status.flags.ev_pos) { |
|
// if we are using other sources of aiding, then relax the upper observation |
|
// noise limit which prevents bad GPS perturbing the position estimate |
|
_posObsNoiseNE = fmaxf(_gps_sample_delayed.hacc, lower_limit); |
|
|
|
} else { |
|
// if we are not using another source of aiding, then we are reliant on the GPS |
|
// observations to constrain attitude errors and must limit the observation noise value. |
|
float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit); |
|
_posObsNoiseNE = math::constrain(_gps_sample_delayed.hacc, lower_limit, upper_limit); |
|
} |
|
|
|
_velObsVarNE(1) = _velObsVarNE(0) = sq(fmaxf(_gps_sample_delayed.sacc, _params.gps_vel_noise)); |
|
|
|
// calculate innovations |
|
_vel_pos_innov[0] = _state.vel(0) - _gps_sample_delayed.vel(0); |
|
_vel_pos_innov[1] = _state.vel(1) - _gps_sample_delayed.vel(1); |
|
_vel_pos_innov[2] = _state.vel(2) - _gps_sample_delayed.vel(2); |
|
_vel_pos_innov[3] = _state.pos(0) - _gps_sample_delayed.pos(0); |
|
_vel_pos_innov[4] = _state.pos(1) - _gps_sample_delayed.pos(1); |
|
|
|
// set innovation gate size |
|
_posInnovGateNE = fmaxf(_params.posNE_innov_gate, 1.0f); |
|
_hvelInnovGate = fmaxf(_params.vel_innov_gate, 1.0f); |
|
} |
|
|
|
} else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)10e6)) { |
|
_control_status.flags.gps = false; |
|
ECL_WARN("EKF GPS data stopped"); |
|
} |
|
} |
|
|
|
void Ekf::controlHeightSensorTimeouts() |
|
{ |
|
/* |
|
* Handle the case where we have not fused height measurements recently and |
|
* uncertainty exceeds the max allowable. Reset using the best available height |
|
* measurement source, continue using it after the reset and declare the current |
|
* source failed if we have switched. |
|
*/ |
|
|
|
// Check for IMU accelerometer vibration induced clipping as evidenced by the vertical innovations being positive and not stale. |
|
// Clipping causes the average accel reading to move towards zero which makes the INS think it is falling and produces positive vertical innovations |
|
float var_product_lim = sq(_params.vert_innov_test_lim) * sq(_params.vert_innov_test_lim); |
|
bool bad_vert_accel = (_control_status.flags.baro_hgt && // we can only run this check if vertical position and velocity observations are indepedant |
|
(sq(_vel_pos_innov[5] * _vel_pos_innov[2]) > var_product_lim * (_vel_pos_innov_var[5] * _vel_pos_innov_var[2])) && // vertical position and velocity sensors are in agreement that we have a significant error |
|
(_vel_pos_innov[2] > 0.0f) && // positive innovation indicates that the inertial nav thinks it is falling |
|
((_imu_sample_delayed.time_us - _baro_sample_delayed.time_us) < 2 * BARO_MAX_INTERVAL) && // vertical position data is fresh |
|
((_imu_sample_delayed.time_us - _gps_sample_delayed.time_us) < 2 * GPS_MAX_INTERVAL)); // vertical velocity data is fresh |
|
|
|
// record time of last bad vert accel |
|
if (bad_vert_accel) { |
|
_time_bad_vert_accel = _time_last_imu; |
|
|
|
} else { |
|
_time_good_vert_accel = _time_last_imu; |
|
} |
|
|
|
// declare a bad vertical acceleration measurement and make the declaration persist |
|
// for a minimum of 10 seconds |
|
if (_bad_vert_accel_detected) { |
|
_bad_vert_accel_detected = (_time_last_imu - _time_bad_vert_accel < BADACC_PROBATION); |
|
|
|
} else { |
|
_bad_vert_accel_detected = bad_vert_accel; |
|
} |
|
|
|
// check if height is continuously failing becasue of accel errors |
|
bool continuous_bad_accel_hgt = ((_time_last_imu - _time_good_vert_accel) > (unsigned)_params.bad_acc_reset_delay_us); |
|
|
|
// check if height has been inertial deadreckoning for too long |
|
bool hgt_fusion_timeout = ((_time_last_imu - _time_last_hgt_fuse) > (uint64_t)5e6); |
|
|
|
// reset the vertical position and velocity states |
|
if (hgt_fusion_timeout || continuous_bad_accel_hgt) { |
|
// boolean that indicates we will do a height reset |
|
bool reset_height = false; |
|
|
|
// handle the case where we are using baro for height |
|
if (_control_status.flags.baro_hgt) { |
|
// check if GPS height is available |
|
const gpsSample &gps_init = _gps_buffer.get_newest(); |
|
bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); |
|
bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc); |
|
|
|
const baroSample &baro_init = _baro_buffer.get_newest(); |
|
bool baro_hgt_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); |
|
|
|
// check for inertial sensing errors in the last 10 seconds |
|
bool prev_bad_vert_accel = (_time_last_imu - _time_bad_vert_accel < BADACC_PROBATION); |
|
|
|
// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data |
|
bool reset_to_gps = gps_hgt_available && gps_hgt_accurate && !_gps_hgt_faulty && !prev_bad_vert_accel; |
|
|
|
// reset to GPS if GPS data is available and there is no Baro data |
|
reset_to_gps = reset_to_gps || (gps_hgt_available && !baro_hgt_available); |
|
|
|
// reset to Baro if we are not doing a GPS reset and baro data is available |
|
bool reset_to_baro = !reset_to_gps && baro_hgt_available; |
|
|
|
if (reset_to_gps) { |
|
// set height sensor health |
|
_baro_hgt_faulty = true; |
|
|
|
// declare the GPS height healthy |
|
_gps_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlGPSHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF baro hgt timeout - reset to GPS"); |
|
|
|
} else if (reset_to_baro) { |
|
// set height sensor health |
|
_baro_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlBaroHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF baro hgt timeout - reset to baro"); |
|
|
|
} else { |
|
// we have nothing we can reset to |
|
// deny a reset |
|
reset_height = false; |
|
|
|
} |
|
} |
|
|
|
// handle the case we are using GPS for height |
|
if (_control_status.flags.gps_hgt) { |
|
// check if GPS height is available |
|
const gpsSample &gps_init = _gps_buffer.get_newest(); |
|
bool gps_hgt_available = ((_time_last_imu - gps_init.time_us) < 2 * GPS_MAX_INTERVAL); |
|
bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc); |
|
|
|
// check the baro height source for consistency and freshness |
|
const baroSample &baro_init = _baro_buffer.get_newest(); |
|
bool baro_data_fresh = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); |
|
float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset); |
|
bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P[9][9]) * sq(_params.baro_innov_gate); |
|
|
|
// if baro data is acceptable and GPS data is inaccurate, reset height to baro |
|
bool reset_to_baro = baro_data_consistent && baro_data_fresh && !_baro_hgt_faulty && !gps_hgt_accurate; |
|
|
|
// if GPS height is unavailable and baro data is available, reset height to baro |
|
reset_to_baro = reset_to_baro || (!gps_hgt_available && baro_data_fresh); |
|
|
|
// if we cannot switch to baro and GPS data is available, reset height to GPS |
|
bool reset_to_gps = !reset_to_baro && gps_hgt_available; |
|
|
|
if (reset_to_baro) { |
|
// set height sensor health |
|
_gps_hgt_faulty = true; |
|
_baro_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlBaroHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF gps hgt timeout - reset to baro"); |
|
|
|
} else if (reset_to_gps) { |
|
// set height sensor health |
|
_gps_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlGPSHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF gps hgt timeout - reset to GPS"); |
|
|
|
} else { |
|
// we have nothing to reset to |
|
reset_height = false; |
|
|
|
} |
|
} |
|
|
|
// handle the case we are using range finder for height |
|
if (_control_status.flags.rng_hgt) { |
|
// check if range finder data is available |
|
const rangeSample &rng_init = _range_buffer.get_newest(); |
|
bool rng_data_available = ((_time_last_imu - rng_init.time_us) < 2 * RNG_MAX_INTERVAL); |
|
|
|
// check if baro data is available |
|
const baroSample &baro_init = _baro_buffer.get_newest(); |
|
bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); |
|
|
|
// reset to baro if we have no range data and baro data is available |
|
bool reset_to_baro = !rng_data_available && baro_data_available; |
|
|
|
// reset to range data if it is available |
|
bool reset_to_rng = rng_data_available; |
|
|
|
if (reset_to_baro) { |
|
// set height sensor health |
|
_rng_hgt_faulty = true; |
|
_baro_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlBaroHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF rng hgt timeout - reset to baro"); |
|
|
|
} else if (reset_to_rng) { |
|
// set height sensor health |
|
_rng_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlRangeHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF rng hgt timeout - reset to rng hgt"); |
|
|
|
} else { |
|
// we have nothing to reset to |
|
reset_height = false; |
|
|
|
} |
|
} |
|
|
|
// handle the case where we are using external vision data for height |
|
if (_control_status.flags.ev_hgt) { |
|
// check if vision data is available |
|
const extVisionSample &ev_init = _ext_vision_buffer.get_newest(); |
|
bool ev_data_available = ((_time_last_imu - ev_init.time_us) < 2 * EV_MAX_INTERVAL); |
|
|
|
// check if baro data is available |
|
const baroSample &baro_init = _baro_buffer.get_newest(); |
|
bool baro_data_available = ((_time_last_imu - baro_init.time_us) < 2 * BARO_MAX_INTERVAL); |
|
|
|
// reset to baro if we have no vision data and baro data is available |
|
bool reset_to_baro = !ev_data_available && baro_data_available; |
|
|
|
// reset to ev data if it is available |
|
bool reset_to_ev = ev_data_available; |
|
|
|
if (reset_to_baro) { |
|
// set height sensor health |
|
_baro_hgt_faulty = false; |
|
|
|
// reset the height mode |
|
setControlBaroHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF ev hgt timeout - reset to baro"); |
|
|
|
} else if (reset_to_ev) { |
|
// reset the height mode |
|
setControlEVHeight(); |
|
|
|
// request a reset |
|
reset_height = true; |
|
ECL_WARN("EKF ev hgt timeout - reset to ev hgt"); |
|
|
|
} else { |
|
// we have nothing to reset to |
|
reset_height = false; |
|
|
|
} |
|
} |
|
|
|
// Reset vertical position and velocity states to the last measurement |
|
if (reset_height) { |
|
resetHeight(); |
|
// Reset the timout timer |
|
_time_last_hgt_fuse = _time_last_imu; |
|
|
|
} |
|
|
|
} |
|
} |
|
|
|
void Ekf::controlHeightFusion() |
|
{ |
|
// set control flags for the desired primary height source |
|
|
|
if (_range_data_ready) { |
|
// correct the range data for position offset relative to the IMU |
|
Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body; |
|
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body; |
|
_range_sample_delayed.rng += pos_offset_earth(2) / _R_rng_to_earth_2_2; |
|
} |
|
|
|
rangeAidConditionsMet(); |
|
|
|
_range_aid_mode_selected = (_params.range_aid == 1) && _range_aid_mode_enabled; |
|
|
|
if (_params.vdist_sensor_type == VDIST_SENSOR_BARO) { |
|
|
|
if (_range_aid_mode_selected && _range_data_ready && !_rng_hgt_faulty) { |
|
setControlRangeHeight(); |
|
_fuse_height = true; |
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current |
|
// measurment matches our current height estimate |
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) { |
|
if (get_terrain_valid()) { |
|
_hgt_sensor_offset = _terrain_vpos; |
|
|
|
} else { |
|
_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2); |
|
} |
|
} |
|
|
|
} else if (!_range_aid_mode_selected && _baro_data_ready && !_baro_hgt_faulty) { |
|
setControlBaroHeight(); |
|
_fuse_height = true; |
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset |
|
// since we track a separate _baro_hgt_offset |
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) { |
|
_hgt_sensor_offset = 0.0f; |
|
} |
|
|
|
// Turn off ground effect compensation if it times out or sufficient height has been gained |
|
// since takeoff. |
|
if (_control_status.flags.gnd_effect) { |
|
if ((_time_last_imu - _time_last_gnd_effect_on > GNDEFFECT_TIMEOUT) || |
|
(((_last_on_ground_posD - _state.pos(2)) > _params.gnd_effect_max_hgt) && |
|
_control_status.flags.in_air)) { |
|
|
|
_control_status.flags.gnd_effect = false; |
|
} |
|
} |
|
|
|
} else if (_control_status.flags.gps_hgt && _gps_data_ready && !_gps_hgt_faulty) { |
|
// switch to gps if there was a reset to gps |
|
_fuse_height = true; |
|
|
|
// we have just switched to using gps height, calculate height sensor offset such that current |
|
// measurment matches our current height estimate |
|
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) { |
|
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2); |
|
} |
|
} |
|
} |
|
|
|
// set the height data source to range if requested |
|
if ((_params.vdist_sensor_type == VDIST_SENSOR_RANGE) && !_rng_hgt_faulty) { |
|
setControlRangeHeight(); |
|
_fuse_height = _range_data_ready; |
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current |
|
// measurment matches our current height estimate |
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) { |
|
// use the parameter rng_gnd_clearance if on ground to avoid a noisy offset initialization (e.g. sonar) |
|
if (_control_status.flags.in_air && get_terrain_valid()) { |
|
|
|
_hgt_sensor_offset = _terrain_vpos; |
|
|
|
} else if (_control_status.flags.in_air) { |
|
|
|
_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2); |
|
|
|
} else { |
|
|
|
_hgt_sensor_offset = _params.rng_gnd_clearance; |
|
} |
|
} |
|
|
|
} else if ((_params.vdist_sensor_type == VDIST_SENSOR_RANGE) && _baro_data_ready && !_baro_hgt_faulty) { |
|
setControlBaroHeight(); |
|
_fuse_height = true; |
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset |
|
// since we track a separate _baro_hgt_offset |
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) { |
|
_hgt_sensor_offset = 0.0f; |
|
} |
|
} |
|
|
|
// Determine if GPS should be used as the height source |
|
if (_params.vdist_sensor_type == VDIST_SENSOR_GPS) { |
|
|
|
if (_range_aid_mode_selected && _range_data_ready && !_rng_hgt_faulty) { |
|
setControlRangeHeight(); |
|
_fuse_height = true; |
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current |
|
// measurment matches our current height estimate |
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) { |
|
if (get_terrain_valid()) { |
|
_hgt_sensor_offset = _terrain_vpos; |
|
|
|
} else { |
|
_hgt_sensor_offset = _R_rng_to_earth_2_2 * _range_sample_delayed.rng + _state.pos(2); |
|
} |
|
} |
|
|
|
} else if (!_range_aid_mode_selected && _gps_data_ready && !_gps_hgt_faulty) { |
|
setControlGPSHeight(); |
|
_fuse_height = true; |
|
|
|
// we have just switched to using gps height, calculate height sensor offset such that current |
|
// measurment matches our current height estimate |
|
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) { |
|
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2); |
|
} |
|
|
|
} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) { |
|
// switch to baro if there was a reset to baro |
|
_fuse_height = true; |
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset |
|
// since we track a separate _baro_hgt_offset |
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) { |
|
_hgt_sensor_offset = 0.0f; |
|
} |
|
} |
|
} |
|
|
|
// Determine if we rely on EV height but switched to baro |
|
if (_params.vdist_sensor_type == VDIST_SENSOR_EV) { |
|
if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) { |
|
// switch to baro if there was a reset to baro |
|
_fuse_height = true; |
|
|
|
// we have just switched to using baro height, we don't need to set a height sensor offset |
|
// since we track a separate _baro_hgt_offset |
|
if (_control_status_prev.flags.baro_hgt != _control_status.flags.baro_hgt) { |
|
_hgt_sensor_offset = 0.0f; |
|
} |
|
} |
|
} |
|
|
|
// calculate a filtered offset between the baro origin and local NED origin if we are not using the baro as a height reference |
|
if (!_control_status.flags.baro_hgt && _baro_data_ready) { |
|
float local_time_step = 1e-6f * _delta_time_baro_us; |
|
local_time_step = math::constrain(local_time_step, 0.0f, 1.0f); |
|
|
|
// apply a 10 second first order low pass filter to baro offset |
|
float offset_rate_correction = 0.1f * (_baro_sample_delayed.hgt + _state.pos( |
|
2) - _baro_hgt_offset); |
|
_baro_hgt_offset += local_time_step * math::constrain(offset_rate_correction, -0.1f, 0.1f); |
|
} |
|
|
|
if ((_time_last_imu - _time_last_hgt_fuse) > 2 * RNG_MAX_INTERVAL && _control_status.flags.rng_hgt |
|
&& !_range_data_ready) { |
|
|
|
// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements |
|
// and are on the ground, then synthesise a measurement at the expected on ground value |
|
if (!_control_status.flags.in_air) { |
|
_range_sample_delayed.rng = _params.rng_gnd_clearance; |
|
_range_sample_delayed.time_us = _imu_sample_delayed.time_us; |
|
|
|
} |
|
|
|
_fuse_height = true; |
|
} |
|
|
|
|
|
} |
|
|
|
void Ekf::rangeAidConditionsMet() |
|
{ |
|
// if the parameter for range aid is enabled we allow to switch from using the primary height source to using range finder as height source |
|
// under the following conditions |
|
// 1) we are not further than max_hagl_for_range_aid away from the ground |
|
// 2) our ground speed is not higher than max_vel_for_range_aid |
|
// 3) Our terrain estimate is stable (needs better checks) |
|
// 4) We are in-air |
|
if (_control_status.flags.in_air) { |
|
// check if we can use range finder measurements to estimate height, use hysteresis to avoid rapid switching |
|
bool can_use_range_finder; |
|
if (_range_aid_mode_enabled) { |
|
can_use_range_finder = (_terrain_vpos - _state.pos(2) < _params.max_hagl_for_range_aid) && get_terrain_valid(); |
|
|
|
} else { |
|
// if we were not using range aid in the previous iteration then require the current height above terrain to be |
|
// smaller than 70 % of the maximum allowed ground distance for range aid |
|
can_use_range_finder = (_terrain_vpos - _state.pos(2) < 0.7f * _params.max_hagl_for_range_aid) && get_terrain_valid(); |
|
} |
|
|
|
bool horz_vel_valid = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) |
|
&& (_fault_status.value == 0); |
|
|
|
if (horz_vel_valid) { |
|
float ground_vel = sqrtf(_state.vel(0) * _state.vel(0) + _state.vel(1) * _state.vel(1)); |
|
|
|
if (_range_aid_mode_enabled) { |
|
can_use_range_finder &= ground_vel < _params.max_vel_for_range_aid; |
|
|
|
} else { |
|
// if we were not using range aid in the previous iteration then require the ground velocity to be |
|
// smaller than 70 % of the maximum allowed ground velocity for range aid |
|
can_use_range_finder &= ground_vel < 0.7f * _params.max_vel_for_range_aid; |
|
} |
|
|
|
} else { |
|
can_use_range_finder = false; |
|
} |
|
|
|
// use hysteresis to check for hagl |
|
if (_range_aid_mode_enabled) { |
|
can_use_range_finder &= ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 1.0f); |
|
|
|
} else { |
|
// if we were not using range aid in the previous iteration then use a much lower (1/100) threshold to avoid |
|
// switching to range finder too soon (wait for terrain to update). |
|
can_use_range_finder &= ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 0.01f); |
|
} |
|
|
|
_range_aid_mode_enabled = can_use_range_finder; |
|
|
|
} else { |
|
_range_aid_mode_enabled = false; |
|
} |
|
} |
|
|
|
void Ekf::checkForStuckRange() |
|
{ |
|
if (_range_data_ready && _range_sample_delayed.time_us - _time_last_rng_ready > (uint64_t)10e6 && |
|
_control_status.flags.in_air) { |
|
|
|
_control_status.flags.rng_stuck = true; |
|
|
|
//require a variance of rangefinder values to check for "stuck" measurements |
|
if (_rng_check_max_val - _rng_check_min_val > 1.0f) { |
|
_time_last_rng_ready = _range_sample_delayed.time_us; |
|
_rng_check_min_val = 0.0f; |
|
_rng_check_max_val = 0.0f; |
|
_control_status.flags.rng_stuck = false; |
|
|
|
} else { |
|
if (_range_sample_delayed.rng > _rng_check_max_val) { |
|
_rng_check_max_val = _range_sample_delayed.rng; |
|
} |
|
|
|
if (_rng_check_min_val < 0.1f || _range_sample_delayed.rng < _rng_check_min_val) { |
|
_rng_check_min_val = _range_sample_delayed.rng; |
|
} |
|
|
|
_range_data_ready = false; |
|
} |
|
|
|
} else if (_range_data_ready) { |
|
_time_last_rng_ready = _range_sample_delayed.time_us; |
|
} |
|
} |
|
|
|
void Ekf::controlAirDataFusion() |
|
{ |
|
// control activation and initialisation/reset of wind states required for airspeed fusion |
|
|
|
// If both airspeed and sideslip fusion have timed out and we are not using a drag observation model then we no longer have valid wind estimates |
|
bool airspeed_timed_out = _time_last_imu - _time_last_arsp_fuse > (uint64_t)10e6; |
|
bool sideslip_timed_out = _time_last_imu - _time_last_beta_fuse > (uint64_t)10e6; |
|
|
|
if (_control_status.flags.wind && airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)) { |
|
_control_status.flags.wind = false; |
|
|
|
} |
|
|
|
if (_control_status.flags.fuse_aspd && airspeed_timed_out) { |
|
_control_status.flags.fuse_aspd = false; |
|
|
|
} |
|
|
|
// Always try to fuse airspeed data if available and we are in flight |
|
if (_tas_data_ready && _control_status.flags.in_air) { |
|
// always fuse airsped data if we are flying and data is present |
|
if (!_control_status.flags.fuse_aspd) { |
|
_control_status.flags.fuse_aspd = true; |
|
} |
|
|
|
// If starting wind state estimation, reset the wind states and covariances before fusing any data |
|
if (!_control_status.flags.wind) { |
|
// activate the wind states |
|
_control_status.flags.wind = true; |
|
// reset the timout timer to prevent repeated resets |
|
_time_last_arsp_fuse = _time_last_imu; |
|
_time_last_beta_fuse = _time_last_imu; |
|
// reset the wind speed states and corresponding covariances |
|
resetWindStates(); |
|
resetWindCovariance(); |
|
|
|
} |
|
|
|
fuseAirspeed(); |
|
|
|
} |
|
} |
|
|
|
void Ekf::controlBetaFusion() |
|
{ |
|
// control activation and initialisation/reset of wind states required for synthetic sideslip fusion fusion |
|
|
|
// If both airspeed and sideslip fusion have timed out and we are not using a drag observation model then we no longer have valid wind estimates |
|
bool sideslip_timed_out = _time_last_imu - _time_last_beta_fuse > (uint64_t)10e6; |
|
bool airspeed_timed_out = _time_last_imu - _time_last_arsp_fuse > (uint64_t)10e6; |
|
|
|
if (_control_status.flags.wind && airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)) { |
|
_control_status.flags.wind = false; |
|
} |
|
|
|
// Perform synthetic sideslip fusion when in-air and sideslip fuson had been enabled externally in addition to the following criteria: |
|
|
|
// Suffient time has lapsed sice the last fusion |
|
bool beta_fusion_time_triggered = _time_last_imu - _time_last_beta_fuse > _params.beta_avg_ft_us; |
|
|
|
if (beta_fusion_time_triggered && _control_status.flags.fuse_beta && _control_status.flags.in_air) { |
|
// If starting wind state estimation, reset the wind states and covariances before fusing any data |
|
if (!_control_status.flags.wind) { |
|
// activate the wind states |
|
_control_status.flags.wind = true; |
|
// reset the timeout timers to prevent repeated resets |
|
_time_last_beta_fuse = _time_last_imu; |
|
_time_last_arsp_fuse = _time_last_imu; |
|
// reset the wind speed states and corresponding covariances |
|
resetWindStates(); |
|
resetWindCovariance(); |
|
} |
|
|
|
fuseSideslip(); |
|
} |
|
} |
|
|
|
void Ekf::controlDragFusion() |
|
{ |
|
if (_params.fusion_mode & MASK_USE_DRAG) { |
|
if (_control_status.flags.in_air |
|
&& !_mag_inhibit_yaw_reset_req) { |
|
if (!_control_status.flags.wind) { |
|
// reset the wind states and covariances when starting drag accel fusion |
|
_control_status.flags.wind = true; |
|
resetWindStates(); |
|
resetWindCovariance(); |
|
|
|
} else if (_drag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_drag_sample_delayed)) { |
|
fuseDrag(); |
|
|
|
} |
|
|
|
} else { |
|
_control_status.flags.wind = false; |
|
|
|
} |
|
} |
|
} |
|
|
|
void Ekf::controlMagFusion() |
|
{ |
|
// If we are on ground, store the local position and time to use as a reference |
|
// Also reset the flight alignment flag so that the mag fields will be re-initialised next time we achieve flight altitude |
|
if (!_control_status.flags.in_air) { |
|
_last_on_ground_posD = _state.pos(2); |
|
_flt_mag_align_complete = false; |
|
_num_bad_flight_yaw_events = 0; |
|
} |
|
|
|
// check for new magnetometer data that has fallen behind the fusion time horizon |
|
// If we are using external vision data for heading then no magnetometer fusion is used |
|
if (!_control_status.flags.ev_yaw && _mag_data_ready) { |
|
|
|
// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances |
|
// or the more accurate 3-axis fusion |
|
if (_control_status.flags.mag_fault) { |
|
// do no magnetometer fusion at all |
|
_control_status.flags.mag_hdg = false; |
|
_control_status.flags.mag_3D = false; |
|
|
|
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTO || _params.mag_fusion_type == MAG_FUSE_TYPE_AUTOFW) { |
|
// Check if height has increased sufficiently to be away from ground magnetic anomalies |
|
bool height_achieved = (_last_on_ground_posD - _state.pos(2)) > 1.5f; |
|
|
|
// Check if there has been enough change in horizontal velocity to make yaw observable |
|
// Apply hysteresis to check to avoid rapid toggling |
|
if (_yaw_angle_observable) { |
|
_yaw_angle_observable = _accel_lpf_NE.norm() > _params.mag_acc_gate; |
|
|
|
} else { |
|
_yaw_angle_observable = _accel_lpf_NE.norm() > 2.0f * _params.mag_acc_gate; |
|
} |
|
|
|
_yaw_angle_observable = _yaw_angle_observable && (_control_status.flags.gps || _control_status.flags.ev_pos); |
|
|
|
// check if there is enough yaw rotation to make the mag bias states observable |
|
if (!_mag_bias_observable && (fabsf(_yaw_rate_lpf_ef) > _params.mag_yaw_rate_gate)) { |
|
// initial yaw motion is detected |
|
_mag_bias_observable = true; |
|
_yaw_delta_ef = 0.0f; |
|
_time_yaw_started = _imu_sample_delayed.time_us; |
|
|
|
} else if (_mag_bias_observable) { |
|
// monitor yaw rotation in 45 deg sections. |
|
// a rotation of 45 deg is sufficient to make the mag bias observable |
|
if (fabsf(_yaw_delta_ef) > 0.7854f) { |
|
_time_yaw_started = _imu_sample_delayed.time_us; |
|
_yaw_delta_ef = 0.0f; |
|
} |
|
|
|
// require sustained yaw motion of 50% the initial yaw rate threshold |
|
float min_yaw_change_req = 0.5f * _params.mag_yaw_rate_gate * (1e-6f * (float)(_imu_sample_delayed.time_us - _time_yaw_started)); |
|
_mag_bias_observable = fabsf(_yaw_delta_ef) > min_yaw_change_req; |
|
|
|
} else { |
|
_mag_bias_observable = false; |
|
} |
|
|
|
// record the last time that movement was suitable for use of 3-axis magnetometer fusion |
|
if (_mag_bias_observable || _yaw_angle_observable) { |
|
_time_last_movement = _imu_sample_delayed.time_us; |
|
} |
|
|
|
// decide whether 3-axis magnetomer fusion can be used |
|
bool use_3D_fusion = _control_status.flags.tilt_align && // Use of 3D fusion requires valid tilt estimates |
|
_control_status.flags.in_air && // don't use when on the ground becasue of magnetic anomalies |
|
(_flt_mag_align_complete || height_achieved) && // once in-flight field alignment has been performed, ignore relative height |
|
((_imu_sample_delayed.time_us - _time_last_movement) < 2 * 1000 * 1000); // Using 3-axis fusion for a minimum period after to allow for false negatives |
|
|
|
// perform switch-over |
|
if (use_3D_fusion) { |
|
if (!_control_status.flags.mag_3D) { |
|
if (!_flt_mag_align_complete) { |
|
// If we are flying a vehicle that flies forward, eg plane, then we can use the GPS course to check and correct the heading |
|
if (_control_status.flags.fixed_wing && _control_status.flags.in_air) { |
|
_flt_mag_align_complete = realignYawGPS(); |
|
|
|
if (_velpos_reset_request) { |
|
resetVelocity(); |
|
resetPosition(); |
|
_velpos_reset_request = false; |
|
} |
|
|
|
} else { |
|
_flt_mag_align_complete = resetMagHeading(_mag_sample_delayed.mag); |
|
} |
|
|
|
_control_status.flags.yaw_align = _control_status.flags.yaw_align || _flt_mag_align_complete; |
|
|
|
} else { |
|
// reset the mag field covariances |
|
zeroRows(P, 16, 21); |
|
zeroCols(P, 16, 21); |
|
|
|
// re-instate the last used variances |
|
for (uint8_t index = 0; index <= 5; index ++) { |
|
P[index + 16][index + 16] = _saved_mag_variance[index]; |
|
} |
|
} |
|
} |
|
|
|
// only use one type of mag fusion at the same time |
|
_control_status.flags.mag_3D = _flt_mag_align_complete; |
|
_control_status.flags.mag_hdg = !_control_status.flags.mag_3D; |
|
|
|
} else { |
|
// save magnetic field state variances for next time |
|
if (_control_status.flags.mag_3D) { |
|
for (uint8_t index = 0; index <= 5; index ++) { |
|
_saved_mag_variance[index] = P[index + 16][index + 16]; |
|
} |
|
|
|
_control_status.flags.mag_3D = false; |
|
} |
|
|
|
_control_status.flags.mag_hdg = true; |
|
} |
|
|
|
/* |
|
Control switch-over between only updating the mag states to updating all states |
|
When flying as a fixed wing aircraft, a misaligned magnetometer can cause an error in pitch/roll and accel bias estimates. |
|
When MAG_FUSE_TYPE_AUTOFW is selected and the vehicle is flying as a fixed wing, then magnetometer fusion is only allowed |
|
to access the magnetic field states. |
|
*/ |
|
_control_status.flags.update_mag_states_only = (_params.mag_fusion_type == MAG_FUSE_TYPE_AUTOFW) |
|
&& _control_status.flags.fixed_wing; |
|
|
|
// For the first 5 seconds after switching to 3-axis fusion we allow the magnetic field state estimates to stabilise |
|
// before they are used to constrain heading drift |
|
_flt_mag_align_converging = ((_imu_sample_delayed.time_us - _flt_mag_align_start_time) < (uint64_t)5e6); |
|
|
|
if (!_control_status.flags.update_mag_states_only && _control_status_prev.flags.update_mag_states_only) { |
|
// When re-commencing use of magnetometer to correct vehicle states |
|
// set the field state variance to the observation variance and zero |
|
// the covariance terms to allow the field states re-learn rapidly |
|
zeroRows(P, 16, 21); |
|
zeroCols(P, 16, 21); |
|
|
|
for (uint8_t index = 0; index <= 5; index ++) { |
|
P[index + 16][index + 16] = sq(_params.mag_noise); |
|
} |
|
} |
|
|
|
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_HEADING) { |
|
// always use heading fusion |
|
_control_status.flags.mag_hdg = true; |
|
_control_status.flags.mag_3D = false; |
|
|
|
} else if (_params.mag_fusion_type == MAG_FUSE_TYPE_3D) { |
|
// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states |
|
if (!_control_status.flags.mag_3D) { |
|
_control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag) || _control_status.flags.yaw_align; |
|
} |
|
|
|
// always use 3-axis mag fusion |
|
_control_status.flags.mag_hdg = false; |
|
_control_status.flags.mag_3D = true; |
|
|
|
} else { |
|
// do no magnetometer fusion at all |
|
_control_status.flags.mag_hdg = false; |
|
_control_status.flags.mag_3D = false; |
|
} |
|
|
|
// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift |
|
// fusing declination when gps aiding is available is optional, but recommended to prevent problem if the vehicle is static for extended periods of time |
|
if (_control_status.flags.mag_3D && (!_control_status.flags.gps || (_params.mag_declination_source & MASK_FUSE_DECL))) { |
|
_control_status.flags.mag_dec = true; |
|
|
|
} else { |
|
_control_status.flags.mag_dec = false; |
|
} |
|
|
|
// If the user has selected auto protection against indoor magnetic field errors, only use the magnetomer |
|
// if a yaw angle relative to true North is required for navigation. If no GPS or other earth frame aiding |
|
// is available, assume that we are operating indoors and the magnetometer should not be used. |
|
bool user_selected = (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR); |
|
bool not_using_gps = !(_params.fusion_mode & MASK_USE_GPS) || !_control_status.flags.gps; |
|
bool not_using_evpos = !(_params.fusion_mode & MASK_USE_EVPOS) || !_control_status.flags.ev_pos; |
|
bool not_selected_evyaw = !(_params.fusion_mode & MASK_USE_EVYAW); |
|
if (user_selected && not_using_gps && not_using_evpos && not_selected_evyaw) { |
|
_mag_use_inhibit = true; |
|
} else { |
|
_mag_use_inhibit = false; |
|
_mag_use_not_inhibit_us = _imu_sample_delayed.time_us; |
|
} |
|
|
|
// If magnetomer use has been inhibited continuously then a yaw reset is required for a valid heading |
|
if (uint32_t(_imu_sample_delayed.time_us - _mag_use_not_inhibit_us) > (uint32_t)5e6) { |
|
_mag_inhibit_yaw_reset_req = true; |
|
} |
|
|
|
// fuse magnetometer data using the selected methods |
|
if (_control_status.flags.mag_3D && _control_status.flags.yaw_align) { |
|
fuseMag(); |
|
|
|
if (_control_status.flags.mag_dec) { |
|
fuseDeclination(); |
|
} |
|
|
|
} else if (_control_status.flags.mag_hdg && _control_status.flags.yaw_align) { |
|
// fusion of an Euler yaw angle from either a 321 or 312 rotation sequence |
|
fuseHeading(); |
|
|
|
} else { |
|
// do no fusion at all |
|
} |
|
} |
|
} |
|
|
|
void Ekf::controlVelPosFusion() |
|
{ |
|
// if we aren't doing any aiding, fake GPS measurements at the last known position to constrain drift |
|
// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz |
|
if (!(_params.fusion_mode & MASK_USE_GPS)) { |
|
_control_status.flags.gps = false; |
|
} |
|
|
|
if (!_control_status.flags.gps && |
|
!_control_status.flags.opt_flow && |
|
!_control_status.flags.ev_pos && |
|
!(_control_status.flags.fuse_aspd && _control_status.flags.fuse_beta)) { |
|
|
|
// We now need to use a synthetic positon observation to prevent unconstrained drift of the INS states. |
|
_using_synthetic_position = true; |
|
|
|
// Fuse synthetic position observations every 200msec |
|
if ((_time_last_imu - _time_last_fake_gps > (uint64_t)2e5) || _fuse_height) { |
|
// Reset position and velocity states if we re-commence this aiding method |
|
if ((_time_last_imu - _time_last_fake_gps) > (uint64_t)4e5) { |
|
resetPosition(); |
|
resetVelocity(); |
|
_fuse_hpos_as_odom = false; |
|
|
|
if (_time_last_fake_gps != 0) { |
|
ECL_WARN("EKF stopping navigation"); |
|
} |
|
|
|
} |
|
|
|
_fuse_pos = true; |
|
_fuse_hor_vel = false; |
|
_fuse_vert_vel = false; |
|
_time_last_fake_gps = _time_last_imu; |
|
|
|
if (_control_status.flags.in_air && _control_status.flags.tilt_align) { |
|
_posObsNoiseNE = fmaxf(_params.pos_noaid_noise, _params.gps_pos_noise); |
|
|
|
} else { |
|
_posObsNoiseNE = 0.5f; |
|
} |
|
|
|
_vel_pos_innov[0] = 0.0f; |
|
_vel_pos_innov[1] = 0.0f; |
|
_vel_pos_innov[2] = 0.0f; |
|
_vel_pos_innov[3] = _state.pos(0) - _last_known_posNE(0); |
|
_vel_pos_innov[4] = _state.pos(1) - _last_known_posNE(1); |
|
|
|
// glitch protection is not required so set gate to a large value |
|
_posInnovGateNE = 100.0f; |
|
|
|
} |
|
|
|
} else { |
|
_using_synthetic_position = false; |
|
} |
|
|
|
// Fuse available NED velocity and position data into the main filter |
|
if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) { |
|
fuseVelPosHeight(); |
|
|
|
} |
|
} |
|
|
|
void Ekf::controlAuxVelFusion() |
|
{ |
|
bool data_ready = _auxvel_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_auxvel_sample_delayed); |
|
bool primary_aiding = _control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow; |
|
|
|
if (data_ready && primary_aiding) { |
|
_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false; |
|
_fuse_hor_vel_aux = true; |
|
_aux_vel_innov[0] = _state.vel(0) - _auxvel_sample_delayed.velNE(0); |
|
_aux_vel_innov[1] = _state.vel(1) - _auxvel_sample_delayed.velNE(1); |
|
_velObsVarNE = _auxvel_sample_delayed.velVarNE; |
|
_hvelInnovGate = _params.auxvel_gate; |
|
fuseVelPosHeight(); |
|
} |
|
}
|
|
|