You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
19 KiB
532 lines
19 KiB
/**************************************************************************** |
|
* graphics/nxglib/nxglib_splitline.c |
|
* |
|
* Copyright (C) 2011-2012 Gregory Nutt. All rights reserved. |
|
* Author: Gregory Nutt <gnutt@nuttx.org> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name NuttX nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Included Files |
|
****************************************************************************/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <string.h> |
|
#include <errno.h> |
|
#include <stdlib.h> |
|
#include <debug.h> |
|
|
|
#include <nuttx/nx/nxglib.h> |
|
|
|
/**************************************************************************** |
|
* Pre-Processor Definitions |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Private Types |
|
****************************************************************************/ |
|
|
|
struct b16point_s |
|
{ |
|
b16_t x; |
|
b16_t y; |
|
}; |
|
|
|
/**************************************************************************** |
|
* Private Data |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Public Data |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Private Functions |
|
****************************************************************************/ |
|
|
|
static b16_t nxgl_interpolate(b16_t x, b16_t dy, b16_t dxdy) |
|
{ |
|
b16_t dx = b16mulb16(dy, dxdy); |
|
return x + dx; |
|
} |
|
|
|
/**************************************************************************** |
|
* Public Functions |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Name: nxgl_splitline |
|
* |
|
* Description: |
|
* In the general case, a line with width can be represented as a |
|
* parallelogram with a triangle at the top and bottom. Triangles and |
|
* parallelograms are both degenerate versions of a trapeziod. This |
|
* function breaks a wide line into triangles and trapezoids. This |
|
* function also detects other degenerate cases: |
|
* |
|
* 1. If y1 == y2 then the line is horizontal and is better represented |
|
* as a rectangle. |
|
* 2. If x1 == x2 then the line is vertical and also better represented |
|
* as a rectangle. |
|
* 3. If the width of the line is 1, then there are no triangles at the |
|
* top and bottome (this may also be the case if the width is narrow |
|
* and the line is near vertical). |
|
* 4. If the line is oriented is certain angles, it may consist only of |
|
* the upper and lower triangles with no trapezoid in between. In |
|
* this case, 3 trapezoids will be returned, but traps[1] will be |
|
* degenerate. |
|
* |
|
* Input parameters: |
|
* vector - A pointer to the vector described the line to be drawn. |
|
* traps - A pointer to a array of trapezoids (size 3). |
|
* rect - A pointer to a rectangle. |
|
* |
|
* Returned value: |
|
* 0: Line successfully broken up into three trapezoids. Values in |
|
* traps[0], traps[1], and traps[2] are valid. |
|
* 1: Line successfully represented by one trapezoid. Value in traps[1] |
|
* is valid. |
|
* 2: Line successfully represented by one rectangle. Value in rect is |
|
* valid |
|
* <0: On errors, a negated errno value is returned. |
|
* |
|
****************************************************************************/ |
|
|
|
int nxgl_splitline(FAR struct nxgl_vector_s *vector, |
|
FAR struct nxgl_trapezoid_s *traps, |
|
FAR struct nxgl_rect_s *rect, |
|
nxgl_coord_t linewidth) |
|
{ |
|
struct nxgl_vector_s line; |
|
nxgl_coord_t iheight; |
|
nxgl_coord_t iwidth; |
|
nxgl_coord_t iyoffset; |
|
struct b16point_s quad[4]; |
|
b16_t b16xoffset; |
|
b16_t b16yoffset; |
|
b16_t b16dxdy; |
|
b16_t angle; |
|
b16_t cosangle; |
|
b16_t sinangle; |
|
b16_t b16x; |
|
b16_t b16y; |
|
|
|
gvdbg("vector: (%d,%d)->(%d,%d) linewidth: %d\n", |
|
vector->pt1.x, vector->pt1.y, vector->pt2.x, vector->pt2.y, linewidth); |
|
|
|
/* First, check the linewidth */ |
|
|
|
if (linewidth < 1) |
|
{ |
|
return -EINVAL; |
|
} |
|
|
|
/* Then make sure that the start position of the line is above the end |
|
* position of the line... in raster order. |
|
*/ |
|
|
|
if (vector->pt1.y < vector->pt2.y) |
|
{ |
|
/* Vector is already in raster order */ |
|
|
|
memcpy(&line, vector, sizeof(struct nxgl_vector_s)); |
|
} |
|
else if (vector->pt1.y > vector->pt2.y) |
|
{ |
|
/* Swap the top and bottom */ |
|
|
|
line.pt1.x = vector->pt2.x; |
|
line.pt1.y = vector->pt2.y; |
|
line.pt2.x = vector->pt1.x; |
|
line.pt2.y = vector->pt1.y; |
|
} |
|
else /* if (vector->pt1.y == vector->pt2.y) */ |
|
{ |
|
/* First degenerate case: The line is horizontal. */ |
|
|
|
if (vector->pt1.x < vector->pt2.x) |
|
{ |
|
rect->pt1.x = vector->pt1.x; |
|
rect->pt2.x = vector->pt2.x; |
|
} |
|
else |
|
{ |
|
rect->pt1.x = vector->pt2.x; |
|
rect->pt2.x = vector->pt1.x; |
|
} |
|
|
|
/* The height of the rectangle is the width of the line, half above |
|
* and half below. |
|
*/ |
|
|
|
rect->pt1.y = vector->pt1.y - (linewidth >> 1); |
|
rect->pt2.y = rect->pt1.y + linewidth - 1; |
|
|
|
gvdbg("Horizontal rect: (%d,%d),(%d,%d)\n", |
|
rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y); |
|
|
|
return 2; |
|
} |
|
|
|
/* Check if the line is vertical */ |
|
|
|
if (line.pt1.x == line.pt2.x) |
|
{ |
|
/* Second degenerate case: The line is vertical. */ |
|
|
|
rect->pt1.y = line.pt1.y; |
|
rect->pt2.y = line.pt2.y; |
|
|
|
rect->pt1.x = line.pt1.x - (linewidth >> 1); |
|
rect->pt2.x = rect->pt1.x + linewidth - 1; |
|
|
|
gvdbg("Vertical rect: (%d,%d),(%d,%d)\n", |
|
rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y); |
|
|
|
return 2; |
|
} |
|
|
|
/* The final degenerate case */ |
|
|
|
if (linewidth == 1 && |
|
abs(line.pt2.x - line.pt1.x) < (line.pt2.y - line.pt1.y)) |
|
{ |
|
/* A close to vertical line of width 1 is basically |
|
* a single parallelogram of width 1. |
|
*/ |
|
|
|
traps[1].top.x1 = itob16(line.pt1.x); |
|
traps[1].top.x2 = traps[1].top.x1; |
|
traps[1].top.y = line.pt1.y; |
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x); |
|
traps[1].bot.x2 = traps[1].bot.x1; |
|
traps[1].bot.y = line.pt2.y; |
|
|
|
gvdbg("Vertical traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n", |
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
|
|
|
return 1; |
|
} |
|
|
|
/* Okay, then what remains is interesting. |
|
* |
|
* iheight = |y2 - y1| |
|
* iwidth = |x2 - x1| |
|
*/ |
|
|
|
iheight = line.pt2.y - line.pt1.y + 1; |
|
if (line.pt1.x < line.pt2.x) |
|
{ |
|
iwidth = line.pt2.x - line.pt1.x + 1; |
|
} |
|
else |
|
{ |
|
iwidth = line.pt1.x - line.pt2.x + 1; |
|
} |
|
|
|
/* Applying the line width to the line results in a rotated, rectangle. |
|
* Get the Y offset from an end of the original thin line to a corner of the fat line. |
|
* |
|
* Angle of line: angle = atan2(iheight, iwidth) |
|
* Y offset from line: b16yoffset = linewidth * cos(angle) |
|
* |
|
* For near verical lines, b16yoffset is be nearly zero. For near horizontal |
|
* lines, b16yOffset is be about the same as linewidth. |
|
*/ |
|
|
|
angle = b16atan2(itob16(iheight), itob16(iwidth)); |
|
cosangle = b16cos(angle); |
|
b16yoffset = (linewidth * cosangle + 1) >> 1; |
|
|
|
/* Get the X offset from an end of the original thin line to a corner of the fat line. |
|
* |
|
* For near vertical lines, b16xoffset is about the same as linewidth. For near |
|
* horizontal lines, b16xoffset is nearly zero. |
|
*/ |
|
|
|
sinangle = b16sin(angle); |
|
b16xoffset = (linewidth * sinangle + 1) >> 1; |
|
|
|
gvdbg("height: %d width: %d angle: %08x b16yoffset: %08x b16xoffset: %08x\n", |
|
iheight, iwidth, angle, b16yoffset, b16xoffset); |
|
|
|
/* Now we know all four points of the rotated rectangle */ |
|
|
|
iyoffset = b16toi(b16yoffset + b16HALF); |
|
if (iyoffset > 0) |
|
{ |
|
/* Get the Y positions of each point */ |
|
|
|
b16y = itob16(line.pt1.y); |
|
quad[0].y = b16y - b16yoffset; |
|
quad[1].y = b16y + b16yoffset; |
|
|
|
b16y = itob16(line.pt2.y); |
|
quad[2].y = b16y - b16yoffset; |
|
quad[3].y = b16y + b16yoffset; |
|
|
|
if (line.pt1.x < line.pt2.x) |
|
{ |
|
/* Line is going "south east". Get the X positions of each point */ |
|
|
|
b16x = itob16(line.pt1.x); |
|
quad[0].x = b16x + b16xoffset; |
|
quad[1].x = b16x - b16xoffset; |
|
|
|
b16x = itob16(line.pt2.x); |
|
quad[2].x = b16x + b16xoffset; |
|
quad[3].x = b16x - b16xoffset; |
|
|
|
gvdbg("Southeast: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n", |
|
quad[0].x, quad[0].y, quad[1].x, quad[1].y, |
|
quad[2].x, quad[2].y, quad[3].x, quad[3].y); |
|
|
|
/* Now we can form the trapezoids. The top of the first trapezoid |
|
* (triangle) is at quad[0] |
|
*/ |
|
|
|
traps[0].top.x1 = quad[0].x; |
|
traps[0].top.x2 = quad[0].x; |
|
traps[0].top.y = b16toi(quad[0].y + b16HALF); |
|
|
|
/* The bottom of the first trapezoid (triangle) may be either at |
|
* quad[1] or quad[2], depending upon orientation. |
|
*/ |
|
|
|
if (quad[1]. y < quad[2].y) |
|
{ |
|
/* quad[1] is at the bottom left of the triangle. Interpolate |
|
* to get the corresponding point on the right side. |
|
* |
|
* Interpolation is from quad[0] along the line quad[0]->quad[2] |
|
* which as the same slope as the line (positive) |
|
*/ |
|
|
|
b16dxdy = itob16(iwidth) / iheight; |
|
|
|
traps[0].bot.x1 = quad[1].x; |
|
traps[0].bot.x2 = nxgl_interpolate(quad[0].x, quad[1].y - quad[0].y, b16dxdy); |
|
traps[0].bot.y = b16toi(quad[1].y + b16HALF); |
|
|
|
/* quad[1] is at the top left of the second trapezoid. quad[2} is |
|
* at the bottom right of the second trapezoid. Interpolate to get |
|
* corresponding point on the left side. |
|
* |
|
* Interpolation is from quad[1] along the line quad[1]->quad[3] |
|
* which as the same slope as the line (positive) |
|
*/ |
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
traps[1].top.x2 = traps[0].bot.x2; |
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[2].y - quad[1].y, b16dxdy); |
|
traps[1].bot.x2 = quad[2].x; |
|
traps[1].bot.y = b16toi(quad[2].y + b16HALF); |
|
} |
|
else |
|
{ |
|
/* quad[2] is at the bottom right of the triangle. Interpolate |
|
* to get the corresponding point on the left side. |
|
* |
|
* Interpolation is from quad[0] along the line quad[0]->quad[1] |
|
* which orthogonal to the slope of the line (and negative) |
|
*/ |
|
|
|
b16dxdy = -itob16(iheight) / iwidth; |
|
|
|
traps[0].bot.x1 = nxgl_interpolate(quad[0].x, quad[2].y - quad[0].y, b16dxdy); |
|
traps[0].bot.x2 = quad[2].x; |
|
traps[0].bot.y = b16toi(quad[2].y + b16HALF); |
|
|
|
/* quad[2] is at the top right of the second trapezoid. quad[1} is |
|
* at the bottom left of the second trapezoid. Interpolate to get |
|
* corresponding point on the right side. |
|
* |
|
* Interpolation is from quad[2] along the line quad[2]->quad[3] |
|
* which as the same slope as the previous interpolation. |
|
*/ |
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
traps[1].top.x2 = traps[0].bot.x2; |
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
traps[1].bot.x1 = quad[1].x; |
|
traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[1].y - quad[2].y, b16dxdy); |
|
traps[1].bot.y = b16toi(quad[1].y + b16HALF); |
|
} |
|
|
|
/* The final trapezond (triangle) at the bottom is new well defined */ |
|
|
|
traps[2].top.x1 = traps[1].bot.x1; |
|
traps[2].top.x2 = traps[1].bot.x2; |
|
traps[2].top.y = traps[1].bot.y; |
|
|
|
traps[2].bot.x1 = quad[3].x; |
|
traps[2].bot.x2 = quad[3].x; |
|
traps[2].bot.y = b16toi(quad[3].y + b16HALF); |
|
} |
|
else |
|
{ |
|
/* Get the X positions of each point */ |
|
|
|
b16x = itob16(line.pt1.x); |
|
quad[0].x = b16x - b16xoffset; |
|
quad[1].x = b16x + b16xoffset; |
|
|
|
b16x = itob16(line.pt2.x); |
|
quad[2].x = b16x - b16xoffset; |
|
quad[3].x = b16x + b16xoffset; |
|
|
|
gvdbg("Southwest: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n", |
|
quad[0].x, quad[0].y, quad[1].x, quad[1].y, |
|
quad[2].x, quad[2].y, quad[3].x, quad[3].y); |
|
|
|
/* Now we can form the trapezoids. The top of the first trapezoid |
|
* (triangle) is at quad[0] |
|
*/ |
|
|
|
traps[0].top.x1 = quad[0].x; |
|
traps[0].top.x2 = quad[0].x; |
|
traps[0].top.y = b16toi(quad[0].y + b16HALF); |
|
|
|
/* The bottom of the first trapezoid (triangle) may be either at |
|
* quad[1] or quad[2], depending upon orientation. |
|
*/ |
|
|
|
if (quad[1].y < quad[2].y) |
|
{ |
|
/* quad[1] is at the bottom right of the triangle. Interpolate |
|
* to get the corresponding point on the left side. |
|
* |
|
* Interpolation is from quad[0] along the line quad[0]->quad[2] |
|
* which as the same slope as the line (negative) |
|
*/ |
|
|
|
b16dxdy = -itob16(iwidth) / iheight; |
|
|
|
traps[0].bot.x1 = nxgl_interpolate(traps[0].top.x1, quad[1].y - quad[0].y, b16dxdy); |
|
traps[0].bot.x2 = quad[1].x; |
|
traps[0].bot.y = b16toi(quad[1].y + b16HALF); |
|
|
|
/* quad[1] is at the top right of the second trapezoid. quad[2} is |
|
* at the bottom left of the second trapezoid. Interpolate to get |
|
* corresponding point on the right side. |
|
* |
|
* Interpolation is from quad[1] along the line quad[1]->quad[3] |
|
* which as the same slope as the line (negative) |
|
*/ |
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
traps[1].top.x2 = traps[0].bot.x2; |
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
traps[1].bot.x1 = quad[2].x; |
|
traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[2].y - quad[1].y, b16dxdy); |
|
traps[1].bot.y = b16toi(quad[2].y + b16HALF); |
|
} |
|
else |
|
{ |
|
/* quad[2] is at the bottom left of the triangle. Interpolate |
|
* to get the corresponding point on the right side. |
|
* |
|
* Interpolation is from quad[0] along the line quad[0]->quad[1] |
|
* which orthogonal to the slope of the line (and positive) |
|
*/ |
|
|
|
b16dxdy = itob16(iheight) / iwidth; |
|
|
|
traps[0].bot.x1 = quad[2].x; |
|
traps[0].bot.x2 = nxgl_interpolate(traps[0].top.x2, quad[2].y - quad[0].y, b16dxdy); |
|
traps[0].bot.y = b16toi(quad[2].y + b16HALF); |
|
|
|
/* quad[2] is at the top left of the second trapezoid. quad[1} is |
|
* at the bottom right of the second trapezoid. Interpolate to get |
|
* corresponding point on the left side. |
|
* |
|
* Interpolation is from quad[2] along the line quad[2]->quad[3] |
|
* which as the same slope as the previous interpolation. |
|
*/ |
|
|
|
traps[1].top.x1 = traps[0].bot.x1; |
|
traps[1].top.x2 = traps[0].bot.x2; |
|
traps[1].top.y = traps[0].bot.y; |
|
|
|
traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[1].y - quad[2].y, b16dxdy); |
|
traps[1].bot.x2 = quad[1].x; |
|
traps[1].bot.y = b16toi(quad[1].y + b16HALF); |
|
} |
|
|
|
/* The final trapezond (triangle) at the bottom is new well defined */ |
|
|
|
traps[2].top.x1 = traps[1].bot.x1; |
|
traps[2].top.x2 = traps[1].bot.x2; |
|
traps[2].top.y = traps[1].bot.y; |
|
|
|
traps[2].bot.x1 = quad[3].x; |
|
traps[2].bot.x2 = quad[3].x; |
|
traps[2].bot.y = b16toi(quad[3].y + b16HALF); |
|
} |
|
|
|
gvdbg("traps[0]: (%08x,%08x,%d),(%08x,%08x,%d)\n", |
|
traps[0].top.x1, traps[0].top.x2, traps[0].top.y, |
|
traps[0].bot.x1, traps[0].bot.x2, traps[0].bot.y); |
|
gvdbg("traps[1]: (%08x,%08x,%d),(%08x,%08x,%d)\n", |
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
|
gvdbg("traps[2]: (%08x,%08x,%d),(%08x,%08x,%d)\n", |
|
traps[2].top.x1, traps[2].top.x2, traps[2].top.y, |
|
traps[2].bot.x1, traps[2].bot.x2, traps[2].bot.y); |
|
|
|
return 0; |
|
} |
|
|
|
/* The line is too vertical to have any significant triangular top or |
|
* bottom. Just return the center parallelogram. |
|
*/ |
|
|
|
traps[1].top.x1 = itob16(line.pt1.x - (linewidth >> 1)); |
|
traps[1].top.x2 = traps[1].top.x1 + itob16(linewidth - 1); |
|
traps[1].top.y = line.pt1.y; |
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x - (linewidth >> 1)); |
|
traps[1].bot.x2 = traps[1].bot.x1 + itob16(linewidth - 1); |
|
traps[1].bot.y = line.pt2.y; |
|
|
|
gvdbg("Horizontal traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n", |
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y, |
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y); |
|
|
|
return 1; |
|
} |
|
|
|
|