You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

530 lines
14 KiB

/**
* @file Quaternion.hpp
*
* All rotations and axis systems follow the right-hand rule.
* The Hamilton quaternion convention including its product definition is used.
*
* In order to rotate a vector in frame b (v_b) to frame n by a righthand
* rotation defined by the quaternion q_nb (from frame b to n)
* one can use the following operation:
* v_n = q_nb * [0;v_b] * q_nb^(-1)
*
* Just like DCM's: v_n = C_nb * v_b (vector rotation)
* M_n = C_nb * M_b * C_nb^(-1) (matrix rotation)
*
* or similarly the reverse operation
* v_b = q_nb^(-1) * [0;v_n] * q_nb
*
* where q_nb^(-1) represents the inverse of the quaternion q_nb^(-1) = q_bn
*
* The product z of two quaternions z = q2 * q1 represents an intrinsic rotation
* in the order of first q1 followed by q2.
* The first element of the quaternion
* represents the real part, thus, a quaternion representing a zero-rotation
* is defined as (1,0,0,0).
*
* @author James Goppert <james.goppert@gmail.com>
*/
#pragma once
#include "math.hpp"
#include "helper_functions.hpp"
namespace matrix
{
template <typename Type>
class Dcm;
template <typename Type>
class Euler;
template <typename Type>
class AxisAngle;
/**
* Quaternion class
*
* The rotation between two coordinate frames is
* described by this class.
*/
template<typename Type>
class Quaternion : public Vector<Type, 4>
{
public:
typedef Matrix<Type, 4, 1> Matrix41;
typedef Matrix<Type, 3, 1> Matrix31;
/**
* Constructor from array
*
* @param data_ array
*/
Quaternion(const Type *data_) :
Vector<Type, 4>(data_)
{
}
/**
* Standard constructor
*/
Quaternion() :
Vector<Type, 4>()
{
Quaternion &q = *this;
q(0) = 1;
q(1) = 0;
q(2) = 0;
q(3) = 0;
}
/**
* Constructor from Matrix41
*
* @param other Matrix41 to copy
*/
Quaternion(const Matrix41 &other) :
Vector<Type, 4>(other)
{
}
/**
* Constructor from dcm
*
* Instance is initialized from a dcm representing coordinate transformation
* from frame 2 to frame 1.
*
* @param dcm dcm to set quaternion to
*/
Quaternion(const Dcm<Type> &R) :
Vector<Type, 4>()
{
Quaternion &q = *this;
Type t = R.trace();
if (t > Type(0)) {
t = sqrt(Type(1) + t);
q(0) = Type(0.5) * t;
t = Type(0.5) / t;
q(1) = (R(2,1) - R(1,2)) * t;
q(2) = (R(0,2) - R(2,0)) * t;
q(3) = (R(1,0) - R(0,1)) * t;
} else if (R(0,0) > R(1,1) && R(0,0) > R(2,2)) {
t = sqrt(Type(1) + R(0,0) - R(1,1) - R(2,2));
q(1) = Type(0.5) * t;
t = Type(0.5) / t;
q(0) = (R(2,1) - R(1,2)) * t;
q(2) = (R(1,0) + R(0,1)) * t;
q(3) = (R(0,2) + R(2,0)) * t;
} else if (R(1,1) > R(2,2)) {
t = sqrt(Type(1) - R(0,0) + R(1,1) - R(2,2));
q(2) = Type(0.5) * t;
t = Type(0.5) / t;
q(0) = (R(0,2) - R(2,0)) * t;
q(1) = (R(1,0) + R(0,1)) * t;
q(3) = (R(2,1) + R(1,2)) * t;
} else {
t = sqrt(Type(1) - R(0,0) - R(1,1) + R(2,2));
q(3) = Type(0.5) * t;
t = Type(0.5) / t;
q(0) = (R(1,0) - R(0,1)) * t;
q(1) = (R(0,2) + R(2,0)) * t;
q(2) = (R(2,1) + R(1,2)) * t;
}
}
/**
* Constructor from euler angles
*
* This sets the instance to a quaternion representing coordinate transformation from
* frame 2 to frame 1 where the rotation from frame 1 to frame 2 is described
* by a 3-2-1 intrinsic Tait-Bryan rotation sequence.
*
* @param euler euler angle instance
*/
Quaternion(const Euler<Type> &euler) :
Vector<Type, 4>()
{
Quaternion &q = *this;
Type cosPhi_2 = Type(cos(euler.phi() / Type(2.0)));
Type cosTheta_2 = Type(cos(euler.theta() / Type(2.0)));
Type cosPsi_2 = Type(cos(euler.psi() / Type(2.0)));
Type sinPhi_2 = Type(sin(euler.phi() / Type(2.0)));
Type sinTheta_2 = Type(sin(euler.theta() / Type(2.0)));
Type sinPsi_2 = Type(sin(euler.psi() / Type(2.0)));
q(0) = cosPhi_2 * cosTheta_2 * cosPsi_2 +
sinPhi_2 * sinTheta_2 * sinPsi_2;
q(1) = sinPhi_2 * cosTheta_2 * cosPsi_2 -
cosPhi_2 * sinTheta_2 * sinPsi_2;
q(2) = cosPhi_2 * sinTheta_2 * cosPsi_2 +
sinPhi_2 * cosTheta_2 * sinPsi_2;
q(3) = cosPhi_2 * cosTheta_2 * sinPsi_2 -
sinPhi_2 * sinTheta_2 * cosPsi_2;
}
/**
* Quaternion from AxisAngle
*
* @param aa axis-angle vector
*/
Quaternion(const AxisAngle<Type> &aa) :
Vector<Type, 4>()
{
Quaternion &q = *this;
Type angle = aa.norm();
Vector<Type, 3> axis = aa.unit();
if (angle < Type(1e-10)) {
q(0) = Type(1.0);
q(1) = q(2) = q(3) = 0;
} else {
Type magnitude = sin(angle / 2.0f);
q(0) = cos(angle / 2.0f);
q(1) = axis(0) * magnitude;
q(2) = axis(1) * magnitude;
q(3) = axis(2) * magnitude;
}
}
/**
* Quaternion from two vectors
* Generates shortest rotation from source to destination vector
*
* @param dst destination vector (no need to normalize)
* @param src source vector (no need to normalize)
* @param eps epsilon threshold which decides if a value is considered zero
*/
Quaternion(const Vector3<Type> &src, const Vector3<Type> &dst, const Type eps = Type(1e-5)) :
Vector<Type, 4>()
{
Quaternion &q = *this;
Vector3<Type> cr = src.cross(dst);
float dt = src.dot(dst);
/* If the two vectors are parallel, cross product is zero
* If they point opposite, the dot product is negative */
if (cr.norm() < eps && dt < 0) {
cr = src.abs();
if (cr(0) < cr(1)) {
if (cr(0) < cr(2)) {
cr = Vector3<Type>(1, 0, 0);
} else {
cr = Vector3<Type>(0, 0, 1);
}
} else {
if (cr(1) < cr(2)) {
cr = Vector3<Type>(0, 1, 0);
} else {
cr = Vector3<Type>(0, 0, 1);
}
}
q(0) = Type(0);
cr = src.cross(cr);
} else {
/* Half-Way Quaternion Solution */
q(0) = src.dot(dst) + sqrt(src.norm_squared() * dst.norm_squared());
}
q(1) = cr(0);
q(2) = cr(1);
q(3) = cr(2);
q.normalize();
}
/**
* Constructor from quaternion values
*
* Instance is initialized from quaternion values representing coordinate
* transformation from frame 2 to frame 1.
* A zero-rotation quaternion is represented by (1,0,0,0).
*
* @param a set quaternion value 0
* @param b set quaternion value 1
* @param c set quaternion value 2
* @param d set quaternion value 3
*/
Quaternion(Type a, Type b, Type c, Type d) :
Vector<Type, 4>()
{
Quaternion &q = *this;
q(0) = a;
q(1) = b;
q(2) = c;
q(3) = d;
}
/**
* Quaternion multiplication operator
*
* @param q quaternion to multiply with
* @return product
*/
Quaternion operator*(const Quaternion &q) const
{
const Quaternion &p = *this;
Quaternion r;
r(0) = p(0) * q(0) - p(1) * q(1) - p(2) * q(2) - p(3) * q(3);
r(1) = p(0) * q(1) + p(1) * q(0) + p(2) * q(3) - p(3) * q(2);
r(2) = p(0) * q(2) - p(1) * q(3) + p(2) * q(0) + p(3) * q(1);
r(3) = p(0) * q(3) + p(1) * q(2) - p(2) * q(1) + p(3) * q(0);
return r;
}
/**
* Self-multiplication operator
*
* @param other quaternion to multiply with
*/
void operator*=(const Quaternion &other)
{
Quaternion &self = *this;
self = self * other;
}
/**
* Scalar multiplication operator
*
* @param scalar scalar to multiply with
* @return product
*/
Quaternion operator*(Type scalar) const
{
const Quaternion &q = *this;
return scalar * q;
}
/**
* Scalar self-multiplication operator
*
* @param scalar scalar to multiply with
*/
void operator*=(Type scalar)
{
Quaternion &q = *this;
q = q * scalar;
}
/**
* Computes the derivative of q_21 when
* rotated with angular velocity expressed in frame 1
* v_2 = q_21 * v_1 * q_21^-1
* d/dt q_21 = 0.5 * q_21 * omega_2
*
* @param w angular rate in frame 1 (typically body frame)
*/
Matrix41 derivative1(const Matrix31 &w) const
{
const Quaternion &q = *this;
Quaternion<Type> v(0, w(0, 0), w(1, 0), w(2, 0));
return q * v * Type(0.5);
}
/**
* Computes the derivative of q_21 when
* rotated with angular velocity expressed in frame 2
* v_2 = q_21 * v_1 * q_21^-1
* d/dt q_21 = 0.5 * omega_1 * q_21
*
* @param w angular rate in frame 2 (typically reference frame)
*/
Matrix41 derivative2(const Matrix31 &w) const
{
const Quaternion &q = *this;
Quaternion<Type> v(0, w(0, 0), w(1, 0), w(2, 0));
return v * q * Type(0.5);
}
/**
* Invert quaternion in place
*/
void invert()
{
*this = this->inversed();
}
/**
* Invert quaternion
*
* @return inverted quaternion
*/
Quaternion inversed()
{
Quaternion &q = *this;
Type normSq = q.dot(q);
return Quaternion(
q(0)/normSq,
-q(1)/normSq,
-q(2)/normSq,
-q(3)/normSq);
}
/**
* Rotate quaternion from rotation vector
*
* @param vec rotation vector
*/
void rotate(const AxisAngle<Type> &vec)
{
Quaternion res(vec);
(*this) = res * (*this);
}
/**
* Rotates vector v_1 in frame 1 to vector v_2 in frame 2
* using the rotation quaternion q_21
* describing the rotation from frame 1 to 2
* v_2 = q_21 * v_1 * q_21^-1
*
* @param vec vector to rotate in frame 1 (typically body frame)
* @return rotated vector in frame 2 (typically reference frame)
*/
Vector3f conjugate(const Vector3f &vec) {
Quaternion q = *this;
Quaternion v(0, vec(0), vec(1), vec(2));
Quaternion res = q*v*q.inversed();
return Vector3f(res(1), res(2), res(3));
}
/**
* Rotates vector v_2 in frame 2 to vector v_1 in frame 1
* using the rotation quaternion q_21
* describing the rotation from frame 1 to 2
* v_1 = q_21^-1 * v_1 * q_21
*
* @param vec vector to rotate in frame 2 (typically reference frame)
* @return rotated vector in frame 1 (typically body frame)
*/
Vector3f conjugate_inversed(const Vector3f &vec) {
Quaternion q = *this;
Quaternion v(0, vec(0), vec(1), vec(2));
Quaternion res = q.inversed()*v*q;
return Vector3f(res(1), res(2), res(3));
}
/**
* Rotation quaternion from vector
*
* The axis of rotation is given by vector direction and
* the angle is given by the norm.
*
* @param vec rotation vector
* @return quaternion representing the rotation
*/
void from_axis_angle(Vector<Type, 3> vec)
{
Quaternion &q = *this;
Type theta = vec.norm();
if (theta < Type(1e-10)) {
q(0) = Type(1.0);
q(1) = q(2) = q(3) = 0;
return;
}
vec /= theta;
from_axis_angle(vec, theta);
}
/**
* Rotation quaternion from axis and angle
* XXX DEPRECATED, use AxisAngle class
*
* @param axis axis of rotation
* @param theta scalar describing angle of rotation
* @return quaternion representing the rotation
*/
void from_axis_angle(const Vector<Type, 3> &axis, Type theta)
{
Quaternion &q = *this;
if (theta < Type(1e-10)) {
q(0) = Type(1.0);
q(1) = q(2) = q(3) = 0;
}
Type magnitude = sin(theta / 2.0f);
q(0) = cos(theta / 2.0f);
q(1) = axis(0) * magnitude;
q(2) = axis(1) * magnitude;
q(3) = axis(2) * magnitude;
}
/**
* Rotation vector from quaternion
* XXX DEPRECATED, use AxisAngle class
*
* The axis of rotation is given by vector direction and
* the angle is given by the norm.
*
* @return vector, direction representing rotation axis and norm representing angle
*/
Vector<Type, 3> to_axis_angle()
{
Quaternion &q = *this;
Type axis_magnitude = Type(sqrt(q(1) * q(1) + q(2) * q(2) + q(3) * q(3)));
Vector<Type, 3> vec;
vec(0) = q(1);
vec(1) = q(2);
vec(2) = q(3);
if (axis_magnitude >= Type(1e-10)) {
vec = vec / axis_magnitude;
vec = vec * wrap_pi(Type(2.0) * atan2(axis_magnitude, q(0)));
}
return vec;
}
/**
* Imaginary components of quaternion
*/
Vector3<Type> imag()
{
Quaternion &q = *this;
return Vector3<Type>(q(1), q(2), q(3));
}
/**
* Corresponding body z-axis to an attitude quaternion /
* last orthogonal unit basis vector
*
* == last column of the equivalent rotation matrix
* but calculated more efficiently than a full conversion
*/
Vector3<Type> dcm_z()
{
Quaternion &q = *this;
Vector3<Type> R_z;
const Type a = q(0);
const Type b = q(1);
const Type c = q(2);
const Type d = q(3);
R_z(0) = 2 * (a * c + b * d);
R_z(1) = 2 * (c * d - a * b);
R_z(2) = a * a - b * b - c * c + d * d;
return R_z;
}
/**
* XXX DEPRECATED, can use assignment or ctor
*/
Quaternion from_dcm(Matrix<Type, 3, 3> dcm) {
return Quaternion(Dcmf(dcm));
}
/**
* XXX DEPRECATED, can use assignment or ctor
*/
Dcm<Type> to_dcm() {
return Dcm<Type>(*this);
}
};
typedef Quaternion<float> Quatf;
typedef Quaternion<float> Quaternionf;
} // namespace matrix
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */