You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
5.2 KiB
172 lines
5.2 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf_helper.cpp |
|
* Definition of ekf helper functions. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#ifdef __PX4_POSIX |
|
#include <iostream> |
|
#include <fstream> |
|
#endif |
|
#include <iomanip> |
|
#include <mathlib/mathlib.h> |
|
|
|
// Reset the velocity states. If we have a recent and valid |
|
// gps measurement then use for velocity initialisation |
|
void Ekf::resetVelocity() |
|
{ |
|
// if we have a valid GPS measurement use it to initialise velocity states |
|
gpsSample gps_newest = _gps_buffer.get_newest(); |
|
|
|
if (_time_last_imu - gps_newest.time_us < 100000) { |
|
_state.vel = gps_newest.vel; |
|
|
|
} else { |
|
_state.vel.setZero(); |
|
} |
|
} |
|
|
|
// Reset position states. If we have a recent and valid |
|
// gps measurement then use for position initialisation |
|
void Ekf::resetPosition() |
|
{ |
|
// if we have a valid GPS measurement use it to initialise position states |
|
gpsSample gps_newest = _gps_buffer.get_newest(); |
|
|
|
if (_time_last_imu - gps_newest.time_us < 100000) { |
|
_state.pos(0) = gps_newest.pos(0); |
|
_state.pos(1) = gps_newest.pos(1); |
|
|
|
} else { |
|
// XXX use the value of the last known position |
|
} |
|
|
|
baroSample baro_newest = _baro_buffer.get_newest(); |
|
_state.pos(2) = -baro_newest.hgt; |
|
} |
|
|
|
#if defined(__PX4_POSIX) && !defined(__PX4_QURT) |
|
void Ekf::printCovToFile(char const *filename) |
|
{ |
|
std::ofstream myfile; |
|
myfile.open(filename); |
|
myfile << "Covariance matrix\n"; |
|
myfile << std::setprecision(1); |
|
|
|
for (int i = 0; i < _k_num_states; i++) { |
|
for (int j = 0; j < _k_num_states; j++) { |
|
myfile << std::to_string(P[i][j]) << std::setprecision(1) << " "; |
|
} |
|
|
|
myfile << "\n\n\n\n\n\n\n\n\n\n"; |
|
} |
|
} |
|
#endif |
|
|
|
// This checks if the diagonal of the covariance matrix is non-negative |
|
// and that the matrix is symmetric |
|
void Ekf::assertCovNiceness() |
|
{ |
|
for (int row = 0; row < _k_num_states; row++) { |
|
for (int column = 0; column < row; column++) { |
|
assert(fabsf(P[row][column] - P[column][row]) < 0.00001f); |
|
} |
|
} |
|
|
|
for (int i = 0; i < _k_num_states; i++) { |
|
assert(P[i][i] > -0.000001f); |
|
} |
|
} |
|
|
|
// This function forces the covariance matrix to be symmetric |
|
void Ekf::makeSymmetrical() |
|
{ |
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < row; column++) { |
|
float tmp = (P[row][column] + P[column][row]) / 2; |
|
P[row][column] = tmp; |
|
P[column][row] = tmp; |
|
} |
|
} |
|
} |
|
|
|
void Ekf::constrainStates() |
|
{ |
|
for (int i = 0; i < 3; i++) { |
|
_state.ang_error(i) = math::constrain(_state.ang_error(i), -1.0f, 1.0f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -0.349066f * _dt_imu_avg, 0.349066f * _dt_imu_avg); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.gyro_scale(i) = math::constrain(_state.gyro_scale(i), 0.95f, 1.05f); |
|
} |
|
|
|
_state.accel_z_bias = math::constrain(_state.accel_z_bias, -1.0f * _dt_imu_avg, 1.0f * _dt_imu_avg); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f); |
|
} |
|
} |
|
|
|
// calculate the earth rotation vector |
|
void Ekf::calcEarthRateNED(Vector3f &omega, double lat_rad) const |
|
{ |
|
omega(0) = _k_earth_rate * cosf((float)lat_rad); |
|
omega(1) = 0.0f; |
|
omega(2) = -_k_earth_rate * sinf((float)lat_rad); |
|
}
|
|
|