You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
967 lines
26 KiB
967 lines
26 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Lorenz Meier <lm@inf.ethz.ch> |
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Julian Oes <joes@student.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file sensors.cpp |
|
* |
|
* Sensor readout process. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <fcntl.h> |
|
#include <sys/prctl.h> |
|
#include <poll.h> |
|
#include <nuttx/analog/adc.h> |
|
#include <unistd.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <stdbool.h> |
|
#include <stdio.h> |
|
#include <errno.h> |
|
#include <float.h> |
|
|
|
#include <arch/board/up_hrt.h> |
|
#include <arch/board/drv_bma180.h> |
|
#include <arch/board/drv_l3gd20.h> |
|
|
|
#include <drivers/drv_accel.h> |
|
#include <drivers/drv_gyro.h> |
|
#include <drivers/drv_mag.h> |
|
#include <drivers/drv_baro.h> |
|
|
|
#include <arch/board/up_adc.h> |
|
|
|
#include <systemlib/systemlib.h> |
|
#include <systemlib/param/param.h> |
|
#include <systemlib/err.h> |
|
#include <systemlib/perf_counter.h> |
|
|
|
#include <uORB/uORB.h> |
|
#include <uORB/topics/sensor_combined.h> |
|
#include <uORB/topics/rc_channels.h> |
|
#include <uORB/topics/manual_control_setpoint.h> |
|
#include <uORB/topics/vehicle_status.h> |
|
|
|
#include "sensors.h" |
|
|
|
#define SENSOR_INTERVAL_MICROSEC 2000 |
|
|
|
#define GYRO_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */ |
|
#define ACC_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */ |
|
#define MAGN_HEALTH_COUNTER_LIMIT_ERROR 100 /* 1000 ms downtime at 100 Hz update rate */ |
|
#define BARO_HEALTH_COUNTER_LIMIT_ERROR 50 /* 500 ms downtime at 100 Hz update rate */ |
|
#define ADC_HEALTH_COUNTER_LIMIT_ERROR 10 /* 100 ms downtime at 100 Hz update rate */ |
|
|
|
#define GYRO_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define ACC_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define MAGN_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define BARO_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define ADC_HEALTH_COUNTER_LIMIT_OK 5 |
|
|
|
#define ADC_BATTERY_VOLATGE_CHANNEL 10 |
|
|
|
#define BAT_VOL_INITIAL 12.f |
|
#define BAT_VOL_LOWPASS_1 0.99f |
|
#define BAT_VOL_LOWPASS_2 0.01f |
|
#define VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS 3.5f |
|
|
|
#ifdef CONFIG_HRT_PPM |
|
extern "C" { |
|
extern uint16_t ppm_buffer[]; |
|
extern unsigned ppm_decoded_channels; |
|
extern uint64_t ppm_last_valid_decode; |
|
} |
|
|
|
/* PPM Settings */ |
|
# define PPM_MIN 1000 |
|
# define PPM_MAX 2000 |
|
/* Internal resolution is 10000 */ |
|
# define PPM_SCALE 10000/((PPM_MAX-PPM_MIN)/2) |
|
# define PPM_MID (PPM_MIN+PPM_MAX)/2 |
|
#endif |
|
|
|
/** |
|
* Sensor app start / stop handling function |
|
* |
|
* @ingroup apps |
|
*/ |
|
extern "C" __EXPORT int sensors_main(int argc, char *argv[]); |
|
|
|
class Sensors |
|
{ |
|
public: |
|
Sensors(); |
|
~Sensors(); |
|
|
|
int start(); |
|
void stop(); |
|
|
|
private: |
|
static const unsigned _rc_max_chan_count = 8; |
|
|
|
/* legacy sensor descriptors */ |
|
int _fd_bma180; |
|
int _fd_gyro_l3gd20; |
|
|
|
#if CONFIG_HRT_PPM |
|
hrt_abstime _ppm_last_valid; |
|
void ppm_poll(); |
|
#endif |
|
|
|
/* XXX should not be here */ |
|
int _fd_adc; |
|
|
|
bool _task_should_exit; |
|
int _sensors_task; |
|
|
|
bool _hil_enabled; |
|
bool _publishing; |
|
|
|
int _gyro_sub; |
|
int _accel_sub; |
|
int _mag_sub; |
|
int _baro_sub; |
|
int _vstatus_sub; |
|
|
|
orb_advert_t _sensor_pub; |
|
orb_advert_t _manual_control_pub; |
|
orb_advert_t _rc_pub; |
|
|
|
perf_counter_t _loop_perf; |
|
|
|
struct rc_channels_s _rc; |
|
|
|
struct { |
|
int min[_rc_max_chan_count]; |
|
int trim[_rc_max_chan_count]; |
|
int max[_rc_max_chan_count]; |
|
int rev[_rc_max_chan_count]; |
|
|
|
float gyro_offset[3]; |
|
float mag_offset[3]; |
|
float acc_offset[3]; |
|
|
|
int rc_type; |
|
|
|
int rc_map_roll; |
|
int rc_map_pitch; |
|
int rc_map_yaw; |
|
int rc_map_throttle; |
|
int rc_map_mode_sw; |
|
|
|
float battery_voltage_scaling; |
|
} _parameters; |
|
|
|
struct { |
|
param_t min[_rc_max_chan_count]; |
|
param_t trim[_rc_max_chan_count]; |
|
param_t max[_rc_max_chan_count]; |
|
param_t rev[_rc_max_chan_count]; |
|
param_t rc_type; |
|
|
|
param_t gyro_offset[3]; |
|
param_t mag_offset[3]; |
|
param_t acc_offset[3]; |
|
|
|
param_t rc_map_roll; |
|
param_t rc_map_pitch; |
|
param_t rc_map_yaw; |
|
param_t rc_map_throttle; |
|
param_t rc_map_mode_sw; |
|
|
|
param_t battery_voltage_scaling; |
|
} _parameter_handles; |
|
|
|
|
|
int parameters_update(); |
|
|
|
void accel_init(); |
|
void gyro_init(); |
|
void mag_init(); |
|
void baro_init(); |
|
void adc_init(); |
|
|
|
void accel_poll(struct sensor_combined_s &raw); |
|
void gyro_poll(struct sensor_combined_s &raw); |
|
void mag_poll(struct sensor_combined_s &raw); |
|
void baro_poll(struct sensor_combined_s &raw); |
|
|
|
void vehicle_status_poll(); |
|
|
|
static void task_main_trampoline(int argc, char *argv[]); |
|
void task_main() __attribute__((noreturn)); |
|
|
|
}; |
|
|
|
namespace sensors |
|
{ |
|
|
|
/* oddly, ERROR is not defined for c++ */ |
|
#ifdef ERROR |
|
# undef ERROR |
|
#endif |
|
static const int ERROR = -1; |
|
|
|
Sensors *g_sensors; |
|
} |
|
|
|
Sensors::Sensors() : |
|
_fd_bma180(-1), |
|
_fd_gyro_l3gd20(-1), |
|
_ppm_last_valid(0), |
|
|
|
_task_should_exit(false), |
|
_sensors_task(-1), |
|
_hil_enabled(false), |
|
_publishing(false), |
|
|
|
/* subscriptions */ |
|
_gyro_sub(orb_subscribe(ORB_ID(sensor_gyro))), |
|
_accel_sub(orb_subscribe(ORB_ID(sensor_accel))), |
|
_mag_sub(orb_subscribe(ORB_ID(sensor_mag))), |
|
_baro_sub(orb_subscribe(ORB_ID(sensor_baro))), |
|
_vstatus_sub(orb_subscribe(ORB_ID(vehicle_status))), |
|
|
|
/* publications */ |
|
_sensor_pub(-1), |
|
_manual_control_pub(-1), |
|
_rc_pub(-1), |
|
|
|
/* performance counters */ |
|
_loop_perf(perf_alloc(PC_ELAPSED, "sensor update")) |
|
{ |
|
/* min values */ |
|
_parameter_handles.min[0] = param_find("RC1_MIN"); |
|
_parameter_handles.min[1] = param_find("RC2_MIN"); |
|
_parameter_handles.min[2] = param_find("RC3_MIN"); |
|
_parameter_handles.min[3] = param_find("RC4_MIN"); |
|
_parameter_handles.min[4] = param_find("RC5_MIN"); |
|
_parameter_handles.min[5] = param_find("RC6_MIN"); |
|
_parameter_handles.min[6] = param_find("RC7_MIN"); |
|
_parameter_handles.min[7] = param_find("RC8_MIN"); |
|
|
|
/* trim values */ |
|
_parameter_handles.trim[0] = param_find("RC1_TRIM"); |
|
_parameter_handles.trim[1] = param_find("RC2_TRIM"); |
|
_parameter_handles.trim[2] = param_find("RC3_TRIM"); |
|
_parameter_handles.trim[3] = param_find("RC4_TRIM"); |
|
_parameter_handles.trim[4] = param_find("RC5_TRIM"); |
|
_parameter_handles.trim[5] = param_find("RC6_TRIM"); |
|
_parameter_handles.trim[6] = param_find("RC7_TRIM"); |
|
_parameter_handles.trim[7] = param_find("RC8_TRIM"); |
|
|
|
/* max values */ |
|
_parameter_handles.max[0] = param_find("RC1_MAX"); |
|
_parameter_handles.max[1] = param_find("RC2_MAX"); |
|
_parameter_handles.max[2] = param_find("RC3_MAX"); |
|
_parameter_handles.max[3] = param_find("RC4_MAX"); |
|
_parameter_handles.max[4] = param_find("RC5_MAX"); |
|
_parameter_handles.max[5] = param_find("RC6_MAX"); |
|
_parameter_handles.max[6] = param_find("RC7_MAX"); |
|
_parameter_handles.max[7] = param_find("RC8_MAX"); |
|
|
|
/* channel reverse */ |
|
_parameter_handles.rev[0] = param_find("RC1_REV"); |
|
_parameter_handles.rev[1] = param_find("RC2_REV"); |
|
_parameter_handles.rev[2] = param_find("RC3_REV"); |
|
_parameter_handles.rev[3] = param_find("RC4_REV"); |
|
_parameter_handles.rev[4] = param_find("RC5_REV"); |
|
_parameter_handles.rev[5] = param_find("RC6_REV"); |
|
_parameter_handles.rev[6] = param_find("RC7_REV"); |
|
_parameter_handles.rev[7] = param_find("RC8_REV"); |
|
|
|
_parameter_handles.rc_type = param_find("RC_TYPE"); |
|
|
|
_parameter_handles.rc_map_roll = param_find("RC_MAP_ROLL"); |
|
_parameter_handles.rc_map_pitch = param_find("RC_MAP_PITCH"); |
|
_parameter_handles.rc_map_yaw = param_find("RC_MAP_YAW"); |
|
_parameter_handles.rc_map_throttle = param_find("RC_MAP_THROTTLE"); |
|
_parameter_handles.rc_map_mode_sw = param_find("RC_MAP_MODE_SW"); |
|
|
|
/* gyro offsets */ |
|
_parameter_handles.gyro_offset[0] = param_find("SENSOR_GYRO_XOFF"); |
|
_parameter_handles.gyro_offset[1] = param_find("SENSOR_GYRO_YOFF"); |
|
_parameter_handles.gyro_offset[2] = param_find("SENSOR_GYRO_ZOFF"); |
|
|
|
/* accel offsets */ |
|
_parameter_handles.acc_offset[0] = param_find("SENSOR_ACC_XOFF"); |
|
_parameter_handles.acc_offset[1] = param_find("SENSOR_ACC_YOFF"); |
|
_parameter_handles.acc_offset[2] = param_find("SENSOR_ACC_ZOFF"); |
|
|
|
/* mag offsets */ |
|
_parameter_handles.mag_offset[0] = param_find("SENSOR_MAG_XOFF"); |
|
_parameter_handles.mag_offset[1] = param_find("SENSOR_MAG_YOFF"); |
|
_parameter_handles.mag_offset[2] = param_find("SENSOR_MAG_ZOFF"); |
|
|
|
_parameter_handles.battery_voltage_scaling = param_find("BAT_V_SCALING"); |
|
|
|
/* fetch initial parameter values */ |
|
parameters_update(); |
|
} |
|
|
|
Sensors::~Sensors() |
|
{ |
|
if (_sensors_task != -1) { |
|
|
|
/* task wakes up every 100ms or so at the longest */ |
|
_task_should_exit = true; |
|
|
|
unsigned i = 0; |
|
do { |
|
/* wait 20ms */ |
|
usleep(20000); |
|
|
|
/* if we have given up, kill it */ |
|
if (++i > 50) { |
|
task_delete(_sensors_task); |
|
break; |
|
} |
|
} while (_sensors_task != -1); |
|
} |
|
|
|
sensors::g_sensors = nullptr; |
|
} |
|
|
|
int |
|
Sensors::parameters_update() |
|
{ |
|
const unsigned int nchans = 8; |
|
|
|
/* min values */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(_parameter_handles.min[i], &(_parameters.min[i])); |
|
} |
|
|
|
/* trim values */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(_parameter_handles.trim[i], &(_parameters.trim[i])); |
|
} |
|
|
|
/* max values */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(_parameter_handles.max[i], &(_parameters.max[i])); |
|
} |
|
|
|
/* channel reverse */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(_parameter_handles.rev[i], &(_parameters.rev[i])); |
|
} |
|
|
|
/* remote control type */ |
|
param_get(_parameter_handles.rc_type, &(_parameters.rc_type)); |
|
|
|
/* channel mapping */ |
|
param_get(_parameter_handles.rc_map_roll, &(_parameters.rc_map_roll)); |
|
param_get(_parameter_handles.rc_map_pitch, &(_parameters.rc_map_pitch)); |
|
param_get(_parameter_handles.rc_map_yaw, &(_parameters.rc_map_yaw)); |
|
param_get(_parameter_handles.rc_map_throttle, &(_parameters.rc_map_throttle)); |
|
param_get(_parameter_handles.rc_map_mode_sw, &(_parameters.rc_map_mode_sw)); |
|
|
|
/* gyro offsets */ |
|
param_get(_parameter_handles.gyro_offset[0], &(_parameters.gyro_offset[0])); |
|
param_get(_parameter_handles.gyro_offset[1], &(_parameters.gyro_offset[1])); |
|
param_get(_parameter_handles.gyro_offset[2], &(_parameters.gyro_offset[2])); |
|
|
|
/* accel offsets */ |
|
param_get(_parameter_handles.acc_offset[0], &(_parameters.acc_offset[0])); |
|
param_get(_parameter_handles.acc_offset[1], &(_parameters.acc_offset[1])); |
|
param_get(_parameter_handles.acc_offset[2], &(_parameters.acc_offset[2])); |
|
|
|
/* mag offsets */ |
|
param_get(_parameter_handles.mag_offset[0], &(_parameters.mag_offset[0])); |
|
param_get(_parameter_handles.mag_offset[1], &(_parameters.mag_offset[1])); |
|
param_get(_parameter_handles.mag_offset[2], &(_parameters.mag_offset[2])); |
|
|
|
/* scaling of ADC ticks to battery voltage */ |
|
param_get(_parameter_handles.battery_voltage_scaling, &(_parameters.battery_voltage_scaling)); |
|
|
|
return OK; |
|
} |
|
|
|
void |
|
Sensors::accel_init() |
|
{ |
|
int fd; |
|
|
|
fd = open(ACCEL_DEVICE_PATH, 0); |
|
if (fd < 0) { |
|
warn("%s", ACCEL_DEVICE_PATH); |
|
|
|
/* fall back to bma180 here (new driver would be better...) */ |
|
_fd_bma180 = open("/dev/bma180", O_RDONLY); |
|
if (_fd_bma180 < 0) { |
|
warn("/dev/bma180"); |
|
errx(1, "FATAL: no accelerometer found"); |
|
} |
|
|
|
/* discard first (junk) reading */ |
|
int16_t junk_buf[3]; |
|
read(_fd_bma180, junk_buf, sizeof(junk_buf)); |
|
|
|
warnx("using BMA180"); |
|
} else { |
|
/* set the accel internal sampling rate up to at leat 500Hz */ |
|
if (OK != ioctl(fd, ACCELIOCSSAMPLERATE, 500)) |
|
warn("failed to set minimum 500Hz sample rate for accel"); |
|
|
|
/* set the driver to poll at 500Hz */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 500)) |
|
warn("failed to set 500Hz poll rate for accel"); |
|
|
|
warnx("using system accel"); |
|
close(fd); |
|
} |
|
} |
|
|
|
void |
|
Sensors::gyro_init() |
|
{ |
|
int fd; |
|
|
|
fd = open(GYRO_DEVICE_PATH, 0); |
|
if (fd < 0) { |
|
warn("%s", GYRO_DEVICE_PATH); |
|
|
|
/* fall back to bma180 here (new driver would be better...) */ |
|
_fd_gyro_l3gd20 = open("/dev/l3gd20", O_RDONLY); |
|
if (_fd_gyro_l3gd20 < 0) { |
|
warn("/dev/l3gd20"); |
|
errx(1, "FATAL: no gyro found"); |
|
} |
|
|
|
/* discard first (junk) reading */ |
|
int16_t junk_buf[3]; |
|
read(_fd_gyro_l3gd20, junk_buf, sizeof(junk_buf)); |
|
|
|
warn("using L3GD20"); |
|
} else { |
|
/* set the gyro internal sampling rate up to at leat 500Hz */ |
|
if (OK != ioctl(fd, GYROIOCSSAMPLERATE, 500)) |
|
warn("failed to set minimum 500Hz sample rate for gyro"); |
|
|
|
/* set the driver to poll at 500Hz */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 500)) |
|
warn("failed to set 500Hz poll rate for gyro"); |
|
|
|
warnx("using system gyro"); |
|
close(fd); |
|
} |
|
} |
|
|
|
void |
|
Sensors::mag_init() |
|
{ |
|
int fd; |
|
|
|
fd = open(MAG_DEVICE_PATH, 0); |
|
if (fd < 0) { |
|
warn("%s", MAG_DEVICE_PATH); |
|
errx(1, "FATAL: no magnetometer found"); |
|
} |
|
|
|
/* set the mag internal poll rate to at least 150Hz */ |
|
if (OK != ioctl(fd, MAGIOCSSAMPLERATE, 150)) |
|
warn("failed to set minimum 150Hz sample rate for mag"); |
|
|
|
/* set the driver to poll at 150Hz */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 150)) |
|
warn("failed to set 150Hz poll rate for mag"); |
|
|
|
close(fd); |
|
} |
|
|
|
void |
|
Sensors::baro_init() |
|
{ |
|
int fd; |
|
|
|
fd = open(BARO_DEVICE_PATH, 0); |
|
if (fd < 0) { |
|
warn("%s", BARO_DEVICE_PATH); |
|
errx(1, "FATAL: no barometer found"); |
|
} |
|
|
|
/* set the driver to poll at 150Hz */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 150)) |
|
warn("failed to set 150Hz poll rate for baro"); |
|
|
|
close(fd); |
|
} |
|
|
|
void |
|
Sensors::adc_init() |
|
{ |
|
|
|
_fd_adc = open("/dev/adc0", O_RDONLY | O_NONBLOCK); |
|
if (_fd_adc < 0) { |
|
warn("/dev/adc0"); |
|
errx(1, "FATAL: no ADC found"); |
|
} |
|
} |
|
|
|
void |
|
Sensors::accel_poll(struct sensor_combined_s &raw) |
|
{ |
|
struct accel_report accel_report; |
|
|
|
if (_fd_bma180) { |
|
/* do ORB emulation for BMA180 */ |
|
int16_t buf[3]; |
|
|
|
read(_fd_bma180, buf, sizeof(buf)); |
|
|
|
accel_report.timestamp = hrt_absolute_time(); |
|
accel_report.x_raw = buf[0]; |
|
accel_report.y_raw = buf[1]; |
|
accel_report.z_raw = buf[2]; |
|
|
|
/* XXX scale raw values to readings */ |
|
accel_report.x = 0; |
|
accel_report.y = 0; |
|
accel_report.z = 0; |
|
|
|
} else { |
|
orb_copy(ORB_ID(sensor_accel), _accel_sub, &accel_report); |
|
} |
|
|
|
raw.accelerometer_m_s2[0] = accel_report.x; |
|
raw.accelerometer_m_s2[1] = accel_report.y; |
|
raw.accelerometer_m_s2[2] = accel_report.z; |
|
|
|
raw.accelerometer_raw[0] = accel_report.x_raw; |
|
raw.accelerometer_raw[1] = accel_report.y_raw; |
|
raw.accelerometer_raw[2] = accel_report.z_raw; |
|
|
|
raw.accelerometer_raw_counter++; |
|
} |
|
|
|
void |
|
Sensors::gyro_poll(struct sensor_combined_s &raw) |
|
{ |
|
struct gyro_report gyro_report; |
|
|
|
if (_fd_gyro_l3gd20) { |
|
/* do ORB emulation for L3GD20 */ |
|
int16_t buf[3]; |
|
|
|
read(_fd_gyro_l3gd20, buf, sizeof(buf)); |
|
|
|
gyro_report.timestamp = hrt_absolute_time(); |
|
gyro_report.x_raw = buf[0]; |
|
gyro_report.y_raw = buf[1]; |
|
gyro_report.z_raw = buf[2]; |
|
|
|
/* XXX scale raw values to readings */ |
|
gyro_report.x = 0; |
|
gyro_report.y = 0; |
|
gyro_report.z = 0; |
|
} else { |
|
orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &gyro_report); |
|
|
|
raw.gyro_rad_s[0] = gyro_report.x; |
|
raw.gyro_rad_s[1] = gyro_report.y; |
|
raw.gyro_rad_s[2] = gyro_report.z; |
|
|
|
raw.gyro_raw[0] = gyro_report.x_raw; |
|
raw.gyro_raw[1] = gyro_report.y_raw; |
|
raw.gyro_raw[2] = gyro_report.z_raw; |
|
|
|
raw.gyro_raw_counter++; |
|
} |
|
} |
|
|
|
void |
|
Sensors::mag_poll(struct sensor_combined_s &raw) |
|
{ |
|
struct mag_report mag_report; |
|
|
|
orb_copy(ORB_ID(sensor_mag), _mag_sub, &mag_report); |
|
|
|
raw.magnetometer_ga[0] = mag_report.x; |
|
raw.magnetometer_ga[1] = mag_report.y; |
|
raw.magnetometer_ga[2] = mag_report.z; |
|
|
|
raw.magnetometer_raw[0] = mag_report.x_raw; |
|
raw.magnetometer_raw[1] = mag_report.y_raw; |
|
raw.magnetometer_raw[2] = mag_report.z_raw; |
|
|
|
raw.magnetometer_raw_counter++; |
|
} |
|
|
|
void |
|
Sensors::baro_poll(struct sensor_combined_s &raw) |
|
{ |
|
struct baro_report baro_report; |
|
|
|
orb_copy(ORB_ID(sensor_baro), _baro_sub, &baro_report); |
|
|
|
raw.baro_pres_mbar = baro_report.pressure; // Pressure in mbar |
|
raw.baro_alt_meter = baro_report.altitude; // Altitude in meters |
|
raw.baro_temp_celcius = baro_report.temperature; // Temperature in degrees celcius |
|
|
|
raw.baro_raw_counter++; |
|
} |
|
|
|
void |
|
Sensors::vehicle_status_poll() |
|
{ |
|
struct vehicle_status_s vstatus; |
|
bool vstatus_updated; |
|
|
|
/* Check HIL state if vehicle status has changed */ |
|
orb_check(_vstatus_sub, &vstatus_updated); |
|
if (vstatus_updated) { |
|
|
|
orb_copy(ORB_ID(vehicle_status), _vstatus_sub, &vstatus); |
|
|
|
/* switching from non-HIL to HIL mode */ |
|
//printf("[sensors] Vehicle mode: %i \t AND: %i, HIL: %i\n", vstatus.mode, vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED, hil_enabled); |
|
if (vstatus.flag_hil_enabled && !_hil_enabled) { |
|
_hil_enabled = true; |
|
_publishing = false; |
|
|
|
/* switching from HIL to non-HIL mode */ |
|
|
|
} else if (!_publishing && !_hil_enabled) { |
|
_hil_enabled = false; |
|
_publishing = true; |
|
} |
|
|
|
/* update parameters */ |
|
parameters_update(); |
|
|
|
/* Update RC scalings and function mappings */ |
|
_rc.chan[0].scaling_factor = (1.0f / ((_parameters.max[0] - _parameters.min[0]) / 2.0f) * _parameters.rev[0]); |
|
_rc.chan[0].mid = _parameters.trim[0]; |
|
|
|
_rc.chan[1].scaling_factor = (1.0f / ((_parameters.max[1] - _parameters.min[1]) / 2.0f) * _parameters.rev[1]); |
|
_rc.chan[1].mid = _parameters.trim[1]; |
|
|
|
_rc.chan[2].scaling_factor = (1.0f / ((_parameters.max[2] - _parameters.min[2]) / 2.0f) * _parameters.rev[2]); |
|
_rc.chan[2].mid = _parameters.trim[2]; |
|
|
|
_rc.chan[3].scaling_factor = (1.0f / ((_parameters.max[3] - _parameters.min[3]) / 2.0f) * _parameters.rev[3]); |
|
_rc.chan[3].mid = _parameters.trim[3]; |
|
|
|
_rc.chan[4].scaling_factor = (1.0f / ((_parameters.max[4] - _parameters.min[4]) / 2.0f) * _parameters.rev[4]); |
|
_rc.chan[4].mid = _parameters.trim[4]; |
|
|
|
_rc.chan[5].scaling_factor = (1.0f / ((_parameters.max[5] - _parameters.min[5]) / 2.0f) * _parameters.rev[5]); |
|
_rc.chan[5].mid = _parameters.trim[5]; |
|
|
|
_rc.chan[6].scaling_factor = (1.0f / ((_parameters.max[6] - _parameters.min[6]) / 2.0f) * _parameters.rev[6]); |
|
_rc.chan[6].mid = _parameters.trim[6]; |
|
|
|
_rc.chan[7].scaling_factor = (1.0f / ((_parameters.max[7] - _parameters.min[7]) / 2.0f) * _parameters.rev[7]); |
|
_rc.chan[7].mid = _parameters.trim[7]; |
|
|
|
_rc.function[0] = _parameters.rc_map_throttle - 1; |
|
_rc.function[1] = _parameters.rc_map_roll - 1; |
|
_rc.function[2] = _parameters.rc_map_pitch - 1; |
|
_rc.function[3] = _parameters.rc_map_yaw - 1; |
|
_rc.function[4] = _parameters.rc_map_mode_sw - 1; |
|
} |
|
} |
|
|
|
#if CONFIG_HRT_PPM |
|
void |
|
Sensors::ppm_poll() |
|
{ |
|
struct manual_control_setpoint_s manual_control; |
|
|
|
/* check to see whether a new frame has been decoded */ |
|
if (_ppm_last_valid == ppm_last_valid_decode) |
|
return; |
|
/* require at least two chanels to consider the signal valid */ |
|
if (ppm_decoded_channels < 2) |
|
return; |
|
|
|
/* we are accepting this decode */ |
|
_ppm_last_valid = ppm_last_valid_decode; |
|
|
|
/* Read out values from HRT */ |
|
for (unsigned int i = 0; i < ppm_decoded_channels; i++) { |
|
_rc.chan[i].raw = ppm_buffer[i]; |
|
/* Set the range to +-, then scale up */ |
|
_rc.chan[i].scale = (ppm_buffer[i] - _rc.chan[i].mid) * _rc.chan[i].scaling_factor * 10000; |
|
_rc.chan[i].scaled = (ppm_buffer[i] - _rc.chan[i].mid) * _rc.chan[i].scaling_factor; |
|
} |
|
|
|
_rc.chan_count = ppm_decoded_channels; |
|
_rc.timestamp = ppm_last_valid_decode; |
|
|
|
/* roll input */ |
|
manual_control.roll = _rc.chan[_rc.function[ROLL]].scaled; |
|
if (manual_control.roll < -1.0f) manual_control.roll = -1.0f; |
|
if (manual_control.roll > 1.0f) manual_control.roll = 1.0f; |
|
|
|
/* pitch input */ |
|
manual_control.pitch = _rc.chan[_rc.function[PITCH]].scaled; |
|
if (manual_control.pitch < -1.0f) manual_control.pitch = -1.0f; |
|
if (manual_control.pitch > 1.0f) manual_control.pitch = 1.0f; |
|
|
|
/* yaw input */ |
|
manual_control.yaw = _rc.chan[_rc.function[YAW]].scaled; |
|
if (manual_control.yaw < -1.0f) manual_control.yaw = -1.0f; |
|
if (manual_control.yaw > 1.0f) manual_control.yaw = 1.0f; |
|
|
|
/* throttle input */ |
|
manual_control.throttle = (_rc.chan[_rc.function[THROTTLE]].scaled+1.0f)/2.0f; |
|
if (manual_control.throttle < 0.0f) manual_control.throttle = 0.0f; |
|
if (manual_control.throttle > 1.0f) manual_control.throttle = 1.0f; |
|
|
|
/* mode switch input */ |
|
manual_control.override_mode_switch = _rc.chan[_rc.function[OVERRIDE]].scaled; |
|
if (manual_control.override_mode_switch < -1.0f) manual_control.override_mode_switch = -1.0f; |
|
if (manual_control.override_mode_switch > 1.0f) manual_control.override_mode_switch = 1.0f; |
|
|
|
orb_publish(ORB_ID(rc_channels), _rc_pub, &_rc); |
|
orb_publish(ORB_ID(manual_control_setpoint), _manual_control_pub, &manual_control); |
|
} |
|
#endif |
|
|
|
void |
|
Sensors::task_main_trampoline(int argc, char *argv[]) |
|
{ |
|
sensors::g_sensors->task_main(); |
|
} |
|
|
|
void |
|
Sensors::task_main() |
|
{ |
|
/* inform about start */ |
|
printf("[sensors] Initializing..\n"); |
|
fflush(stdout); |
|
|
|
/* start individual sensors */ |
|
accel_init(); |
|
gyro_init(); |
|
mag_init(); |
|
baro_init(); |
|
adc_init(); |
|
|
|
#pragma pack(push,1) |
|
struct adc_msg4_s { |
|
uint8_t am_channel1; /**< The 8-bit ADC Channel 1 */ |
|
int32_t am_data1; /**< ADC convert result 1 (4 bytes) */ |
|
uint8_t am_channel2; /**< The 8-bit ADC Channel 2 */ |
|
int32_t am_data2; /**< ADC convert result 2 (4 bytes) */ |
|
uint8_t am_channel3; /**< The 8-bit ADC Channel 3 */ |
|
int32_t am_data3; /**< ADC convert result 3 (4 bytes) */ |
|
uint8_t am_channel4; /**< The 8-bit ADC Channel 4 */ |
|
int32_t am_data4; /**< ADC convert result 4 (4 bytes) */ |
|
}; |
|
#pragma pack(pop) |
|
|
|
struct adc_msg4_s buf_adc; |
|
size_t adc_readsize = 1 * sizeof(struct adc_msg4_s); |
|
|
|
struct sensor_combined_s raw; |
|
raw.timestamp = hrt_absolute_time(); |
|
raw.battery_voltage_v = BAT_VOL_INITIAL; |
|
raw.adc_voltage_v[0] = 0.9f; |
|
raw.adc_voltage_v[1] = 0.0f; |
|
raw.adc_voltage_v[2] = 0.0f; |
|
raw.battery_voltage_counter = 0; |
|
raw.battery_voltage_valid = false; |
|
|
|
/* get a set of initial values */ |
|
accel_poll(raw); |
|
gyro_poll(raw); |
|
mag_poll(raw); |
|
baro_poll(raw); |
|
|
|
/* advertise the sensor_combined topic and make the initial publication */ |
|
_sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw); |
|
|
|
/* advertise the manual_control topic */ |
|
{ |
|
struct manual_control_setpoint_s manual_control; |
|
manual_control.mode = ROLLPOS_PITCHPOS_YAWRATE_THROTTLE; |
|
manual_control.roll = 0.0f; |
|
manual_control.pitch = 0.0f; |
|
manual_control.yaw = 0.0f; |
|
manual_control.throttle = 0.0f; |
|
|
|
_manual_control_pub = orb_advertise(ORB_ID(manual_control_setpoint), &manual_control); |
|
} |
|
|
|
/* advertise the rc topic */ |
|
{ |
|
struct rc_channels_s rc; |
|
memset(&rc, 0, sizeof(rc)); |
|
_rc_pub = orb_advertise(ORB_ID(rc_channels), &rc); |
|
} |
|
|
|
/* rate limit vehicle status updates to 5Hz */ |
|
orb_set_interval(_vstatus_sub, 200); |
|
|
|
/* wakeup sources */ |
|
struct pollfd fds[1]; |
|
|
|
/* use the gyro to pace output - XXX BROKEN if we are using the L3GD20 */ |
|
fds[0].fd = _gyro_sub; |
|
fds[0].events = POLLIN; |
|
|
|
while (!_task_should_exit) { |
|
|
|
/* wait for up to 500ms for data */ |
|
int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); |
|
|
|
/* timed out - periodic check for _task_should_exit, etc. */ |
|
if (pret == 0) |
|
continue; |
|
|
|
/* this is undesirable but not much we can do - might want to flag unhappy status */ |
|
if (pret < 0) { |
|
warn("poll error"); |
|
continue; |
|
} |
|
|
|
perf_begin(_loop_perf); |
|
|
|
/* check vehicle status for changes to publication state */ |
|
vehicle_status_poll(); |
|
|
|
/* store the time closest to all measurements (this is bogus, sensor timestamps should be propagated...) */ |
|
raw.timestamp = hrt_absolute_time(); |
|
|
|
/* copy most recent sensor data */ |
|
accel_poll(raw); |
|
gyro_poll(raw); |
|
mag_poll(raw); |
|
baro_poll(raw); |
|
|
|
/* check battery voltage */ |
|
/* XXX move to function */ |
|
|
|
static uint64_t last_adc = 0; |
|
/* ADC */ |
|
if (hrt_absolute_time() - last_adc >= 10000) { |
|
read(_fd_adc, &buf_adc, adc_readsize); |
|
|
|
if (ADC_BATTERY_VOLATGE_CHANNEL == buf_adc.am_channel1) { |
|
/* Voltage in volts */ |
|
raw.battery_voltage_v = (BAT_VOL_LOWPASS_1 * (raw.battery_voltage_v + BAT_VOL_LOWPASS_2 * (buf_adc.am_data1 * _parameters.battery_voltage_scaling))); |
|
|
|
if ((buf_adc.am_data1 * _parameters.battery_voltage_scaling) < VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) { |
|
raw.battery_voltage_valid = false; |
|
raw.battery_voltage_v = 0.f; |
|
|
|
} else { |
|
raw.battery_voltage_valid = true; |
|
} |
|
|
|
raw.battery_voltage_counter++; |
|
} |
|
last_adc = hrt_absolute_time(); |
|
} |
|
|
|
/* Inform other processes that new data is available to copy */ |
|
if (_publishing) |
|
orb_publish(ORB_ID(sensor_combined), _sensor_pub, &raw); |
|
|
|
#ifdef CONFIG_HRT_PPM |
|
ppm_poll(); |
|
#endif |
|
|
|
perf_end(_loop_perf); |
|
} |
|
|
|
printf("[sensors] exiting.\n"); |
|
|
|
_sensors_task = -1; |
|
_exit(0); |
|
} |
|
|
|
int |
|
Sensors::start() |
|
{ |
|
ASSERT(_sensors_task == -1); |
|
|
|
/* start the task */ |
|
_sensors_task = task_create("sensors", |
|
SCHED_PRIORITY_MAX - 5, |
|
4096, |
|
(main_t)&Sensors::task_main_trampoline, |
|
nullptr); |
|
|
|
if (_sensors_task < 0) { |
|
warn("task start failed"); |
|
return -errno; |
|
} |
|
return OK; |
|
} |
|
|
|
int sensors_main(int argc, char *argv[]) |
|
{ |
|
if (argc < 1) |
|
errx(1, "usage: sensors {start|stop|status}"); |
|
|
|
if (!strcmp(argv[1], "start")) { |
|
|
|
if (sensors::g_sensors != nullptr) |
|
errx(1, "sensors task already running"); |
|
|
|
sensors::g_sensors = new Sensors; |
|
if (sensors::g_sensors == nullptr) |
|
errx(1, "sensors task alloc failed"); |
|
|
|
if (OK != sensors::g_sensors->start()) |
|
err(1, "sensors task start failed"); |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "stop")) { |
|
if (sensors::g_sensors == nullptr) |
|
errx(1, "sensors task not running"); |
|
delete sensors::g_sensors; |
|
sensors::g_sensors = nullptr; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "status")) { |
|
if (sensors::g_sensors) { |
|
errx(0, "task is running"); |
|
} else { |
|
errx(1, "task is not running"); |
|
} |
|
} |
|
|
|
errx(1, "unrecognized command"); |
|
} |
|
|
|
|