You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

157 lines
3.6 KiB

/**
* @file Euler.hpp
*
* All rotations and axis systems follow the right-hand rule
*
* An instance of this class defines a rotation from coordinate frame 1 to coordinate frame 2.
* It follows the convention of a 3-2-1 intrinsic Tait-Bryan rotation sequence.
* In order to go from frame 1 to frame 2 we apply the following rotations consecutively.
* 1) We rotate about our initial Z axis by an angle of _psi.
* 2) We rotate about the newly created Y' axis by an angle of _theta.
* 3) We rotate about the newly created X'' axis by an angle of _phi.
*
* @author James Goppert <james.goppert@gmail.com>
*/
#pragma once
#include "math.hpp"
namespace matrix
{
template <typename Type>
class Dcm;
template <typename Type>
class Quaternion;
/**
* Euler angles class
*
* This class describes the rotation from frame 1
* to frame 2 via 3-2-1 intrinsic Tait-Bryan rotation sequence.
*/
template<typename Type>
class Euler : public Vector<Type, 3>
{
public:
/**
* Standard constructor
*/
Euler() = default;
/**
* Copy constructor
*
* @param other vector to copy
*/
Euler(const Vector<Type, 3> &other) :
Vector<Type, 3>(other)
{
}
/**
* Constructor from Matrix31
*
* @param other Matrix31 to copy
*/
Euler(const Matrix<Type, 3, 1> &other) :
Vector<Type, 3>(other)
{
}
/**
* Constructor from euler angles
*
* Instance is initialized from an 3-2-1 intrinsic Tait-Bryan
* rotation sequence representing transformation from frame 1
* to frame 2.
*
* @param phi_ rotation angle about X axis
* @param theta_ rotation angle about Y axis
* @param psi_ rotation angle about Z axis
*/
Euler(Type phi_, Type theta_, Type psi_) : Vector<Type, 3>()
{
phi() = phi_;
theta() = theta_;
psi() = psi_;
}
/**
* Constructor from DCM matrix
*
* Instance is set from Dcm representing transformation from
* frame 2 to frame 1.
* This instance will hold the angles defining the 3-2-1 intrinsic
* Tait-Bryan rotation sequence from frame 1 to frame 2.
*
* @param dcm Direction cosine matrix
*/
Euler(const Dcm<Type> &dcm)
{
theta() = asin(-dcm(2, 0));
if ((fabs(theta() - Type(M_PI / 2))) < Type(1.0e-3)) {
phi() = 0;
psi() = atan2(dcm(1, 2), dcm(0, 2));
} else if ((fabs(theta() + Type(M_PI / 2))) < Type(1.0e-3)) {
phi() = 0;
psi() = atan2(-dcm(1, 2), -dcm(0, 2));
} else {
phi() = atan2(dcm(2, 1), dcm(2, 2));
psi() = atan2(dcm(1, 0), dcm(0, 0));
}
}
/**
* Constructor from quaternion instance.
*
* Instance is set from a quaternion representing transformation
* from frame 2 to frame 1.
* This instance will hold the angles defining the 3-2-1 intrinsic
* Tait-Bryan rotation sequence from frame 1 to frame 2.
*
* @param q quaternion
*/
Euler(const Quaternion<Type> &q) : Vector<Type, 3>(Euler(Dcm<Type>(q)))
{
}
inline Type phi() const
{
return (*this)(0);
}
inline Type theta() const
{
return (*this)(1);
}
inline Type psi() const
{
return (*this)(2);
}
inline Type &phi()
{
return (*this)(0);
}
inline Type &theta()
{
return (*this)(1);
}
inline Type &psi()
{
return (*this)(2);
}
};
using Eulerf = Euler<float>;
using Eulerd = Euler<double>;
} // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */