You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

373 lines
8.6 KiB

/**
* @file Dual.hpp
*
* This is a dual number type for calculating automatic derivatives.
*
* Based roughly on the methods described in:
* Automatic Differentiation, C++ Templates and Photogrammetry, by Dan Piponi
* and
* Ceres Solver's excellent Jet.h
*
* @author Julian Kent <julian@auterion.com>
*/
#pragma once
#include "math.hpp"
namespace matrix
{
template <typename Type, size_t M>
class Vector;
template <typename Scalar, size_t N>
struct Dual
{
static constexpr size_t WIDTH = N;
Scalar value {};
Vector<Scalar, N> derivative;
Dual() = default;
explicit Dual(Scalar v, size_t inputDimension = 65535)
{
value = v;
if (inputDimension < N) {
derivative(inputDimension) = Scalar(1);
}
}
explicit Dual(Scalar v, const Vector<Scalar, N>& d) :
value(v), derivative(d)
{}
Dual<Scalar, N>& operator=(const Scalar& a)
{
derivative.setZero();
value = a;
return *this;
}
Dual<Scalar, N>& operator +=(const Dual<Scalar, N>& a)
{
return (*this = *this + a);
}
Dual<Scalar, N>& operator *=(const Dual<Scalar, N>& a)
{
return (*this = *this * a);
}
Dual<Scalar, N>& operator -=(const Dual<Scalar, N>& a)
{
return (*this = *this - a);
}
Dual<Scalar, N>& operator /=(const Dual<Scalar, N>& a)
{
return (*this = *this / a);
}
Dual<Scalar, N>& operator +=(Scalar a)
{
return (*this = *this + a);
}
Dual<Scalar, N>& operator -=(Scalar a)
{
return (*this = *this - a);
}
Dual<Scalar, N>& operator *=(Scalar a)
{
return (*this = *this * a);
}
Dual<Scalar, N>& operator /=(Scalar a)
{
return (*this = *this / a);
}
};
// operators
template <typename Scalar, size_t N>
Dual<Scalar, N> operator+(const Dual<Scalar, N>& a)
{
return a;
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator-(const Dual<Scalar, N>& a)
{
return Dual<Scalar, N>(-a.value, -a.derivative);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator+(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
return Dual<Scalar, N>(a.value + b.value, a.derivative + b.derivative);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator-(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
return a + (-b);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator+(const Dual<Scalar, N>& a, Scalar b)
{
return Dual<Scalar, N>(a.value + b, a.derivative);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator-(const Dual<Scalar, N>& a, Scalar b)
{
return a + (-b);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator+(Scalar a, const Dual<Scalar, N>& b)
{
return Dual<Scalar, N>(a + b.value, b.derivative);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator-(Scalar a, const Dual<Scalar, N>& b)
{
return a + (-b);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator*(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
return Dual<Scalar, N>(a.value * b.value, a.value * b.derivative + b.value * a.derivative);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator*(const Dual<Scalar, N>& a, Scalar b)
{
return Dual<Scalar, N>(a.value * b, a.derivative * b);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator*(Scalar a, const Dual<Scalar, N>& b)
{
return b * a;
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator/(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
const Scalar inv_b_real = Scalar(1) / b.value;
return Dual<Scalar, N>(a.value * inv_b_real, a.derivative * inv_b_real -
a.value * b.derivative * inv_b_real * inv_b_real);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator/(const Dual<Scalar, N>& a, Scalar b)
{
return a * (Scalar(1) / b);
}
template <typename Scalar, size_t N>
Dual<Scalar, N> operator/(Scalar a, const Dual<Scalar, N>& b)
{
const Scalar inv_b_real = Scalar(1) / b.value;
return Dual<Scalar, N>(a * inv_b_real, (-inv_b_real * a * inv_b_real) * b.derivative);
}
// basic math
// sqrt
template <typename Scalar, size_t N>
Dual<Scalar, N> sqrt(const Dual<Scalar, N>& a)
{
Scalar real = sqrt(a.value);
return Dual<Scalar, N>(real, a.derivative * (Scalar(1) / (Scalar(2) * real)));
}
// abs
template <typename Scalar, size_t N>
Dual<Scalar, N> abs(const Dual<Scalar, N>& a)
{
return a.value >= Scalar(0) ? a : -a;
}
// ceil
template <typename Scalar, size_t N>
Dual<Scalar, N> ceil(const Dual<Scalar, N>& a)
{
return Dual<Scalar, N>(ceil(a.value));
}
// floor
template <typename Scalar, size_t N>
Dual<Scalar, N> floor(const Dual<Scalar, N>& a)
{
return Dual<Scalar, N>(floor(a.value));
}
// fmod
template <typename Scalar, size_t N>
Dual<Scalar, N> fmod(const Dual<Scalar, N>& a, Scalar mod)
{
return Dual<Scalar, N>(a.value - Scalar(size_t(a.value / mod)) * mod, a.derivative);
}
// max
template <typename Scalar, size_t N>
Dual<Scalar, N> max(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
return a.value >= b.value ? a : b;
}
// min
template <typename Scalar, size_t N>
Dual<Scalar, N> min(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
return a.value < b.value ? a : b;
}
// isnan
template <typename Scalar>
bool IsNan(Scalar a)
{
return isnan(a);
}
template <typename Scalar, size_t N>
bool IsNan(const Dual<Scalar, N>& a)
{
return IsNan(a.value);
}
// isfinite
template <typename Scalar>
bool IsFinite(Scalar a)
{
return isfinite(a);
}
template <typename Scalar, size_t N>
bool IsFinite(const Dual<Scalar, N>& a)
{
return IsFinite(a.value);
}
// isinf
template <typename Scalar>
bool IsInf(Scalar a)
{
return isinf(a);
}
template <typename Scalar, size_t N>
bool IsInf(const Dual<Scalar, N>& a)
{
return IsInf(a.value);
}
// trig
// sin
template <typename Scalar, size_t N>
Dual<Scalar, N> sin(const Dual<Scalar, N>& a)
{
return Dual<Scalar, N>(sin(a.value), cos(a.value) * a.derivative);
}
// cos
template <typename Scalar, size_t N>
Dual<Scalar, N> cos(const Dual<Scalar, N>& a)
{
return Dual<Scalar, N>(cos(a.value), -sin(a.value) * a.derivative);
}
// tan
template <typename Scalar, size_t N>
Dual<Scalar, N> tan(const Dual<Scalar, N>& a)
{
Scalar real = tan(a.value);
return Dual<Scalar, N>(real, (Scalar(1) + real * real) * a.derivative);
}
// asin
template <typename Scalar, size_t N>
Dual<Scalar, N> asin(const Dual<Scalar, N>& a)
{
Scalar asin_d = Scalar(1) / sqrt(Scalar(1) - a.value * a.value);
return Dual<Scalar, N>(asin(a.value), asin_d * a.derivative);
}
// acos
template <typename Scalar, size_t N>
Dual<Scalar, N> acos(const Dual<Scalar, N>& a)
{
Scalar acos_d = -Scalar(1) / sqrt(Scalar(1) - a.value * a.value);
return Dual<Scalar, N>(acos(a.value), acos_d * a.derivative);
}
// atan
template <typename Scalar, size_t N>
Dual<Scalar, N> atan(const Dual<Scalar, N>& a)
{
Scalar atan_d = Scalar(1) / (Scalar(1) + a.value * a.value);
return Dual<Scalar, N>(atan(a.value), atan_d * a.derivative);
}
// atan2
template <typename Scalar, size_t N>
Dual<Scalar, N> atan2(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
{
// derivative is equal to that of atan(a/b), so substitute a/b into atan and simplify
Scalar atan_d = Scalar(1) / (a.value * a.value + b.value * b.value);
return Dual<Scalar, N>(atan2(a.value, b.value), (a.derivative * b.value - a.value * b.derivative) * atan_d);
}
// retrieve the derivative elements of a vector of Duals into a matrix
template <typename Scalar, size_t M, size_t N>
Matrix<Scalar, M, N> collectDerivatives(const Matrix<Dual<Scalar, N>, M, 1>& input)
{
Matrix<Scalar, M, N> jac;
for (size_t i = 0; i < M; i++) {
jac.row(i) = input(i, 0).derivative;
}
return jac;
}
// retrieve the real (non-derivative) elements of a matrix of Duals into an equally sized matrix
template <typename Scalar, size_t M, size_t N, size_t D>
Matrix<Scalar, M, N> collectReals(const Matrix<Dual<Scalar, D>, M, N>& input)
{
Matrix<Scalar, M, N> r;
for (size_t i = 0; i < M; i++) {
for (size_t j = 0; j < N; j++) {
r(i,j) = input(i,j).value;
}
}
return r;
}
#if defined(SUPPORT_STDIOSTREAM)
template<typename Type, size_t N>
std::ostream& operator<<(std::ostream& os,
const matrix::Dual<Type, N>& dual)
{
os << "[";
os << std::setw(10) << dual.value << ";";
for (size_t j = 0; j < N; ++j) {
os << "\t";
os << std::setw(10) << static_cast<double>(dual.derivative(j));
}
os << "]";
return os;
}
#endif // defined(SUPPORT_STDIOSTREAM)
}