You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1180 lines
27 KiB
1180 lines
27 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ms5611.cpp |
|
* Driver for the MS5611 barometric pressure sensor connected via I2C. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <drivers/device/i2c.h> |
|
|
|
#include <sys/types.h> |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <stdlib.h> |
|
#include <semaphore.h> |
|
#include <string.h> |
|
#include <fcntl.h> |
|
#include <poll.h> |
|
#include <errno.h> |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <unistd.h> |
|
|
|
#include <nuttx/arch.h> |
|
#include <nuttx/wqueue.h> |
|
#include <nuttx/clock.h> |
|
|
|
#include <drivers/drv_hrt.h> |
|
|
|
#include <systemlib/perf_counter.h> |
|
#include <systemlib/err.h> |
|
|
|
#include <drivers/drv_baro.h> |
|
|
|
/* oddly, ERROR is not defined for c++ */ |
|
#ifdef ERROR |
|
# undef ERROR |
|
#endif |
|
static const int ERROR = -1; |
|
|
|
#ifndef CONFIG_SCHED_WORKQUEUE |
|
# error This requires CONFIG_SCHED_WORKQUEUE. |
|
#endif |
|
|
|
/** |
|
* Calibration PROM as reported by the device. |
|
*/ |
|
#pragma pack(push,1) |
|
struct ms5611_prom_s { |
|
uint16_t factory_setup; |
|
uint16_t c1_pressure_sens; |
|
uint16_t c2_pressure_offset; |
|
uint16_t c3_temp_coeff_pres_sens; |
|
uint16_t c4_temp_coeff_pres_offset; |
|
uint16_t c5_reference_temp; |
|
uint16_t c6_temp_coeff_temp; |
|
uint16_t serial_and_crc; |
|
}; |
|
|
|
/** |
|
* Grody hack for crc4() |
|
*/ |
|
union ms5611_prom_u { |
|
uint16_t c[8]; |
|
struct ms5611_prom_s s; |
|
}; |
|
#pragma pack(pop) |
|
|
|
class MS5611 : public device::I2C |
|
{ |
|
public: |
|
MS5611(int bus); |
|
~MS5611(); |
|
|
|
virtual int init(); |
|
|
|
virtual ssize_t read(struct file *filp, char *buffer, size_t buflen); |
|
virtual int ioctl(struct file *filp, int cmd, unsigned long arg); |
|
|
|
/** |
|
* Diagnostics - print some basic information about the driver. |
|
*/ |
|
void print_info(); |
|
|
|
protected: |
|
virtual int probe(); |
|
|
|
private: |
|
union ms5611_prom_u _prom; |
|
|
|
struct work_s _work; |
|
unsigned _measure_ticks; |
|
|
|
unsigned _num_reports; |
|
volatile unsigned _next_report; |
|
volatile unsigned _oldest_report; |
|
struct baro_report *_reports; |
|
|
|
bool _collect_phase; |
|
unsigned _measure_phase; |
|
|
|
/* intermediate temperature values per MS5611 datasheet */ |
|
int32_t _TEMP; |
|
int64_t _OFF; |
|
int64_t _SENS; |
|
|
|
/* altitude conversion calibration */ |
|
unsigned _msl_pressure; /* in kPa */ |
|
|
|
orb_advert_t _baro_topic; |
|
|
|
perf_counter_t _sample_perf; |
|
perf_counter_t _comms_errors; |
|
perf_counter_t _buffer_overflows; |
|
|
|
/** |
|
* Test whether the device supported by the driver is present at a |
|
* specific address. |
|
* |
|
* @param address The I2C bus address to probe. |
|
* @return True if the device is present. |
|
*/ |
|
int probe_address(uint8_t address); |
|
|
|
/** |
|
* Initialise the automatic measurement state machine and start it. |
|
* |
|
* @note This function is called at open and error time. It might make sense |
|
* to make it more aggressive about resetting the bus in case of errors. |
|
*/ |
|
void start(); |
|
|
|
/** |
|
* Stop the automatic measurement state machine. |
|
*/ |
|
void stop(); |
|
|
|
/** |
|
* Perform a poll cycle; collect from the previous measurement |
|
* and start a new one. |
|
* |
|
* This is the heart of the measurement state machine. This function |
|
* alternately starts a measurement, or collects the data from the |
|
* previous measurement. |
|
* |
|
* When the interval between measurements is greater than the minimum |
|
* measurement interval, a gap is inserted between collection |
|
* and measurement to provide the most recent measurement possible |
|
* at the next interval. |
|
*/ |
|
void cycle(); |
|
|
|
/** |
|
* Static trampoline from the workq context; because we don't have a |
|
* generic workq wrapper yet. |
|
* |
|
* @param arg Instance pointer for the driver that is polling. |
|
*/ |
|
static void cycle_trampoline(void *arg); |
|
|
|
/** |
|
* Issue a measurement command for the current state. |
|
* |
|
* @return OK if the measurement command was successful. |
|
*/ |
|
int measure(); |
|
|
|
/** |
|
* Collect the result of the most recent measurement. |
|
*/ |
|
int collect(); |
|
|
|
/** |
|
* Send a reset command to the MS5611. |
|
* |
|
* This is required after any bus reset. |
|
*/ |
|
int cmd_reset(); |
|
|
|
/** |
|
* Read the MS5611 PROM |
|
* |
|
* @return OK if the PROM reads successfully. |
|
*/ |
|
int read_prom(); |
|
|
|
/** |
|
* PROM CRC routine ported from MS5611 application note |
|
* |
|
* @param n_prom Pointer to words read from PROM. |
|
* @return True if the CRC matches. |
|
*/ |
|
bool crc4(uint16_t *n_prom); |
|
|
|
}; |
|
|
|
/* helper macro for handling report buffer indices */ |
|
#define INCREMENT(_x, _lim) do { _x++; if (_x >= _lim) _x = 0; } while(0) |
|
|
|
/* helper macro for arithmetic - returns the square of the argument */ |
|
#define POW2(_x) ((_x) * (_x)) |
|
|
|
/* |
|
* MS5611 internal constants and data structures. |
|
*/ |
|
|
|
/* internal conversion time: 9.17 ms, so should not be read at rates higher than 100 Hz */ |
|
#define MS5611_CONVERSION_INTERVAL 10000 /* microseconds */ |
|
#define MS5611_MEASUREMENT_RATIO 3 /* pressure measurements per temperature measurement */ |
|
|
|
#define MS5611_ADDRESS_1 0x76 /* address select pins pulled high (PX4FMU series v1.6+) */ |
|
#define MS5611_ADDRESS_2 0x77 /* address select pins pulled low (PX4FMU prototypes) */ |
|
|
|
#define ADDR_RESET_CMD 0x1E /* write to this address to reset chip */ |
|
#define ADDR_CMD_CONVERT_D1 0x48 /* write to this address to start temperature conversion */ |
|
#define ADDR_CMD_CONVERT_D2 0x58 /* write to this address to start pressure conversion */ |
|
#define ADDR_DATA 0x00 /* address of 3 bytes / 32bit pressure data */ |
|
#define ADDR_PROM_SETUP 0xA0 /* address of 8x 2 bytes factory and calibration data */ |
|
#define ADDR_PROM_C1 0xA2 /* address of 6x 2 bytes calibration data */ |
|
|
|
/* |
|
* Driver 'main' command. |
|
*/ |
|
extern "C" __EXPORT int ms5611_main(int argc, char *argv[]); |
|
|
|
|
|
MS5611::MS5611(int bus) : |
|
I2C("MS5611", BARO_DEVICE_PATH, bus, 0, 400000), |
|
_measure_ticks(0), |
|
_num_reports(0), |
|
_next_report(0), |
|
_oldest_report(0), |
|
_reports(nullptr), |
|
_collect_phase(false), |
|
_measure_phase(0), |
|
_TEMP(0), |
|
_OFF(0), |
|
_SENS(0), |
|
_msl_pressure(101325), |
|
_baro_topic(-1), |
|
_sample_perf(perf_alloc(PC_ELAPSED, "ms5611_read")), |
|
_comms_errors(perf_alloc(PC_COUNT, "ms5611_comms_errors")), |
|
_buffer_overflows(perf_alloc(PC_COUNT, "ms5611_buffer_overflows")) |
|
{ |
|
// enable debug() calls |
|
_debug_enabled = true; |
|
|
|
// work_cancel in the dtor will explode if we don't do this... |
|
memset(&_work, 0, sizeof(_work)); |
|
} |
|
|
|
MS5611::~MS5611() |
|
{ |
|
/* make sure we are truly inactive */ |
|
stop(); |
|
|
|
/* free any existing reports */ |
|
if (_reports != nullptr) |
|
delete[] _reports; |
|
} |
|
|
|
int |
|
MS5611::init() |
|
{ |
|
int ret = ERROR; |
|
|
|
/* do I2C init (and probe) first */ |
|
if (I2C::init() != OK) |
|
goto out; |
|
|
|
/* allocate basic report buffers */ |
|
_num_reports = 2; |
|
_reports = new struct baro_report[_num_reports]; |
|
|
|
if (_reports == nullptr) |
|
goto out; |
|
|
|
_oldest_report = _next_report = 0; |
|
|
|
/* get a publish handle on the baro topic */ |
|
memset(&_reports[0], 0, sizeof(_reports[0])); |
|
_baro_topic = orb_advertise(ORB_ID(sensor_baro), &_reports[0]); |
|
|
|
if (_baro_topic < 0) |
|
debug("failed to create sensor_baro object"); |
|
|
|
ret = OK; |
|
out: |
|
return ret; |
|
} |
|
|
|
int |
|
MS5611::probe() |
|
{ |
|
_retries = 10; |
|
|
|
if ((OK == probe_address(MS5611_ADDRESS_1)) || |
|
(OK == probe_address(MS5611_ADDRESS_2))) { |
|
_retries = 1; |
|
return OK; |
|
} |
|
|
|
return -EIO; |
|
} |
|
|
|
int |
|
MS5611::probe_address(uint8_t address) |
|
{ |
|
/* select the address we are going to try */ |
|
set_address(address); |
|
|
|
/* send reset command */ |
|
if (OK != cmd_reset()) |
|
return -EIO; |
|
|
|
/* read PROM */ |
|
if (OK != read_prom()) |
|
return -EIO; |
|
|
|
return OK; |
|
} |
|
|
|
ssize_t |
|
MS5611::read(struct file *filp, char *buffer, size_t buflen) |
|
{ |
|
unsigned count = buflen / sizeof(struct baro_report); |
|
int ret = 0; |
|
|
|
/* buffer must be large enough */ |
|
if (count < 1) |
|
return -ENOSPC; |
|
|
|
/* if automatic measurement is enabled */ |
|
if (_measure_ticks > 0) { |
|
|
|
/* |
|
* While there is space in the caller's buffer, and reports, copy them. |
|
* Note that we may be pre-empted by the workq thread while we are doing this; |
|
* we are careful to avoid racing with them. |
|
*/ |
|
while (count--) { |
|
if (_oldest_report != _next_report) { |
|
memcpy(buffer, _reports + _oldest_report, sizeof(*_reports)); |
|
ret += sizeof(_reports[0]); |
|
INCREMENT(_oldest_report, _num_reports); |
|
} |
|
} |
|
|
|
/* if there was no data, warn the caller */ |
|
return ret ? ret : -EAGAIN; |
|
} |
|
|
|
/* manual measurement - run one conversion */ |
|
/* XXX really it'd be nice to lock against other readers here */ |
|
do { |
|
_measure_phase = 0; |
|
_oldest_report = _next_report = 0; |
|
|
|
/* do temperature first */ |
|
if (OK != measure()) { |
|
ret = -EIO; |
|
break; |
|
} |
|
|
|
usleep(MS5611_CONVERSION_INTERVAL); |
|
|
|
if (OK != collect()) { |
|
ret = -EIO; |
|
break; |
|
} |
|
|
|
/* now do a pressure measurement */ |
|
if (OK != measure()) { |
|
ret = -EIO; |
|
break; |
|
} |
|
|
|
usleep(MS5611_CONVERSION_INTERVAL); |
|
|
|
if (OK != collect()) { |
|
ret = -EIO; |
|
break; |
|
} |
|
|
|
/* state machine will have generated a report, copy it out */ |
|
memcpy(buffer, _reports, sizeof(*_reports)); |
|
ret = sizeof(*_reports); |
|
|
|
} while (0); |
|
|
|
return ret; |
|
} |
|
|
|
int |
|
MS5611::ioctl(struct file *filp, int cmd, unsigned long arg) |
|
{ |
|
switch (cmd) { |
|
|
|
case SENSORIOCSPOLLRATE: { |
|
switch (arg) { |
|
|
|
/* switching to manual polling */ |
|
case SENSOR_POLLRATE_MANUAL: |
|
stop(); |
|
_measure_ticks = 0; |
|
return OK; |
|
|
|
/* external signalling not supported */ |
|
case SENSOR_POLLRATE_EXTERNAL: |
|
|
|
/* zero would be bad */ |
|
case 0: |
|
return -EINVAL; |
|
|
|
/* set default/max polling rate */ |
|
case SENSOR_POLLRATE_MAX: |
|
case SENSOR_POLLRATE_DEFAULT: { |
|
/* do we need to start internal polling? */ |
|
bool want_start = (_measure_ticks == 0); |
|
|
|
/* set interval for next measurement to minimum legal value */ |
|
_measure_ticks = USEC2TICK(MS5611_CONVERSION_INTERVAL); |
|
|
|
/* if we need to start the poll state machine, do it */ |
|
if (want_start) |
|
start(); |
|
|
|
return OK; |
|
} |
|
|
|
/* adjust to a legal polling interval in Hz */ |
|
default: { |
|
/* do we need to start internal polling? */ |
|
bool want_start = (_measure_ticks == 0); |
|
|
|
/* convert hz to tick interval via microseconds */ |
|
unsigned ticks = USEC2TICK(1000000 / arg); |
|
|
|
/* check against maximum rate */ |
|
if (ticks < USEC2TICK(MS5611_CONVERSION_INTERVAL)) |
|
return -EINVAL; |
|
|
|
/* update interval for next measurement */ |
|
_measure_ticks = ticks; |
|
|
|
/* if we need to start the poll state machine, do it */ |
|
if (want_start) |
|
start(); |
|
|
|
return OK; |
|
} |
|
} |
|
} |
|
|
|
case SENSORIOCGPOLLRATE: |
|
if (_measure_ticks == 0) |
|
return SENSOR_POLLRATE_MANUAL; |
|
|
|
return (1000 / _measure_ticks); |
|
|
|
case SENSORIOCSQUEUEDEPTH: { |
|
/* add one to account for the sentinel in the ring */ |
|
arg++; |
|
|
|
/* lower bound is mandatory, upper bound is a sanity check */ |
|
if ((arg < 2) || (arg > 100)) |
|
return -EINVAL; |
|
|
|
/* allocate new buffer */ |
|
struct baro_report *buf = new struct baro_report[arg]; |
|
|
|
if (nullptr == buf) |
|
return -ENOMEM; |
|
|
|
/* reset the measurement state machine with the new buffer, free the old */ |
|
stop(); |
|
delete[] _reports; |
|
_num_reports = arg; |
|
_reports = buf; |
|
start(); |
|
|
|
return OK; |
|
} |
|
|
|
case SENSORIOCGQUEUEDEPTH: |
|
return _num_reports - 1; |
|
|
|
case SENSORIOCRESET: |
|
/* XXX implement this */ |
|
return -EINVAL; |
|
|
|
case BAROIOCSMSLPRESSURE: |
|
|
|
/* range-check for sanity */ |
|
if ((arg < 80000) || (arg > 120000)) |
|
return -EINVAL; |
|
|
|
_msl_pressure = arg; |
|
return OK; |
|
|
|
case BAROIOCGMSLPRESSURE: |
|
return _msl_pressure; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
/* give it to the superclass */ |
|
return I2C::ioctl(filp, cmd, arg); |
|
} |
|
|
|
void |
|
MS5611::start() |
|
{ |
|
|
|
/* reset the report ring and state machine */ |
|
_collect_phase = false; |
|
_measure_phase = 0; |
|
_oldest_report = _next_report = 0; |
|
|
|
/* schedule a cycle to start things */ |
|
work_queue(HPWORK, &_work, (worker_t)&MS5611::cycle_trampoline, this, 1); |
|
} |
|
|
|
void |
|
MS5611::stop() |
|
{ |
|
work_cancel(HPWORK, &_work); |
|
} |
|
|
|
void |
|
MS5611::cycle_trampoline(void *arg) |
|
{ |
|
MS5611 *dev = (MS5611 *)arg; |
|
|
|
dev->cycle(); |
|
} |
|
|
|
void |
|
MS5611::cycle() |
|
{ |
|
|
|
/* collection phase? */ |
|
if (_collect_phase) { |
|
|
|
/* perform collection */ |
|
if (OK != collect()) { |
|
log("collection error"); |
|
/* reset the collection state machine and try again */ |
|
start(); |
|
return; |
|
} |
|
|
|
/* next phase is measurement */ |
|
_collect_phase = false; |
|
|
|
/* |
|
* Is there a collect->measure gap? |
|
* Don't inject one after temperature measurements, so we can keep |
|
* doing pressure measurements at something close to the desired rate. |
|
*/ |
|
if ((_measure_phase != 0) && |
|
(_measure_ticks > USEC2TICK(MS5611_CONVERSION_INTERVAL))) { |
|
|
|
/* schedule a fresh cycle call when we are ready to measure again */ |
|
work_queue(HPWORK, |
|
&_work, |
|
(worker_t)&MS5611::cycle_trampoline, |
|
this, |
|
_measure_ticks - USEC2TICK(MS5611_CONVERSION_INTERVAL)); |
|
|
|
return; |
|
} |
|
} |
|
|
|
/* measurement phase */ |
|
if (OK != measure()) |
|
log("measure error"); |
|
|
|
/* next phase is collection */ |
|
_collect_phase = true; |
|
|
|
/* schedule a fresh cycle call when the measurement is done */ |
|
work_queue(HPWORK, |
|
&_work, |
|
(worker_t)&MS5611::cycle_trampoline, |
|
this, |
|
USEC2TICK(MS5611_CONVERSION_INTERVAL)); |
|
} |
|
|
|
int |
|
MS5611::measure() |
|
{ |
|
int ret; |
|
|
|
/* |
|
* In phase zero, request temperature; in other phases, request pressure. |
|
*/ |
|
uint8_t cmd_data = (_measure_phase == 0) ? ADDR_CMD_CONVERT_D2 : ADDR_CMD_CONVERT_D1; |
|
|
|
/* |
|
* Send the command to begin measuring. |
|
*/ |
|
ret = transfer(&cmd_data, 1, nullptr, 0); |
|
|
|
if (OK != ret) |
|
perf_count(_comms_errors); |
|
|
|
return ret; |
|
} |
|
|
|
int |
|
MS5611::collect() |
|
{ |
|
uint8_t cmd; |
|
uint8_t data[3]; |
|
union { |
|
uint8_t b[4]; |
|
uint32_t w; |
|
} cvt; |
|
|
|
/* read the most recent measurement */ |
|
cmd = 0; |
|
|
|
perf_begin(_sample_perf); |
|
|
|
/* this should be fairly close to the end of the conversion, so the best approximation of the time */ |
|
_reports[_next_report].timestamp = hrt_absolute_time(); |
|
|
|
if (OK != transfer(&cmd, 1, &data[0], 3)) { |
|
perf_count(_comms_errors); |
|
return -EIO; |
|
} |
|
|
|
/* fetch the raw value */ |
|
cvt.b[0] = data[2]; |
|
cvt.b[1] = data[1]; |
|
cvt.b[2] = data[0]; |
|
cvt.b[3] = 0; |
|
uint32_t raw = cvt.w; |
|
|
|
/* handle a measurement */ |
|
if (_measure_phase == 0) { |
|
|
|
/* temperature offset (in ADC units) */ |
|
int32_t dT = (int32_t)raw - ((int32_t)_prom.s.c5_reference_temp << 8); |
|
|
|
/* absolute temperature in centidegrees - note intermediate value is outside 32-bit range */ |
|
_TEMP = 2000 + (int32_t)(((int64_t)dT * _prom.s.c6_temp_coeff_temp) >> 23); |
|
|
|
/* base sensor scale/offset values */ |
|
_SENS = ((int64_t)_prom.s.c1_pressure_sens << 15) + (((int64_t)_prom.s.c3_temp_coeff_pres_sens * dT) >> 8); |
|
_OFF = ((int64_t)_prom.s.c2_pressure_offset << 16) + (((int64_t)_prom.s.c4_temp_coeff_pres_offset * dT) >> 7); |
|
|
|
/* temperature compensation */ |
|
if (_TEMP < 2000) { |
|
|
|
int32_t T2 = POW2(dT) >> 31; |
|
|
|
int64_t f = POW2((int64_t)_TEMP - 2000); |
|
int64_t OFF2 = 5 * f >> 1; |
|
int64_t SENS2 = 5 * f >> 2; |
|
|
|
if (_TEMP < -1500) { |
|
int64_t f2 = POW2(_TEMP + 1500); |
|
OFF2 += 7 * f2; |
|
SENS2 += 11 * f2 >> 1; |
|
} |
|
|
|
_TEMP -= T2; |
|
_OFF -= OFF2; |
|
_SENS -= SENS2; |
|
} |
|
|
|
} else { |
|
|
|
/* pressure calculation, result in Pa */ |
|
int32_t P = (((raw * _SENS) >> 21) - _OFF) >> 15; |
|
|
|
/* generate a new report */ |
|
_reports[_next_report].temperature = _TEMP / 100.0f; |
|
_reports[_next_report].pressure = P / 100.0f; /* convert to millibar */ |
|
|
|
/* altitude calculations based on http://www.kansasflyer.org/index.asp?nav=Avi&sec=Alti&tab=Theory&pg=1 */ |
|
|
|
/* |
|
* PERFORMANCE HINT: |
|
* |
|
* The single precision calculation is 50 microseconds faster than the double |
|
* precision variant. It is however not obvious if double precision is required. |
|
* Pending more inspection and tests, we'll leave the double precision variant active. |
|
* |
|
* Measurements: |
|
* double precision: ms5611_read: 992 events, 258641us elapsed, min 202us max 305us |
|
* single precision: ms5611_read: 963 events, 208066us elapsed, min 202us max 241us |
|
*/ |
|
#if 0/* USE_FLOAT */ |
|
/* tropospheric properties (0-11km) for standard atmosphere */ |
|
const float T1 = 15.0f + 273.15f; /* temperature at base height in Kelvin */ |
|
const float a = -6.5f / 1000f; /* temperature gradient in degrees per metre */ |
|
const float g = 9.80665f; /* gravity constant in m/s/s */ |
|
const float R = 287.05f; /* ideal gas constant in J/kg/K */ |
|
|
|
/* current pressure at MSL in kPa */ |
|
float p1 = _msl_pressure / 1000.0f; |
|
|
|
/* measured pressure in kPa */ |
|
float p = P / 1000.0f; |
|
|
|
/* |
|
* Solve: |
|
* |
|
* / -(aR / g) \ |
|
* | (p / p1) . T1 | - T1 |
|
* \ / |
|
* h = ------------------------------- + h1 |
|
* a |
|
*/ |
|
_reports[_next_report].altitude = (((powf((p / p1), (-(a * R) / g))) * T1) - T1) / a; |
|
#else |
|
/* tropospheric properties (0-11km) for standard atmosphere */ |
|
const double T1 = 15.0 + 273.15; /* temperature at base height in Kelvin */ |
|
const double a = -6.5 / 1000; /* temperature gradient in degrees per metre */ |
|
const double g = 9.80665; /* gravity constant in m/s/s */ |
|
const double R = 287.05; /* ideal gas constant in J/kg/K */ |
|
|
|
/* current pressure at MSL in kPa */ |
|
double p1 = _msl_pressure / 1000.0; |
|
|
|
/* measured pressure in kPa */ |
|
double p = P / 1000.0; |
|
|
|
/* |
|
* Solve: |
|
* |
|
* / -(aR / g) \ |
|
* | (p / p1) . T1 | - T1 |
|
* \ / |
|
* h = ------------------------------- + h1 |
|
* a |
|
*/ |
|
_reports[_next_report].altitude = (((pow((p / p1), (-(a * R) / g))) * T1) - T1) / a; |
|
#endif |
|
/* publish it */ |
|
orb_publish(ORB_ID(sensor_baro), _baro_topic, &_reports[_next_report]); |
|
|
|
/* post a report to the ring - note, not locked */ |
|
INCREMENT(_next_report, _num_reports); |
|
|
|
/* if we are running up against the oldest report, toss it */ |
|
if (_next_report == _oldest_report) { |
|
perf_count(_buffer_overflows); |
|
INCREMENT(_oldest_report, _num_reports); |
|
} |
|
|
|
/* notify anyone waiting for data */ |
|
poll_notify(POLLIN); |
|
} |
|
|
|
/* update the measurement state machine */ |
|
INCREMENT(_measure_phase, MS5611_MEASUREMENT_RATIO + 1); |
|
|
|
perf_end(_sample_perf); |
|
|
|
return OK; |
|
} |
|
|
|
int |
|
MS5611::cmd_reset() |
|
{ |
|
unsigned old_retrycount = _retries; |
|
uint8_t cmd = ADDR_RESET_CMD; |
|
int result; |
|
|
|
/* bump the retry count */ |
|
_retries = 10; |
|
result = transfer(&cmd, 1, nullptr, 0); |
|
_retries = old_retrycount; |
|
|
|
return result; |
|
} |
|
|
|
int |
|
MS5611::read_prom() |
|
{ |
|
uint8_t prom_buf[2]; |
|
union { |
|
uint8_t b[2]; |
|
uint16_t w; |
|
} cvt; |
|
|
|
/* |
|
* Wait for PROM contents to be in the device (2.8 ms) in the case we are |
|
* called immediately after reset. |
|
*/ |
|
usleep(3000); |
|
|
|
/* read and convert PROM words */ |
|
for (int i = 0; i < 8; i++) { |
|
uint8_t cmd = ADDR_PROM_SETUP + (i * 2); |
|
|
|
if (OK != transfer(&cmd, 1, &prom_buf[0], 2)) |
|
break; |
|
|
|
/* assemble 16 bit value and convert from big endian (sensor) to little endian (MCU) */ |
|
cvt.b[0] = prom_buf[1]; |
|
cvt.b[1] = prom_buf[0]; |
|
_prom.c[i] = cvt.w; |
|
} |
|
|
|
/* calculate CRC and return success/failure accordingly */ |
|
return crc4(&_prom.c[0]) ? OK : -EIO; |
|
} |
|
|
|
bool |
|
MS5611::crc4(uint16_t *n_prom) |
|
{ |
|
int16_t cnt; |
|
uint16_t n_rem; |
|
uint16_t crc_read; |
|
uint8_t n_bit; |
|
|
|
n_rem = 0x00; |
|
|
|
/* save the read crc */ |
|
crc_read = n_prom[7]; |
|
|
|
/* remove CRC byte */ |
|
n_prom[7] = (0xFF00 & (n_prom[7])); |
|
|
|
for (cnt = 0; cnt < 16; cnt++) { |
|
/* uneven bytes */ |
|
if (cnt & 1) { |
|
n_rem ^= (uint8_t)((n_prom[cnt >> 1]) & 0x00FF); |
|
|
|
} else { |
|
n_rem ^= (uint8_t)(n_prom[cnt >> 1] >> 8); |
|
} |
|
|
|
for (n_bit = 8; n_bit > 0; n_bit--) { |
|
if (n_rem & 0x8000) { |
|
n_rem = (n_rem << 1) ^ 0x3000; |
|
|
|
} else { |
|
n_rem = (n_rem << 1); |
|
} |
|
} |
|
} |
|
|
|
/* final 4 bit remainder is CRC value */ |
|
n_rem = (0x000F & (n_rem >> 12)); |
|
n_prom[7] = crc_read; |
|
|
|
/* return true if CRCs match */ |
|
return (0x000F & crc_read) == (n_rem ^ 0x00); |
|
} |
|
|
|
void |
|
MS5611::print_info() |
|
{ |
|
perf_print_counter(_sample_perf); |
|
perf_print_counter(_comms_errors); |
|
perf_print_counter(_buffer_overflows); |
|
printf("poll interval: %u ticks\n", _measure_ticks); |
|
printf("report queue: %u (%u/%u @ %p)\n", |
|
_num_reports, _oldest_report, _next_report, _reports); |
|
printf("TEMP: %d\n", _TEMP); |
|
printf("SENS: %lld\n", _SENS); |
|
printf("OFF: %lld\n", _OFF); |
|
printf("MSL pressure: %10.4f\n", (double)(_msl_pressure / 100.f)); |
|
|
|
printf("factory_setup %u\n", _prom.s.factory_setup); |
|
printf("c1_pressure_sens %u\n", _prom.s.c1_pressure_sens); |
|
printf("c2_pressure_offset %u\n", _prom.s.c2_pressure_offset); |
|
printf("c3_temp_coeff_pres_sens %u\n", _prom.s.c3_temp_coeff_pres_sens); |
|
printf("c4_temp_coeff_pres_offset %u\n", _prom.s.c4_temp_coeff_pres_offset); |
|
printf("c5_reference_temp %u\n", _prom.s.c5_reference_temp); |
|
printf("c6_temp_coeff_temp %u\n", _prom.s.c6_temp_coeff_temp); |
|
printf("serial_and_crc %u\n", _prom.s.serial_and_crc); |
|
} |
|
|
|
/** |
|
* Local functions in support of the shell command. |
|
*/ |
|
namespace ms5611 |
|
{ |
|
|
|
MS5611 *g_dev; |
|
|
|
void start(); |
|
void test(); |
|
void reset(); |
|
void info(); |
|
void calibrate(unsigned altitude); |
|
|
|
/** |
|
* Start the driver. |
|
*/ |
|
void |
|
start() |
|
{ |
|
int fd; |
|
|
|
if (g_dev != nullptr) |
|
errx(1, "already started"); |
|
|
|
/* create the driver */ |
|
/* XXX HORRIBLE hack - the bus number should not come from here */ |
|
g_dev = new MS5611(2); |
|
|
|
if (g_dev == nullptr) |
|
goto fail; |
|
|
|
if (OK != g_dev->init()) |
|
goto fail; |
|
|
|
/* set the poll rate to default, starts automatic data collection */ |
|
fd = open(BARO_DEVICE_PATH, O_RDONLY); |
|
|
|
if (fd < 0) |
|
goto fail; |
|
|
|
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) |
|
goto fail; |
|
|
|
exit(0); |
|
|
|
fail: |
|
|
|
if (g_dev != nullptr) { |
|
delete g_dev; |
|
g_dev = nullptr; |
|
} |
|
|
|
errx(1, "driver start failed"); |
|
} |
|
|
|
/** |
|
* Perform some basic functional tests on the driver; |
|
* make sure we can collect data from the sensor in polled |
|
* and automatic modes. |
|
*/ |
|
void |
|
test() |
|
{ |
|
struct baro_report report; |
|
ssize_t sz; |
|
int ret; |
|
|
|
int fd = open(BARO_DEVICE_PATH, O_RDONLY); |
|
|
|
if (fd < 0) |
|
err(1, "%s open failed (try 'ms5611 start' if the driver is not running)", BARO_DEVICE_PATH); |
|
|
|
/* do a simple demand read */ |
|
sz = read(fd, &report, sizeof(report)); |
|
|
|
if (sz != sizeof(report)) |
|
err(1, "immediate read failed"); |
|
|
|
warnx("single read"); |
|
warnx("pressure: %10.4f", (double)report.pressure); |
|
warnx("altitude: %11.4f", (double)report.altitude); |
|
warnx("temperature: %8.4f", (double)report.temperature); |
|
warnx("time: %lld", report.timestamp); |
|
|
|
/* set the queue depth to 10 */ |
|
if (OK != ioctl(fd, SENSORIOCSQUEUEDEPTH, 10)) |
|
errx(1, "failed to set queue depth"); |
|
|
|
/* start the sensor polling at 2Hz */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2)) |
|
errx(1, "failed to set 2Hz poll rate"); |
|
|
|
/* read the sensor 5x and report each value */ |
|
for (unsigned i = 0; i < 5; i++) { |
|
struct pollfd fds; |
|
|
|
/* wait for data to be ready */ |
|
fds.fd = fd; |
|
fds.events = POLLIN; |
|
ret = poll(&fds, 1, 2000); |
|
|
|
if (ret != 1) |
|
errx(1, "timed out waiting for sensor data"); |
|
|
|
/* now go get it */ |
|
sz = read(fd, &report, sizeof(report)); |
|
|
|
if (sz != sizeof(report)) |
|
err(1, "periodic read failed"); |
|
|
|
warnx("periodic read %u", i); |
|
warnx("pressure: %10.4f", (double)report.pressure); |
|
warnx("altitude: %11.4f", (double)report.altitude); |
|
warnx("temperature: %8.4f", (double)report.temperature); |
|
warnx("time: %lld", report.timestamp); |
|
} |
|
|
|
errx(0, "PASS"); |
|
} |
|
|
|
/** |
|
* Reset the driver. |
|
*/ |
|
void |
|
reset() |
|
{ |
|
int fd = open(BARO_DEVICE_PATH, O_RDONLY); |
|
|
|
if (fd < 0) |
|
err(1, "failed "); |
|
|
|
if (ioctl(fd, SENSORIOCRESET, 0) < 0) |
|
err(1, "driver reset failed"); |
|
|
|
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) |
|
err(1, "driver poll restart failed"); |
|
|
|
exit(0); |
|
} |
|
|
|
/** |
|
* Print a little info about the driver. |
|
*/ |
|
void |
|
info() |
|
{ |
|
if (g_dev == nullptr) |
|
errx(1, "driver not running"); |
|
|
|
printf("state @ %p\n", g_dev); |
|
g_dev->print_info(); |
|
|
|
exit(0); |
|
} |
|
|
|
/** |
|
* Calculate actual MSL pressure given current altitude |
|
*/ |
|
void |
|
calibrate(unsigned altitude) |
|
{ |
|
struct baro_report report; |
|
float pressure; |
|
float p1; |
|
|
|
int fd = open(BARO_DEVICE_PATH, O_RDONLY); |
|
|
|
if (fd < 0) |
|
err(1, "%s open failed (try 'ms5611 start' if the driver is not running)", BARO_DEVICE_PATH); |
|
|
|
/* start the sensor polling at max */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_MAX)) |
|
errx(1, "failed to set poll rate"); |
|
|
|
/* average a few measurements */ |
|
pressure = 0.0f; |
|
|
|
for (unsigned i = 0; i < 20; i++) { |
|
struct pollfd fds; |
|
int ret; |
|
ssize_t sz; |
|
|
|
/* wait for data to be ready */ |
|
fds.fd = fd; |
|
fds.events = POLLIN; |
|
ret = poll(&fds, 1, 1000); |
|
|
|
if (ret != 1) |
|
errx(1, "timed out waiting for sensor data"); |
|
|
|
/* now go get it */ |
|
sz = read(fd, &report, sizeof(report)); |
|
|
|
if (sz != sizeof(report)) |
|
err(1, "sensor read failed"); |
|
|
|
pressure += report.pressure; |
|
} |
|
|
|
pressure /= 20; /* average */ |
|
pressure /= 10; /* scale from millibar to kPa */ |
|
|
|
/* tropospheric properties (0-11km) for standard atmosphere */ |
|
const float T1 = 15.0 + 273.15; /* temperature at base height in Kelvin */ |
|
const float a = -6.5 / 1000; /* temperature gradient in degrees per metre */ |
|
const float g = 9.80665f; /* gravity constant in m/s/s */ |
|
const float R = 287.05f; /* ideal gas constant in J/kg/K */ |
|
|
|
warnx("averaged pressure %10.4fkPa at %um", pressure, altitude); |
|
|
|
p1 = pressure * (powf(((T1 + (a * (float)altitude)) / T1), (g / (a * R)))); |
|
|
|
warnx("calculated MSL pressure %10.4fkPa", p1); |
|
|
|
/* save as integer Pa */ |
|
p1 *= 1000.0f; |
|
|
|
if (ioctl(fd, BAROIOCSMSLPRESSURE, (unsigned long)p1) != OK) |
|
err(1, "BAROIOCSMSLPRESSURE"); |
|
|
|
exit(0); |
|
} |
|
|
|
} // namespace |
|
|
|
int |
|
ms5611_main(int argc, char *argv[]) |
|
{ |
|
/* |
|
* Start/load the driver. |
|
*/ |
|
if (!strcmp(argv[1], "start")) |
|
ms5611::start(); |
|
|
|
/* |
|
* Test the driver/device. |
|
*/ |
|
if (!strcmp(argv[1], "test")) |
|
ms5611::test(); |
|
|
|
/* |
|
* Reset the driver. |
|
*/ |
|
if (!strcmp(argv[1], "reset")) |
|
ms5611::reset(); |
|
|
|
/* |
|
* Print driver information. |
|
*/ |
|
if (!strcmp(argv[1], "info")) |
|
ms5611::info(); |
|
|
|
/* |
|
* Perform MSL pressure calibration given an altitude in metres |
|
*/ |
|
if (!strcmp(argv[1], "calibrate")) { |
|
if (argc < 2) |
|
errx(1, "missing altitude"); |
|
|
|
long altitude = strtol(argv[2], nullptr, 10); |
|
|
|
ms5611::calibrate(altitude); |
|
} |
|
|
|
errx(1, "unrecognised command, try 'start', 'test', 'reset' or 'info'"); |
|
}
|
|
|