You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

101 lines
3.4 KiB

#! /usr/bin/env python
from __future__ import print_function
import argparse
import os
from pyulog import *
from analyse_logdata_ekf import *
"""
Performs a health assessment on the ecl EKF navigation estimator data contained in a an ULog file
Outputs a health assessment summary in a csv file named <inputfilename>.mdat.csv
Outputs summary plots in a pdf file named <inputfilename>.pdf
"""
parser = argparse.ArgumentParser(description='Analyse the estimator_status and ekf2_innovation message data')
parser.add_argument('filename', metavar='file.ulg', help='ULog input file')
parser.add_argument('--no-plots', action='store_true',
help='Whether to only analyse and not plot the summaries for developers.')
parser.add_argument('--check-level-thresholds', type=str, default=None,
help='The csv file of fail and warning test thresholds for analysis.')
def is_valid_directory(parser, arg):
if os.path.isdir(arg):
# Directory exists so return the directory
return arg
else:
parser.error('The directory {} does not exist'.format(arg))
args = parser.parse_args()
## load the log and extract the necessary data for the analyses
ulog = ULog(args.filename, None)
data = ulog.data_list
# extract data from innovations and status messages
for d in data:
if d.name == 'estimator_status':
estimator_status_data = d.data
print('found estimator_status data')
for d in data:
if d.name == 'ekf2_innovations':
ekf2_innovations_data = d.data
print('found ekf2_innovation data')
# extract data from sensor preflight check message
sensor_preflight = {}
for d in data:
if d.name == 'sensor_preflight':
sensor_preflight_data = d.data
print('found sensor_preflight data')
if args.check_level_thresholds:
check_level_dict_filename = args.check_level_thresholds
else:
file_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
check_level_dict_filename = os.path.join(file_dir, "check_level_dict.csv")
# get the dictionary of fail and warning test thresholds from a csv file
with open(check_level_dict_filename, 'r') as file:
check_levels = {}
for line in file:
x = line.split(",")
a = x[0]
b = x[1]
check_levels[a] = float(b)
print('Using test criteria loaded from {:s}'.format(check_level_dict_filename))
# perform the ekf analysis
test_results = analyse_ekf(
estimator_status_data, ekf2_innovations_data, sensor_preflight_data,
check_levels, plot=not args.no_plots, output_plot_filename=args.filename + ".pdf")
# print master test status to console
if (test_results['master_status'][0] == 'Pass'):
print('No anomalies detected')
elif (test_results['master_status'][0] == 'Warning'):
print('Minor anomalies detected')
elif (test_results['master_status'][0] == 'Fail'):
print('Major anomalies detected')
# write metadata to a .csv file
with open(args.filename + ".mdat.csv", "w") as file:
file.write("name,value,description\n")
# loop through the test results dictionary and write each entry on a separate row, with data comma separated
# save data in alphabetical order
key_list = list(test_results.keys())
key_list.sort()
for key in key_list:
file.write(key+","+str(test_results[key][0])+","+test_results[key][1]+"\n")
print('Test results written to {:s}.mdat.csv'.format(args.filename))
if not args.no_plots:
print('Plots saved to {:s}.pdf'.format(args.filename))