You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
7.7 KiB
299 lines
7.7 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2008-2012 PX4 Development Team. All rights reserved. |
|
* Author: Lorenz Meier <lm@inf.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/* |
|
* @file ardrone_motor_control.c |
|
* Implementation of AR.Drone 1.0 / 2.0 motor control interface |
|
*/ |
|
|
|
|
|
|
|
#include "ardrone_motor_control.h" |
|
|
|
static const unsigned long motor_gpios = GPIO_EXT_1 | GPIO_EXT_2 | GPIO_MULTI_1 | GPIO_MULTI_2; |
|
static const unsigned long motor_gpio[4] = { GPIO_EXT_1, GPIO_EXT_2, GPIO_MULTI_1, GPIO_MULTI_2 }; |
|
|
|
typedef union { |
|
uint16_t motor_value; |
|
uint8_t bytes[2]; |
|
} motor_union_t; |
|
|
|
/** |
|
* @brief Generate the 8-byte motor set packet |
|
* |
|
* @return the number of bytes (8) |
|
*/ |
|
void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) |
|
{ |
|
motor_buf[0] = 0x20; |
|
motor_buf[1] = 0x00; |
|
motor_buf[2] = 0x00; |
|
motor_buf[3] = 0x00; |
|
motor_buf[4] = 0x00; |
|
/* |
|
* {0x20, 0x00, 0x00, 0x00, 0x00}; |
|
* 0x20 is start sign / motor command |
|
*/ |
|
motor_union_t curr_motor; |
|
uint16_t nineBitMask = 0x1FF; |
|
|
|
/* Set motor 1 */ |
|
curr_motor.motor_value = (motor1 & nineBitMask) << 4; |
|
motor_buf[0] |= curr_motor.bytes[1]; |
|
motor_buf[1] |= curr_motor.bytes[0]; |
|
|
|
/* Set motor 2 */ |
|
curr_motor.motor_value = (motor2 & nineBitMask) << 3; |
|
motor_buf[1] |= curr_motor.bytes[1]; |
|
motor_buf[2] |= curr_motor.bytes[0]; |
|
|
|
/* Set motor 3 */ |
|
curr_motor.motor_value = (motor3 & nineBitMask) << 2; |
|
motor_buf[2] |= curr_motor.bytes[1]; |
|
motor_buf[3] |= curr_motor.bytes[0]; |
|
|
|
/* Set motor 4 */ |
|
curr_motor.motor_value = (motor4 & nineBitMask) << 1; |
|
motor_buf[3] |= curr_motor.bytes[1]; |
|
motor_buf[4] |= curr_motor.bytes[0]; |
|
} |
|
|
|
void ar_enable_broadcast(int fd) |
|
{ |
|
ar_select_motor(fd, 0); |
|
} |
|
|
|
int ar_multiplexing_init() |
|
{ |
|
int fd; |
|
|
|
fd = open(GPIO_DEVICE_PATH, 0); |
|
|
|
if (fd < 0) { |
|
printf("GPIO: open fail\n"); |
|
return fd; |
|
} |
|
|
|
/* deactivate all outputs */ |
|
int ret = 0; |
|
ret += ioctl(fd, GPIO_SET, motor_gpios); |
|
|
|
if (ioctl(fd, GPIO_SET_OUTPUT, motor_gpios) != 0) { |
|
printf("GPIO: output set fail\n"); |
|
close(fd); |
|
return -1; |
|
} |
|
|
|
if (ret < 0) { |
|
printf("GPIO: clearing pins fail\n"); |
|
close(fd); |
|
return -1; |
|
} |
|
|
|
return fd; |
|
} |
|
|
|
int ar_multiplexing_deinit(int fd) |
|
{ |
|
if (fd < 0) { |
|
printf("GPIO: no valid descriptor\n"); |
|
return fd; |
|
} |
|
|
|
int ret = 0; |
|
|
|
/* deselect motor 1-4 */ |
|
ret += ioctl(fd, GPIO_SET, motor_gpios); |
|
|
|
if (ret != 0) { |
|
printf("GPIO: clear failed %d times\n", ret); |
|
} |
|
|
|
if (ioctl(fd, GPIO_SET_INPUT, motor_gpios) != 0) { |
|
printf("GPIO: input set fail\n"); |
|
return -1; |
|
} |
|
|
|
close(fd); |
|
|
|
return ret; |
|
} |
|
|
|
int ar_select_motor(int fd, uint8_t motor) |
|
{ |
|
int ret = 0; |
|
unsigned long gpioset; |
|
/* |
|
* Four GPIOS: |
|
* GPIO_EXT1 |
|
* GPIO_EXT2 |
|
* GPIO_UART2_CTS |
|
* GPIO_UART2_RTS |
|
*/ |
|
|
|
/* select motor 0 to enable broadcast */ |
|
if (motor == 0) { |
|
/* select motor 1-4 */ |
|
ret += ioctl(fd, GPIO_CLEAR, motor_gpios); |
|
|
|
} else { |
|
/* deselect all */ |
|
ret += ioctl(fd, GPIO_SET, motor_gpios); |
|
|
|
/* select reqested motor */ |
|
ret += ioctl(fd, GPIO_CLEAR, motor_gpio[motor - 1]); |
|
|
|
/* deselect all others */ |
|
// gpioset = motor_gpios ^ motor_gpio[motor - 1]; |
|
// ret += ioctl(fd, GPIO_SET, gpioset); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int ar_init_motors(int ardrone_uart, int *gpios_pin) |
|
{ |
|
/* Initialize multiplexing */ |
|
*gpios_pin = ar_multiplexing_init(); |
|
|
|
/* Write ARDrone commands on UART2 */ |
|
uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40}; |
|
uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0}; |
|
|
|
/* initialize all motors |
|
* - select one motor at a time |
|
* - configure motor |
|
*/ |
|
int i; |
|
int errcounter = 0; |
|
|
|
for (i = 1; i < 5; ++i) { |
|
/* Initialize motors 1-4 */ |
|
initbuf[3] = i; |
|
errcounter += ar_select_motor(*gpios_pin, i); |
|
|
|
write(ardrone_uart, initbuf + 0, 1); |
|
|
|
/* sleep 400 ms */ |
|
usleep(200000); |
|
usleep(200000); |
|
|
|
write(ardrone_uart, initbuf + 1, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
write(ardrone_uart, initbuf + 2, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
write(ardrone_uart, initbuf + 3, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
write(ardrone_uart, initbuf + 4, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
/* enable multicast */ |
|
write(ardrone_uart, multicastbuf + 0, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 1, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 2, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 3, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 4, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 5, 1); |
|
/* wait 5 ms */ |
|
usleep(50000); |
|
} |
|
|
|
/* start the multicast part */ |
|
errcounter += ar_select_motor(*gpios_pin, 0); |
|
|
|
if (errcounter != 0) { |
|
fprintf(stderr, "[ar motors] init sequence incomplete, failed %d times", -errcounter); |
|
fflush(stdout); |
|
} |
|
return errcounter; |
|
} |
|
|
|
/* |
|
* Sets the leds on the motor controllers, 1 turns led on, 0 off. |
|
*/ |
|
void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green, uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green) |
|
{ |
|
/* |
|
* 2 bytes are sent. The first 3 bits describe the command: 011 means led control |
|
* the following 4 bits are the red leds for motor 4, 3, 2, 1 |
|
* then 4 bits with unknown function, then 4 bits for green leds for motor 4, 3, 2, 1 |
|
* the last bit is unknown. |
|
* |
|
* The packet is therefore: |
|
* 011 rrrr 0000 gggg 0 |
|
*/ |
|
uint8_t leds[2]; |
|
leds[0] = 0x60 | ((led4_red & 0x01) << 4) | ((led3_red & 0x01) << 3) | ((led2_red & 0x01) << 2) | ((led1_red & 0x01) << 1); |
|
leds[1] = ((led4_green & 0x01) << 4) | ((led3_green & 0x01) << 3) | ((led2_green & 0x01) << 2) | ((led1_green & 0x01) << 1); |
|
write(ardrone_uart, leds, 2); |
|
} |
|
|
|
int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) { |
|
const int min_motor_interval = 20000; |
|
static uint64_t last_motor_time = 0; |
|
if (hrt_absolute_time() - last_motor_time > min_motor_interval) { |
|
uint8_t buf[5] = {0}; |
|
ar_get_motor_packet(buf, motor1, motor2, motor3, motor4); |
|
int ret; |
|
if ((ret = write(ardrone_fd, buf, sizeof(buf))) > 0) { |
|
return OK; |
|
} else { |
|
return ret; |
|
} |
|
} else { |
|
return -ERROR; |
|
} |
|
}
|
|
|