You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
402 lines
12 KiB
402 lines
12 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file estimator_base.cpp |
|
* Definition of base class for attitude estimators |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include <math.h> |
|
#include "estimator_base.h" |
|
#include <mathlib/mathlib.h> |
|
|
|
|
|
EstimatorBase::EstimatorBase() |
|
{ |
|
} |
|
|
|
EstimatorBase::~EstimatorBase() |
|
{ |
|
|
|
} |
|
|
|
// Accumulate imu data and store to buffer at desired rate |
|
void EstimatorBase::setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, float *delta_ang, |
|
float *delta_vel) |
|
{ |
|
if (!_initialised) { |
|
initialiseVariables(time_usec); |
|
_initialised = true; |
|
_start_predict_enabled = true; |
|
} |
|
|
|
float dt = (float)(time_usec - _time_last_imu) / 1000 / 1000; |
|
dt = math::max(dt, 1.0e-4f); |
|
dt = math::min(dt, 0.02f); |
|
|
|
_time_last_imu = time_usec; |
|
|
|
if (_time_last_imu > 0) { |
|
_dt_imu_avg = 0.8f * _dt_imu_avg + 0.2f * dt; |
|
} |
|
|
|
// copy data |
|
imuSample imu_sample_new = {}; |
|
memcpy(&imu_sample_new.delta_ang._data[0], delta_ang, sizeof(imu_sample_new.delta_ang._data)); |
|
memcpy(&imu_sample_new.delta_vel._data[0], delta_vel, sizeof(imu_sample_new.delta_vel._data)); |
|
|
|
imu_sample_new.delta_ang_dt = delta_ang_dt / 1e6f; |
|
imu_sample_new.delta_vel_dt = delta_vel_dt / 1e6f; |
|
|
|
imu_sample_new.time_us = time_usec; |
|
|
|
imu_sample_new.delta_ang(0) = imu_sample_new.delta_ang(0) * _state.gyro_scale(0); |
|
imu_sample_new.delta_ang(1) = imu_sample_new.delta_ang(1) * _state.gyro_scale(1); |
|
imu_sample_new.delta_ang(2) = imu_sample_new.delta_ang(2) * _state.gyro_scale(2); |
|
|
|
imu_sample_new.delta_ang -= _state.gyro_bias * imu_sample_new.delta_ang_dt / (_dt_imu_avg > 0 ? _dt_imu_avg : 0.01f); |
|
imu_sample_new.delta_vel(2) -= _state.accel_z_bias * imu_sample_new.delta_vel_dt / (_dt_imu_avg > 0 ? _dt_imu_avg : 0.01f);; |
|
|
|
// store the new sample for the complementary filter prediciton |
|
_imu_sample_new = imu_sample_new; |
|
|
|
_imu_down_sampled.delta_ang_dt += imu_sample_new.delta_ang_dt; |
|
_imu_down_sampled.delta_vel_dt += imu_sample_new.delta_vel_dt; |
|
|
|
|
|
Quaternion delta_q; |
|
delta_q.rotate(imu_sample_new.delta_ang); |
|
_q_down_sampled = _q_down_sampled * delta_q; |
|
_q_down_sampled.normalize(); |
|
|
|
matrix::Dcm<float> delta_R(delta_q.inversed()); |
|
_imu_down_sampled.delta_vel = delta_R * _imu_down_sampled.delta_vel; |
|
_imu_down_sampled.delta_vel += imu_sample_new.delta_vel; |
|
|
|
_imu_ticks++; |
|
|
|
if ((_dt_imu_avg * _imu_ticks >= (float)(FILTER_UPDATE_PERRIOD_MS) / 1000 && _start_predict_enabled) |
|
|| (_dt_imu_avg * _imu_ticks >= 0.02f)) { |
|
_imu_down_sampled.delta_ang = _q_down_sampled.to_axis_angle(); |
|
_imu_down_sampled.time_us = time_usec; |
|
|
|
_imu_buffer.push(_imu_down_sampled); |
|
|
|
_imu_down_sampled.delta_ang.setZero(); |
|
_imu_down_sampled.delta_vel.setZero(); |
|
_imu_down_sampled.delta_ang_dt = 0.0f; |
|
_imu_down_sampled.delta_vel_dt = 0.0f; |
|
_q_down_sampled(0) = 1.0f; |
|
_q_down_sampled(1) = _q_down_sampled(2) = _q_down_sampled(3) = 0.0f; |
|
|
|
_imu_ticks = 0; |
|
|
|
_imu_updated = true; |
|
|
|
} else { |
|
|
|
_imu_updated = false; |
|
} |
|
|
|
|
|
_imu_sample_delayed = _imu_buffer.get_oldest(); |
|
} |
|
|
|
void EstimatorBase::setMagData(uint64_t time_usec, float *data) |
|
{ |
|
|
|
|
|
if (time_usec - _time_last_mag > 70000) { |
|
|
|
magSample mag_sample_new = {}; |
|
mag_sample_new.time_us = time_usec - _params.mag_delay_ms * 1000; |
|
|
|
mag_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; |
|
_time_last_mag = time_usec; |
|
|
|
|
|
memcpy(&mag_sample_new.mag._data[0], data, sizeof(mag_sample_new.mag._data)); |
|
|
|
_mag_buffer.push(mag_sample_new); |
|
} |
|
} |
|
|
|
void EstimatorBase::setGpsData(uint64_t time_usec, struct gps_message *gps) |
|
{ |
|
|
|
if (!_gps_initialised) { |
|
initialiseGPS(gps); |
|
return; |
|
} |
|
|
|
if (time_usec - _time_last_gps > 70000) { |
|
gpsSample gps_sample_new = {}; |
|
gps_sample_new.time_us = gps->time_usec - _params.gps_delay_ms * 1000; |
|
|
|
|
|
gps_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; |
|
_time_last_gps = time_usec; |
|
|
|
gps_sample_new.time_us = math::max(gps_sample_new.time_us, _imu_sample_delayed.time_us); |
|
|
|
|
|
memcpy(gps_sample_new.vel._data[0], gps->vel_ned, sizeof(gps_sample_new.vel._data)); |
|
|
|
_gps_speed_valid = gps->vel_ned_valid; |
|
|
|
|
|
float lpos_x = 0.0f; |
|
float lpos_y = 0.0f; |
|
map_projection_project(&_pos_ref, (gps->lat / 1.0e7), (gps->lon / 1.0e7), &lpos_x, &lpos_y); |
|
gps_sample_new.pos(0) = lpos_x; |
|
gps_sample_new.pos(1) = lpos_y; |
|
gps_sample_new.hgt = gps->alt / 1e3f; |
|
|
|
_gps_buffer.push(gps_sample_new); |
|
} |
|
} |
|
|
|
void EstimatorBase::setBaroData(uint64_t time_usec, float *data) |
|
{ |
|
if (time_usec - _time_last_baro > 70000) { |
|
|
|
baroSample baro_sample_new; |
|
baro_sample_new.hgt = *data; |
|
baro_sample_new.time_us = time_usec - _params.baro_delay_ms * 1000; |
|
|
|
baro_sample_new.time_us -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; |
|
_time_last_baro = time_usec; |
|
|
|
baro_sample_new.time_us = math::max(baro_sample_new.time_us, _imu_sample_delayed.time_us); |
|
|
|
_baro_buffer.push(baro_sample_new); |
|
} |
|
} |
|
|
|
void EstimatorBase::setAirspeedData(uint64_t time_usec, float *data) |
|
{ |
|
if (time_usec > _time_last_airspeed) { |
|
airspeedSample airspeed_sample_new; |
|
airspeed_sample_new.airspeed = *data; |
|
airspeed_sample_new.time_us -= _params.airspeed_delay_ms * 1000; |
|
|
|
airspeed_sample_new.time_us = time_usec -= FILTER_UPDATE_PERRIOD_MS * 1000 / 2; |
|
_time_last_airspeed = time_usec; |
|
|
|
_airspeed_buffer.push(airspeed_sample_new); |
|
} |
|
} |
|
|
|
// set range data |
|
void EstimatorBase::setRangeData(uint64_t time_usec, float *data) |
|
{ |
|
|
|
} |
|
|
|
// set optical flow data |
|
void EstimatorBase::setOpticalFlowData(uint64_t time_usec, float *data) |
|
{ |
|
|
|
} |
|
|
|
void EstimatorBase::initialiseVariables(uint64_t time_usec) |
|
{ |
|
_imu_buffer.allocate(IMU_BUFFER_LENGTH); |
|
_gps_buffer.allocate(OBS_BUFFER_LENGTH); |
|
_mag_buffer.allocate(OBS_BUFFER_LENGTH); |
|
_baro_buffer.allocate(OBS_BUFFER_LENGTH); |
|
_range_buffer.allocate(OBS_BUFFER_LENGTH); |
|
_airspeed_buffer.allocate(OBS_BUFFER_LENGTH); |
|
_flow_buffer.allocate(OBS_BUFFER_LENGTH); |
|
_output_buffer.allocate(IMU_BUFFER_LENGTH); |
|
|
|
_state.ang_error.setZero(); |
|
_state.vel.setZero(); |
|
_state.pos.setZero(); |
|
_state.gyro_bias.setZero(); |
|
_state.gyro_scale(0) = 1.0f; |
|
_state.gyro_scale(1) = 1.0f; |
|
_state.gyro_scale(2) = 1.0f; |
|
_state.accel_z_bias = 0.0f; |
|
_state.mag_I.setZero(); |
|
_state.mag_B.setZero(); |
|
_state.wind_vel.setZero(); |
|
_state.quat_nominal.setZero(); |
|
_state.quat_nominal(0) = 1.0f; |
|
|
|
_dt_imu_avg = 0.0f; |
|
_imu_time_last = time_usec; |
|
|
|
_imu_sample_delayed.delta_ang.setZero(); |
|
_imu_sample_delayed.delta_vel.setZero(); |
|
_imu_sample_delayed.delta_ang_dt = 0.0f; |
|
_imu_sample_delayed.delta_vel_dt = 0.0f; |
|
_imu_sample_delayed.time_us = time_usec; |
|
|
|
_output_new.vel.setZero(); |
|
_output_new.pos.setZero(); |
|
_output_new.quat_nominal = matrix::Quaternion<float>(); |
|
|
|
_imu_down_sampled.delta_ang.setZero(); |
|
_imu_down_sampled.delta_vel.setZero(); |
|
_imu_down_sampled.delta_ang_dt = 0.0f; |
|
_imu_down_sampled.delta_vel_dt = 0.0f; |
|
_imu_down_sampled.time_us = time_usec; |
|
|
|
_q_down_sampled(0) = 1.0f; |
|
_q_down_sampled(1) = 0.0f; |
|
_q_down_sampled(2) = 0.0f; |
|
_q_down_sampled(3) = 0.0f; |
|
|
|
_imu_ticks = 0; |
|
|
|
_imu_updated = false; |
|
_start_predict_enabled = false; |
|
_initialised = false; |
|
_gps_initialised = false; |
|
_gps_speed_valid = false; |
|
|
|
_mag_healthy = false; |
|
_in_air = false; // XXX get this flag from the application |
|
|
|
_time_last_imu = 0; |
|
_time_last_gps = 0; |
|
_time_last_mag = 0; |
|
_time_last_baro = 0; |
|
_time_last_range = 0; |
|
_time_last_airspeed = 0; |
|
|
|
memset(&_fault_status, 0, sizeof(_fault_status)); |
|
|
|
} |
|
|
|
void EstimatorBase::initialiseGPS(struct gps_message *gps) |
|
{ |
|
//Check if the GPS fix is good enough for us to use |
|
if (gps_is_good(gps)) { |
|
printf("gps is good\n"); |
|
// Initialise projection |
|
double lat = gps->lat / 1.0e7; |
|
double lon = gps->lon / 1.0e7; |
|
map_projection_init(&_pos_ref, lat, lon); |
|
_gps_alt_ref = gps->alt / 1e3f; |
|
_gps_initialised = true; |
|
_last_gps_origin_time_us = _time_last_imu; |
|
} |
|
} |
|
|
|
bool EstimatorBase::position_is_valid() |
|
{ |
|
// return true if the position estimate is valid |
|
// TOTO implement proper check based on published GPS accuracy, innovaton consistency checks and timeout status |
|
return _gps_initialised && (_time_last_imu - _time_last_gps) < 5e6; |
|
} |
|
|
|
void EstimatorBase::printStoredIMU() |
|
{ |
|
printf("---------Printing IMU data buffer------------\n"); |
|
|
|
for (int i = 0; i < IMU_BUFFER_LENGTH; i++) { |
|
printIMU(&_imu_buffer[i]); |
|
} |
|
} |
|
|
|
void EstimatorBase::printIMU(struct imuSample *data) |
|
{ |
|
printf("time %llu\n", data->time_us); |
|
printf("delta_ang_dt %.5f\n", (double)data->delta_ang_dt); |
|
printf("delta_vel_dt %.5f\n", (double)data->delta_vel_dt); |
|
printf("dA: %.5f %.5f %.5f \n", (double)data->delta_ang(0), (double)data->delta_ang(1), (double)data->delta_ang(2)); |
|
printf("dV: %.5f %.5f %.5f \n\n", (double)data->delta_vel(0), (double)data->delta_vel(1), (double)data->delta_vel(2)); |
|
} |
|
|
|
void EstimatorBase::printQuaternion(Quaternion &q) |
|
{ |
|
printf("q1 %.5f q2 %.5f q3 %.5f q4 %.5f\n", (double)q(0), (double)q(1), (double)q(2), (double)q(3)); |
|
} |
|
|
|
void EstimatorBase::print_imu_avg_time() |
|
{ |
|
printf("dt_avg: %.5f\n", (double)_dt_imu_avg); |
|
} |
|
|
|
void EstimatorBase::printStoredMag() |
|
{ |
|
printf("---------Printing mag data buffer------------\n"); |
|
|
|
for (int i = 0; i < OBS_BUFFER_LENGTH; i++) { |
|
printMag(&_mag_buffer[i]); |
|
} |
|
} |
|
|
|
void EstimatorBase::printMag(struct magSample *data) |
|
{ |
|
printf("time %llu\n", data->time_us); |
|
printf("mag: %.5f %.5f %.5f \n\n", (double)data->mag(0), (double)data->mag(1), (double)data->mag(2)); |
|
|
|
} |
|
|
|
void EstimatorBase::printBaro(struct baroSample *data) |
|
{ |
|
printf("time %llu\n", data->time_us); |
|
printf("baro: %.5f\n\n", (double)data->hgt); |
|
} |
|
|
|
void EstimatorBase::printStoredBaro() |
|
{ |
|
printf("---------Printing baro data buffer------------\n"); |
|
|
|
for (int i = 0; i < OBS_BUFFER_LENGTH; i++) { |
|
printBaro(&_baro_buffer[i]); |
|
} |
|
} |
|
|
|
void EstimatorBase::printGps(struct gpsSample *data) |
|
{ |
|
printf("time %llu\n", data->time_us); |
|
printf("gps pos: %.5f %.5f %.5f\n", (double)data->pos(0), (double)data->pos(1), (double)data->hgt); |
|
printf("gps vel %.5f %.5f %.5f\n\n", (double)data->vel(0), (double)data->vel(1), (double)data->vel(2)); |
|
} |
|
|
|
void EstimatorBase::printStoredGps() |
|
{ |
|
printf("---------Printing GPS data buffer------------\n"); |
|
|
|
for (int i = 0; i < OBS_BUFFER_LENGTH; i++) { |
|
printGps(&_gps_buffer[i]); |
|
} |
|
}
|
|
|