You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
355 lines
14 KiB
355 lines
14 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2008-2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Julian Oes <joes@student.ethz.ch> |
|
* @author Laurens Mackay <mackayl@student.ethz.ch> |
|
* @author Tobias Naegeli <naegelit@student.ethz.ch> |
|
* @author Martin Rutschmann <rutmarti@student.ethz.ch> |
|
* @author Lorenz Meier <lm@inf.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/* |
|
* @file attitude_control.c |
|
* Implementation of attitude controller |
|
*/ |
|
|
|
#include "attitude_control.h" |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include "ardrone_motor_control.h" |
|
#include <float.h> |
|
#include <math.h> |
|
#include "pid.h" |
|
#include <arch/board/up_hrt.h> |
|
|
|
#define MAX_MOTOR_COUNT 16 |
|
|
|
void multirotor_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, |
|
const struct vehicle_attitude_s *att, const struct vehicle_status_s *status, |
|
struct actuator_controls_s *actuators, bool verbose) |
|
{ |
|
static uint64_t last_run = 0; |
|
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; |
|
last_run = hrt_absolute_time(); |
|
|
|
static int motor_skip_counter = 0; |
|
|
|
static PID_t yaw_pos_controller; |
|
static PID_t yaw_speed_controller; |
|
static PID_t pitch_controller; |
|
static PID_t roll_controller; |
|
|
|
static float pid_yawpos_lim; |
|
static float pid_yawspeed_lim; |
|
static float pid_att_lim; |
|
|
|
static bool initialized = false; |
|
|
|
/* initialize the pid controllers when the function is called for the first time */ |
|
if (initialized == false) { |
|
|
|
pid_init(&yaw_pos_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU], |
|
PID_MODE_DERIVATIV_CALC, 154); |
|
|
|
pid_init(&yaw_speed_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU], |
|
PID_MODE_DERIVATIV_CALC, 155); |
|
|
|
pid_init(&pitch_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU], |
|
PID_MODE_DERIVATIV_SET, 156); |
|
|
|
pid_init(&roll_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU], |
|
PID_MODE_DERIVATIV_SET, 157); |
|
|
|
pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM]; |
|
pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM]; |
|
pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM]; |
|
|
|
initialized = true; |
|
} |
|
|
|
/* load new parameters with lower rate */ |
|
if (motor_skip_counter % 50 == 0) { |
|
pid_set_parameters(&yaw_pos_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU]); |
|
|
|
pid_set_parameters(&yaw_speed_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU]); |
|
|
|
pid_set_parameters(&pitch_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]); |
|
|
|
pid_set_parameters(&roll_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]); |
|
|
|
pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM]; |
|
pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM]; |
|
pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM]; |
|
} |
|
|
|
/*Calculate Controllers*/ |
|
//control Nick |
|
float pitch_control = pid_calculate(&pitch_controller, att_sp->pitch_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_YOFFSET], |
|
att->pitch, att->pitchspeed, deltaT); |
|
//control Roll |
|
float roll_control = pid_calculate(&roll_controller, att_sp->roll_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_XOFFSET], |
|
att->roll, att->rollspeed, deltaT); |
|
//control Yaw Speed |
|
float yaw_rate_control = pid_calculate(&yaw_speed_controller, att_sp->yaw_body, att->yawspeed, 0.0f, deltaT); //attitude_setpoint_bodyframe.z is yaw speed! |
|
|
|
/* |
|
* compensate the vertical loss of thrust |
|
* when thrust plane has an angle. |
|
* start with a factor of 1.0 (no change) |
|
*/ |
|
float zcompensation = 1.0f; |
|
|
|
if (fabsf(att->roll) > 1.0f) { |
|
zcompensation *= 1.85081571768f; |
|
|
|
} else { |
|
zcompensation *= 1.0f / cosf(att->roll); |
|
} |
|
|
|
if (fabsf(att->pitch) > 1.0f) { |
|
zcompensation *= 1.85081571768f; |
|
|
|
} else { |
|
zcompensation *= 1.0f / cosf(att->pitch); |
|
} |
|
|
|
float motor_thrust = 0.0f; |
|
|
|
// FLYING MODES |
|
motor_thrust = att_sp->thrust; |
|
|
|
//printf("mot0: %3.1f\n", motor_thrust); |
|
|
|
/* compensate thrust vector for roll / pitch contributions */ |
|
motor_thrust *= zcompensation; |
|
|
|
/* limit yaw rate output */ |
|
if (yaw_rate_control > pid_yawspeed_lim) { |
|
yaw_rate_control = pid_yawspeed_lim; |
|
yaw_speed_controller.saturated = 1; |
|
} |
|
|
|
if (yaw_rate_control < -pid_yawspeed_lim) { |
|
yaw_rate_control = -pid_yawspeed_lim; |
|
yaw_speed_controller.saturated = 1; |
|
} |
|
|
|
if (pitch_control > pid_att_lim) { |
|
pitch_control = pid_att_lim; |
|
pitch_controller.saturated = 1; |
|
} |
|
|
|
if (pitch_control < -pid_att_lim) { |
|
pitch_control = -pid_att_lim; |
|
pitch_controller.saturated = 1; |
|
} |
|
|
|
|
|
if (roll_control > pid_att_lim) { |
|
roll_control = pid_att_lim; |
|
roll_controller.saturated = 1; |
|
} |
|
|
|
if (roll_control < -pid_att_lim) { |
|
roll_control = -pid_att_lim; |
|
roll_controller.saturated = 1; |
|
} |
|
|
|
actuators->control[0] = roll_control; |
|
actuators->control[1] = pitch_control; |
|
actuators->control[2] = yaw_rate_control; |
|
actuators->control[3] = motor_thrust; |
|
} |
|
|
|
void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators, bool verbose) { |
|
|
|
float roll_control = actuators->control[0]; |
|
float pitch_control = actuators->control[1]; |
|
float yaw_control = actuators->control[2]; |
|
float motor_thrust = actuators->control[3]; |
|
|
|
unsigned int motor_skip_counter = 0; |
|
|
|
const float min_thrust = 0.02f; /**< 2% minimum thrust */ |
|
const float max_thrust = 1.0f; /**< 100% max thrust */ |
|
const float scaling = 512.0f; /**< 100% thrust equals a value of 512 */ |
|
|
|
const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */ |
|
const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */ |
|
|
|
/* initialize all fields to zero */ |
|
uint16_t motor_pwm[MAX_MOTOR_COUNT] = {0}; |
|
float motor_calc[MAX_MOTOR_COUNT] = {0}; |
|
|
|
float output_band = 0.0f; |
|
float band_factor = 0.75f; |
|
const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */ |
|
float yaw_factor = 1.0f; |
|
|
|
if (motor_thrust <= min_thrust) { |
|
motor_thrust = min_thrust; |
|
output_band = 0.0f; |
|
|
|
} else if (motor_thrust < startpoint_full_control && motor_thrust > min_thrust) { |
|
output_band = band_factor * (motor_thrust - min_thrust); |
|
|
|
} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_thrust - band_factor * startpoint_full_control) { |
|
output_band = band_factor * startpoint_full_control; |
|
|
|
} else if (motor_thrust >= max_thrust - band_factor * startpoint_full_control) { |
|
output_band = band_factor * (max_thrust - motor_thrust); |
|
} |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("1: mot1: %3.1f band: %3.1f r: %3.1f n: %3.1f y: %3.1f\n", (double)motor_thrust, (double)output_band, (double)roll_control, (double)pitch_control, (double)yaw_control); |
|
} |
|
|
|
//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer |
|
|
|
// FRONT (MOTOR 1) |
|
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control); |
|
|
|
// RIGHT (MOTOR 2) |
|
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control); |
|
|
|
// BACK (MOTOR 3) |
|
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control); |
|
|
|
// LEFT (MOTOR 4) |
|
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control); |
|
|
|
// if we are not in the output band |
|
if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band |
|
&& motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band |
|
&& motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band |
|
&& motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) { |
|
|
|
yaw_factor = 0.5f; |
|
// FRONT (MOTOR 1) |
|
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control * yaw_factor); |
|
|
|
// RIGHT (MOTOR 2) |
|
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control * yaw_factor); |
|
|
|
// BACK (MOTOR 3) |
|
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control * yaw_factor); |
|
|
|
// LEFT (MOTOR 4) |
|
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control * yaw_factor); |
|
} |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("2: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]); |
|
} |
|
|
|
for (int i = 0; i < 4; i++) { |
|
//check for limits |
|
if (motor_calc[i] < motor_thrust - output_band) { |
|
motor_calc[i] = motor_thrust - output_band; |
|
} |
|
|
|
if (motor_calc[i] > motor_thrust + output_band) { |
|
motor_calc[i] = motor_thrust + output_band; |
|
} |
|
} |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("3: band lim: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]); |
|
} |
|
|
|
/* set the motor values */ |
|
|
|
/* scale up from 0..1 to 10..512) */ |
|
motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas); |
|
motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas); |
|
motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas); |
|
motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas); |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("4: scaled: m1: %d m2: %d m3: %d m4: %d\n", motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); |
|
} |
|
|
|
/* Keep motors spinning while armed and prevent overflows */ |
|
|
|
/* Failsafe logic - should never be necessary */ |
|
motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10; |
|
motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10; |
|
motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10; |
|
motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10; |
|
|
|
/* Failsafe logic - should never be necessary */ |
|
motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512; |
|
motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512; |
|
motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512; |
|
motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512; |
|
|
|
/* send motors via UART */ |
|
if (verbose && motor_skip_counter % 100 == 0) printf("5: mot: %3.1f-%i-%i-%i-%i\n\n", (double)motor_thrust, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); |
|
ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); |
|
|
|
motor_skip_counter++; |
|
}
|
|
|