You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

178 lines
4.3 KiB

/**
* @file Dcm.hpp
*
* A direction cosine matrix class.
* All rotations and axis systems follow the right-hand rule.
*
* This library uses the convention that premultiplying a three dimensional
* vector represented in coordinate system 1 will apply a rotation from coordinate system
* 1 to coordinate system 2 to the vector.
* Likewise, a matrix instance of this class also represents a coordinate transformation
* from frame 2 to frame 1.
*
* @author James Goppert <james.goppert@gmail.com>
*/
#pragma once
#include "math.hpp"
namespace matrix
{
template<typename Type>
class Quaternion;
template<typename Type>
class Euler;
template<typename Type>
class AxisAngle;
/**
* Direction cosine matrix class
*
* The rotation between two coordinate frames is
* described by this class.
*/
template<typename Type>
class Dcm : public Matrix<Type, 3, 3>
{
public:
virtual ~Dcm() {};
typedef Matrix<Type, 3, 1> Vector3;
/**
* Standard constructor
*
* Initializes to identity
*/
Dcm() : Matrix<Type, 3, 3>()
{
(*this) = eye<Type, 3>();
}
/**
* Constructor from array
*
* @param _data pointer to array
*/
Dcm(const Type *data_) : Matrix<Type, 3, 3>(data_)
{
}
/**
* Copy constructor
*
* @param other Matrix33 to set dcm to
*/
Dcm(const Matrix<Type, 3, 3> &other) : Matrix<Type, 3, 3>(other)
{
}
/**
* Constructor from quaternion
*
* Instance is initialized from quaternion representing
* coordinate transformation from frame 2 to frame 1.
*
* @param q quaternion to set dcm to
*/
Dcm(const Quaternion<Type> &q)
{
Dcm &dcm = *this;
Type a = q(0);
Type b = q(1);
Type c = q(2);
Type d = q(3);
Type aSq = a * a;
Type bSq = b * b;
Type cSq = c * c;
Type dSq = d * d;
dcm(0, 0) = aSq + bSq - cSq - dSq;
dcm(0, 1) = 2 * (b * c - a * d);
dcm(0, 2) = 2 * (a * c + b * d);
dcm(1, 0) = 2 * (b * c + a * d);
dcm(1, 1) = aSq - bSq + cSq - dSq;
dcm(1, 2) = 2 * (c * d - a * b);
dcm(2, 0) = 2 * (b * d - a * c);
dcm(2, 1) = 2 * (a * b + c * d);
dcm(2, 2) = aSq - bSq - cSq + dSq;
}
/**
* Constructor from euler angles
*
* This sets the transformation matrix from frame 2 to frame 1 where the rotation
* from frame 1 to frame 2 is described by a 3-2-1 intrinsic Tait-Bryan rotation sequence.
*
*
* @param euler euler angle instance
*/
Dcm(const Euler<Type> &euler)
{
Dcm &dcm = *this;
Type cosPhi = Type(cos(euler.phi()));
Type sinPhi = Type(sin(euler.phi()));
Type cosThe = Type(cos(euler.theta()));
Type sinThe = Type(sin(euler.theta()));
Type cosPsi = Type(cos(euler.psi()));
Type sinPsi = Type(sin(euler.psi()));
dcm(0, 0) = cosThe * cosPsi;
dcm(0, 1) = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
dcm(0, 2) = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;
dcm(1, 0) = cosThe * sinPsi;
dcm(1, 1) = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
dcm(1, 2) = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;
dcm(2, 0) = -sinThe;
dcm(2, 1) = sinPhi * cosThe;
dcm(2, 2) = cosPhi * cosThe;
}
/**
* Constructor from axis angle
*
* This sets the transformation matrix from frame 2 to frame 1 where the rotation
* from frame 1 to frame 2 is described by a 3-2-1 intrinsic Tait-Bryan rotation sequence.
*
*
* @param euler euler angle instance
*/
Dcm(const AxisAngle<Type> &aa)
{
Dcm &dcm = *this;
dcm = Quaternion<Type>(aa);
}
Vector<Type, 3> vee() const // inverse to Vector.hat() operation
{
const Dcm &A(*this);
Vector<Type, 3> v;
v(0) = -A(1, 2);
v(1) = A(0, 2);
v(2) = -A(0, 1);
return v;
}
void renormalize()
{
/* renormalize rows */
for (int row = 0; row < 3; row++) {
matrix::Vector3f rvec(this->_data[row]);
this->setRow(row, rvec.normalized());
}
}
};
typedef Dcm<float> Dcmf;
} // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */