You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

112 lines
2.8 KiB

/**
* @file PseudoInverse.hpp
*
* Implementation of matrix pseudo inverse
*
* @author Julien Lecoeur <julien.lecoeur@gmail.com>
* @author Julian Kent <julian@auterion.com>
*/
#pragma once
#include "math.hpp"
namespace matrix
{
/**
* Geninv
* Fast pseudoinverse based on full rank cholesky factorisation
*
* Courrieu, P. (2008). Fast Computation of Moore-Penrose Inverse Matrices, 8(2), 25–29. http://arxiv.org/abs/0804.4809
*/
template<typename Type, size_t M, size_t N>
Matrix<Type, N, M> geninv(const Matrix<Type, M, N> & G)
{
size_t rank;
if (M <= N) {
SquareMatrix<Type, M> A = G * G.transpose();
SquareMatrix<Type, M> L = fullRankCholesky(A, rank);
SquareMatrix<Type, M> LtL = L.transpose() * L;
SquareMatrix<Type, M> X;
if (!inv(LtL, X, rank)) {
return Matrix<Type, N, M>(); // LCOV_EXCL_LINE -- this can only be hit from numerical issues
}
return G.transpose() * L * X * X * L.transpose();
} else {
SquareMatrix<Type, N> A = G.transpose() * G;
SquareMatrix<Type, N> L = fullRankCholesky(A, rank);
SquareMatrix<Type, N> LtL = L.transpose() * L;
SquareMatrix<Type, N> X;
if(!inv(LtL, X, rank)) {
return Matrix<Type, N, M>(); // LCOV_EXCL_LINE -- this can only be hit from numerical issues
}
return L * X * X * L.transpose() * G.transpose();
}
}
template<typename Type>
Type typeEpsilon();
template<> inline
float typeEpsilon<float>()
{
return FLT_EPSILON;
}
/**
* Full rank Cholesky factorization of A
*/
template<typename Type, size_t N>
SquareMatrix<Type, N> fullRankCholesky(const SquareMatrix<Type, N> & A,
size_t& rank)
{
// Loses one ulp accuracy per row of diag, relative to largest magnitude
const Type tol = N * typeEpsilon<Type>() * A.diag().max();
Matrix<Type, N, N> L;
size_t r = 0;
for (size_t k = 0; k < N; k++) {
if (r == 0) {
for (size_t i = k; i < N; i++) {
L(i, r) = A(i, k);
}
} else {
for (size_t i = k; i < N; i++) {
// Compute LL = L[k:n, :r] * L[k, :r].T
Type LL = Type();
for (size_t j = 0; j < r; j++) {
LL += L(i, j) * L(k, j);
}
L(i, r) = A(i, k) - LL;
}
}
if (L(k, r) > tol) {
L(k, r) = sqrt(L(k, r));
if (k < N - 1) {
for (size_t i = k + 1; i < N; i++) {
L(i, r) = L(i, r) / L(k, r);
}
}
r = r + 1;
}
}
// Return rank
rank = r;
return L;
}
} // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */