You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
851 lines
18 KiB
851 lines
18 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file hil.cpp |
|
* |
|
* Driver/configurator for the virtual HIL port. |
|
* |
|
* This virtual driver emulates PWM / servo outputs for setups where |
|
* the connected hardware does not provide enough or no PWM outputs. |
|
* |
|
* Its only function is to take actuator_control uORB messages, |
|
* mix them with any loaded mixer and output the result to the |
|
* actuator_output uORB topic. HIL can also be performed with normal |
|
* PWM outputs, a special flag prevents the outputs to be operated |
|
* during HIL mode. If HIL is not performed with a standalone FMU, |
|
* but in a real system, it is NOT recommended to use this virtual |
|
* driver. Use instead the normal FMU or IO driver. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <sys/types.h> |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <stdlib.h> |
|
#include <semaphore.h> |
|
#include <string.h> |
|
#include <fcntl.h> |
|
#include <poll.h> |
|
#include <errno.h> |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <unistd.h> |
|
|
|
#include <nuttx/arch.h> |
|
|
|
#include <drivers/device/device.h> |
|
#include <drivers/drv_pwm_output.h> |
|
#include <drivers/drv_gpio.h> |
|
#include <drivers/drv_hrt.h> |
|
#include <drivers/drv_mixer.h> |
|
|
|
#include <systemlib/systemlib.h> |
|
#include <systemlib/mixer/mixer.h> |
|
|
|
#include <uORB/topics/actuator_controls.h> |
|
#include <uORB/topics/actuator_outputs.h> |
|
|
|
#include <systemlib/err.h> |
|
|
|
class HIL : public device::CDev |
|
{ |
|
public: |
|
enum Mode { |
|
MODE_2PWM, |
|
MODE_4PWM, |
|
MODE_8PWM, |
|
MODE_12PWM, |
|
MODE_16PWM, |
|
MODE_NONE |
|
}; |
|
HIL(); |
|
virtual ~HIL(); |
|
|
|
virtual int ioctl(file *filp, int cmd, unsigned long arg); |
|
|
|
virtual int init(); |
|
|
|
int set_mode(Mode mode); |
|
int set_pwm_rate(unsigned rate); |
|
|
|
private: |
|
static const unsigned _max_actuators = 4; |
|
|
|
Mode _mode; |
|
int _update_rate; |
|
int _current_update_rate; |
|
int _task; |
|
int _t_actuators; |
|
int _t_armed; |
|
orb_advert_t _t_outputs; |
|
unsigned _num_outputs; |
|
bool _primary_pwm_device; |
|
|
|
volatile bool _task_should_exit; |
|
bool _armed; |
|
|
|
MixerGroup *_mixers; |
|
|
|
actuator_controls_s _controls; |
|
|
|
static void task_main_trampoline(int argc, char *argv[]); |
|
void task_main() __attribute__((noreturn)); |
|
|
|
static int control_callback(uintptr_t handle, |
|
uint8_t control_group, |
|
uint8_t control_index, |
|
float &input); |
|
|
|
int pwm_ioctl(file *filp, int cmd, unsigned long arg); |
|
|
|
struct GPIOConfig { |
|
uint32_t input; |
|
uint32_t output; |
|
uint32_t alt; |
|
}; |
|
|
|
static const GPIOConfig _gpio_tab[]; |
|
static const unsigned _ngpio; |
|
|
|
void gpio_reset(void); |
|
void gpio_set_function(uint32_t gpios, int function); |
|
void gpio_write(uint32_t gpios, int function); |
|
uint32_t gpio_read(void); |
|
int gpio_ioctl(file *filp, int cmd, unsigned long arg); |
|
|
|
}; |
|
|
|
namespace |
|
{ |
|
|
|
HIL *g_hil; |
|
|
|
} // namespace |
|
|
|
HIL::HIL() : |
|
CDev("hilservo", PWM_OUTPUT_DEVICE_PATH/*"/dev/hil" XXXL*/), |
|
_mode(MODE_NONE), |
|
_update_rate(50), |
|
_current_update_rate(0), |
|
_task(-1), |
|
_t_actuators(-1), |
|
_t_armed(-1), |
|
_t_outputs(0), |
|
_num_outputs(0), |
|
_primary_pwm_device(false), |
|
_task_should_exit(false), |
|
_armed(false), |
|
_mixers(nullptr) |
|
{ |
|
_debug_enabled = true; |
|
} |
|
|
|
HIL::~HIL() |
|
{ |
|
if (_task != -1) { |
|
/* tell the task we want it to go away */ |
|
_task_should_exit = true; |
|
|
|
unsigned i = 10; |
|
do { |
|
/* wait 50ms - it should wake every 100ms or so worst-case */ |
|
usleep(50000); |
|
|
|
/* if we have given up, kill it */ |
|
if (--i == 0) { |
|
task_delete(_task); |
|
break; |
|
} |
|
|
|
} while (_task != -1); |
|
} |
|
|
|
/* clean up the alternate device node */ |
|
if (_primary_pwm_device) |
|
unregister_driver(PWM_OUTPUT_DEVICE_PATH); |
|
|
|
g_hil = nullptr; |
|
} |
|
|
|
int |
|
HIL::init() |
|
{ |
|
int ret; |
|
|
|
ASSERT(_task == -1); |
|
|
|
/* do regular cdev init */ |
|
ret = CDev::init(); |
|
|
|
if (ret != OK) |
|
return ret; |
|
|
|
// XXX already claimed with CDEV |
|
///* try to claim the generic PWM output device node as well - it's OK if we fail at this */ |
|
//ret = register_driver(PWM_OUTPUT_DEVICE_PATH, &fops, 0666, (void *)this); |
|
if (ret == OK) { |
|
log("default PWM output device"); |
|
_primary_pwm_device = true; |
|
} |
|
|
|
/* reset GPIOs */ |
|
// gpio_reset(); |
|
|
|
/* start the HIL interface task */ |
|
_task = task_spawn("fmuhil", |
|
SCHED_DEFAULT, |
|
SCHED_PRIORITY_DEFAULT, |
|
2048, |
|
(main_t)&HIL::task_main_trampoline, |
|
nullptr); |
|
|
|
if (_task < 0) { |
|
debug("task start failed: %d", errno); |
|
return -errno; |
|
} |
|
|
|
return OK; |
|
} |
|
|
|
void |
|
HIL::task_main_trampoline(int argc, char *argv[]) |
|
{ |
|
g_hil->task_main(); |
|
} |
|
|
|
int |
|
HIL::set_mode(Mode mode) |
|
{ |
|
/* |
|
* Configure for PWM output. |
|
* |
|
* Note that regardless of the configured mode, the task is always |
|
* listening and mixing; the mode just selects which of the channels |
|
* are presented on the output pins. |
|
*/ |
|
switch (mode) { |
|
case MODE_2PWM: |
|
debug("MODE_2PWM"); |
|
/* multi-port with flow control lines as PWM */ |
|
_update_rate = 50; /* default output rate */ |
|
break; |
|
|
|
case MODE_4PWM: |
|
debug("MODE_4PWM"); |
|
/* multi-port as 4 PWM outs */ |
|
_update_rate = 50; /* default output rate */ |
|
break; |
|
|
|
case MODE_8PWM: |
|
debug("MODE_8PWM"); |
|
/* multi-port as 8 PWM outs */ |
|
_update_rate = 50; /* default output rate */ |
|
break; |
|
|
|
case MODE_12PWM: |
|
debug("MODE_12PWM"); |
|
/* multi-port as 12 PWM outs */ |
|
_update_rate = 50; /* default output rate */ |
|
break; |
|
|
|
case MODE_16PWM: |
|
debug("MODE_16PWM"); |
|
/* multi-port as 16 PWM outs */ |
|
_update_rate = 50; /* default output rate */ |
|
break; |
|
|
|
case MODE_NONE: |
|
debug("MODE_NONE"); |
|
/* disable servo outputs and set a very low update rate */ |
|
_update_rate = 10; |
|
break; |
|
|
|
default: |
|
return -EINVAL; |
|
} |
|
_mode = mode; |
|
return OK; |
|
} |
|
|
|
int |
|
HIL::set_pwm_rate(unsigned rate) |
|
{ |
|
if ((rate > 500) || (rate < 10)) |
|
return -EINVAL; |
|
|
|
_update_rate = rate; |
|
return OK; |
|
} |
|
|
|
void |
|
HIL::task_main() |
|
{ |
|
/* |
|
* Subscribe to the appropriate PWM output topic based on whether we are the |
|
* primary PWM output or not. |
|
*/ |
|
_t_actuators = orb_subscribe(_primary_pwm_device ? ORB_ID_VEHICLE_ATTITUDE_CONTROLS : |
|
ORB_ID(actuator_controls_1)); |
|
/* force a reset of the update rate */ |
|
_current_update_rate = 0; |
|
|
|
_t_armed = orb_subscribe(ORB_ID(actuator_armed)); |
|
orb_set_interval(_t_armed, 200); /* 5Hz update rate */ |
|
|
|
/* advertise the mixed control outputs */ |
|
actuator_outputs_s outputs; |
|
memset(&outputs, 0, sizeof(outputs)); |
|
/* advertise the mixed control outputs */ |
|
_t_outputs = orb_advertise(_primary_pwm_device ? ORB_ID_VEHICLE_CONTROLS : ORB_ID(actuator_outputs_1), |
|
&outputs); |
|
|
|
pollfd fds[2]; |
|
fds[0].fd = _t_actuators; |
|
fds[0].events = POLLIN; |
|
fds[1].fd = _t_armed; |
|
fds[1].events = POLLIN; |
|
|
|
unsigned num_outputs; |
|
|
|
/* select the number of virtual outputs */ |
|
switch (_mode) { |
|
case MODE_2PWM: |
|
num_outputs = 2; |
|
break; |
|
|
|
case MODE_4PWM: |
|
num_outputs = 4; |
|
break; |
|
|
|
case MODE_8PWM: |
|
case MODE_12PWM: |
|
case MODE_16PWM: |
|
// XXX only support the lower 8 - trivial to extend |
|
num_outputs = 8; |
|
break; |
|
|
|
case MODE_NONE: |
|
default: |
|
num_outputs = 0; |
|
break; |
|
} |
|
|
|
log("starting"); |
|
|
|
/* loop until killed */ |
|
while (!_task_should_exit) { |
|
|
|
/* handle update rate changes */ |
|
if (_current_update_rate != _update_rate) { |
|
int update_rate_in_ms = int(1000 / _update_rate); |
|
if (update_rate_in_ms < 2) |
|
update_rate_in_ms = 2; |
|
orb_set_interval(_t_actuators, update_rate_in_ms); |
|
// up_pwm_servo_set_rate(_update_rate); |
|
_current_update_rate = _update_rate; |
|
} |
|
|
|
/* sleep waiting for data, but no more than a second */ |
|
int ret = ::poll(&fds[0], 2, 1000); |
|
|
|
/* this would be bad... */ |
|
if (ret < 0) { |
|
log("poll error %d", errno); |
|
continue; |
|
} |
|
|
|
/* do we have a control update? */ |
|
if (fds[0].revents & POLLIN) { |
|
|
|
/* get controls - must always do this to avoid spinning */ |
|
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, _t_actuators, &_controls); |
|
|
|
/* can we mix? */ |
|
if (_mixers != nullptr) { |
|
|
|
/* do mixing */ |
|
outputs.noutputs = _mixers->mix(&outputs.output[0], num_outputs); |
|
outputs.timestamp = hrt_absolute_time(); |
|
|
|
/* iterate actuators */ |
|
for (unsigned i = 0; i < num_outputs; i++) { |
|
|
|
/* last resort: catch NaN, INF and out-of-band errors */ |
|
if (i < (unsigned)outputs.noutputs && |
|
isfinite(outputs.output[i]) && |
|
outputs.output[i] >= -1.0f && |
|
outputs.output[i] <= 1.0f) { |
|
/* scale for PWM output 900 - 2100us */ |
|
outputs.output[i] = 1500 + (600 * outputs.output[i]); |
|
} else { |
|
/* |
|
* Value is NaN, INF or out of band - set to the minimum value. |
|
* This will be clearly visible on the servo status and will limit the risk of accidentally |
|
* spinning motors. It would be deadly in flight. |
|
*/ |
|
outputs.output[i] = 900; |
|
} |
|
} |
|
|
|
/* and publish for anyone that cares to see */ |
|
orb_publish(ORB_ID_VEHICLE_CONTROLS, _t_outputs, &outputs); |
|
} |
|
} |
|
|
|
/* how about an arming update? */ |
|
if (fds[1].revents & POLLIN) { |
|
actuator_armed_s aa; |
|
|
|
/* get new value */ |
|
orb_copy(ORB_ID(actuator_armed), _t_armed, &aa); |
|
} |
|
} |
|
|
|
::close(_t_actuators); |
|
::close(_t_armed); |
|
|
|
/* make sure servos are off */ |
|
// up_pwm_servo_deinit(); |
|
|
|
log("stopping"); |
|
|
|
/* note - someone else is responsible for restoring the GPIO config */ |
|
|
|
/* tell the dtor that we are exiting */ |
|
_task = -1; |
|
_exit(0); |
|
} |
|
|
|
int |
|
HIL::control_callback(uintptr_t handle, |
|
uint8_t control_group, |
|
uint8_t control_index, |
|
float &input) |
|
{ |
|
const actuator_controls_s *controls = (actuator_controls_s *)handle; |
|
|
|
input = controls->control[control_index]; |
|
return 0; |
|
} |
|
|
|
int |
|
HIL::ioctl(file *filp, int cmd, unsigned long arg) |
|
{ |
|
int ret; |
|
|
|
debug("ioctl 0x%04x 0x%08x", cmd, arg); |
|
|
|
// /* try it as a GPIO ioctl first */ |
|
// ret = HIL::gpio_ioctl(filp, cmd, arg); |
|
// if (ret != -ENOTTY) |
|
// return ret; |
|
|
|
/* if we are in valid PWM mode, try it as a PWM ioctl as well */ |
|
switch(_mode) { |
|
case MODE_2PWM: |
|
case MODE_4PWM: |
|
case MODE_8PWM: |
|
case MODE_12PWM: |
|
case MODE_16PWM: |
|
ret = HIL::pwm_ioctl(filp, cmd, arg); |
|
break; |
|
default: |
|
ret = -ENOTTY; |
|
debug("not in a PWM mode"); |
|
break; |
|
} |
|
|
|
/* if nobody wants it, let CDev have it */ |
|
if (ret == -ENOTTY) |
|
ret = CDev::ioctl(filp, cmd, arg); |
|
|
|
return ret; |
|
} |
|
|
|
int |
|
HIL::pwm_ioctl(file *filp, int cmd, unsigned long arg) |
|
{ |
|
int ret = OK; |
|
// int channel; |
|
|
|
lock(); |
|
|
|
switch (cmd) { |
|
case PWM_SERVO_ARM: |
|
// up_pwm_servo_arm(true); |
|
break; |
|
|
|
case PWM_SERVO_DISARM: |
|
// up_pwm_servo_arm(false); |
|
break; |
|
|
|
case PWM_SERVO_SET_UPDATE_RATE: |
|
// HIL always outputs at the alternate (usually faster) rate |
|
g_hil->set_pwm_rate(arg); |
|
break; |
|
|
|
case PWM_SERVO_SELECT_UPDATE_RATE: |
|
// HIL always outputs at the alternate (usually faster) rate |
|
break; |
|
|
|
case PWM_SERVO_SET(2): |
|
case PWM_SERVO_SET(3): |
|
if (_mode != MODE_4PWM) { |
|
ret = -EINVAL; |
|
break; |
|
} |
|
|
|
/* FALLTHROUGH */ |
|
case PWM_SERVO_SET(0): |
|
case PWM_SERVO_SET(1): |
|
if (arg < 2100) { |
|
// channel = cmd - PWM_SERVO_SET(0); |
|
// up_pwm_servo_set(channel, arg); XXX |
|
|
|
} else { |
|
ret = -EINVAL; |
|
} |
|
|
|
break; |
|
|
|
case PWM_SERVO_GET(2): |
|
case PWM_SERVO_GET(3): |
|
if (_mode != MODE_4PWM) { |
|
ret = -EINVAL; |
|
break; |
|
} |
|
|
|
/* FALLTHROUGH */ |
|
case PWM_SERVO_GET(0): |
|
case PWM_SERVO_GET(1): { |
|
// channel = cmd - PWM_SERVO_SET(0); |
|
// *(servo_position_t *)arg = up_pwm_servo_get(channel); |
|
break; |
|
} |
|
|
|
case PWM_SERVO_GET_RATEGROUP(0) ... PWM_SERVO_GET_RATEGROUP(PWM_OUTPUT_MAX_CHANNELS - 1): { |
|
// no restrictions on output grouping |
|
unsigned channel = cmd - PWM_SERVO_GET_RATEGROUP(0); |
|
|
|
*(uint32_t *)arg = (1 << channel); |
|
break; |
|
} |
|
|
|
case MIXERIOCGETOUTPUTCOUNT: |
|
if (_mode == MODE_4PWM) { |
|
*(unsigned *)arg = 4; |
|
|
|
} else { |
|
*(unsigned *)arg = 2; |
|
} |
|
|
|
break; |
|
|
|
case MIXERIOCRESET: |
|
if (_mixers != nullptr) { |
|
delete _mixers; |
|
_mixers = nullptr; |
|
} |
|
|
|
break; |
|
|
|
case MIXERIOCADDSIMPLE: { |
|
mixer_simple_s *mixinfo = (mixer_simple_s *)arg; |
|
|
|
SimpleMixer *mixer = new SimpleMixer(control_callback, |
|
(uintptr_t)&_controls, mixinfo); |
|
|
|
if (mixer->check()) { |
|
delete mixer; |
|
ret = -EINVAL; |
|
|
|
} else { |
|
if (_mixers == nullptr) |
|
_mixers = new MixerGroup(control_callback, |
|
(uintptr_t)&_controls); |
|
|
|
_mixers->add_mixer(mixer); |
|
} |
|
|
|
break; |
|
} |
|
|
|
case MIXERIOCLOADBUF: { |
|
const char *buf = (const char *)arg; |
|
unsigned buflen = strnlen(buf, 1024); |
|
|
|
if (_mixers == nullptr) |
|
_mixers = new MixerGroup(control_callback, (uintptr_t)&_controls); |
|
|
|
if (_mixers == nullptr) { |
|
ret = -ENOMEM; |
|
|
|
} else { |
|
|
|
ret = _mixers->load_from_buf(buf, buflen); |
|
|
|
if (ret != 0) { |
|
debug("mixer load failed with %d", ret); |
|
delete _mixers; |
|
_mixers = nullptr; |
|
ret = -EINVAL; |
|
} |
|
} |
|
break; |
|
} |
|
|
|
|
|
default: |
|
ret = -ENOTTY; |
|
break; |
|
} |
|
|
|
unlock(); |
|
|
|
return ret; |
|
} |
|
|
|
namespace |
|
{ |
|
|
|
enum PortMode { |
|
PORT_MODE_UNDEFINED = 0, |
|
PORT1_MODE_UNSET, |
|
PORT1_FULL_PWM, |
|
PORT1_PWM_AND_SERIAL, |
|
PORT1_PWM_AND_GPIO, |
|
PORT2_MODE_UNSET, |
|
PORT2_8PWM, |
|
PORT2_12PWM, |
|
PORT2_16PWM, |
|
}; |
|
|
|
PortMode g_port_mode; |
|
|
|
int |
|
hil_new_mode(PortMode new_mode) |
|
{ |
|
// uint32_t gpio_bits; |
|
|
|
|
|
// /* reset to all-inputs */ |
|
// g_hil->ioctl(0, GPIO_RESET, 0); |
|
|
|
// gpio_bits = 0; |
|
|
|
HIL::Mode servo_mode = HIL::MODE_NONE; |
|
|
|
switch (new_mode) { |
|
case PORT_MODE_UNDEFINED: |
|
case PORT1_MODE_UNSET: |
|
case PORT2_MODE_UNSET: |
|
/* nothing more to do here */ |
|
break; |
|
|
|
case PORT1_FULL_PWM: |
|
/* select 4-pin PWM mode */ |
|
servo_mode = HIL::MODE_4PWM; |
|
break; |
|
|
|
case PORT1_PWM_AND_SERIAL: |
|
/* select 2-pin PWM mode */ |
|
servo_mode = HIL::MODE_2PWM; |
|
// /* set RX/TX multi-GPIOs to serial mode */ |
|
// gpio_bits = GPIO_MULTI_3 | GPIO_MULTI_4; |
|
break; |
|
|
|
case PORT1_PWM_AND_GPIO: |
|
/* select 2-pin PWM mode */ |
|
servo_mode = HIL::MODE_2PWM; |
|
break; |
|
|
|
case PORT2_8PWM: |
|
/* select 8-pin PWM mode */ |
|
servo_mode = HIL::MODE_8PWM; |
|
break; |
|
|
|
case PORT2_12PWM: |
|
/* select 12-pin PWM mode */ |
|
servo_mode = HIL::MODE_12PWM; |
|
break; |
|
|
|
case PORT2_16PWM: |
|
/* select 16-pin PWM mode */ |
|
servo_mode = HIL::MODE_16PWM; |
|
break; |
|
} |
|
|
|
// /* adjust GPIO config for serial mode(s) */ |
|
// if (gpio_bits != 0) |
|
// g_hil->ioctl(0, GPIO_SET_ALT_1, gpio_bits); |
|
|
|
/* (re)set the PWM output mode */ |
|
g_hil->set_mode(servo_mode); |
|
|
|
return OK; |
|
} |
|
|
|
int |
|
hil_start(void) |
|
{ |
|
int ret = OK; |
|
|
|
if (g_hil == nullptr) { |
|
|
|
g_hil = new HIL; |
|
|
|
if (g_hil == nullptr) { |
|
ret = -ENOMEM; |
|
|
|
} else { |
|
ret = g_hil->init(); |
|
|
|
if (ret != OK) { |
|
delete g_hil; |
|
g_hil = nullptr; |
|
} |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
void |
|
test(void) |
|
{ |
|
int fd; |
|
|
|
fd = open(PWM_OUTPUT_DEVICE_PATH, 0); |
|
|
|
if (fd < 0) { |
|
puts("open fail"); |
|
exit(1); |
|
} |
|
|
|
ioctl(fd, PWM_SERVO_ARM, 0); |
|
ioctl(fd, PWM_SERVO_SET(0), 1000); |
|
|
|
close(fd); |
|
|
|
exit(0); |
|
} |
|
|
|
void |
|
fake(int argc, char *argv[]) |
|
{ |
|
if (argc < 5) { |
|
puts("hil fake <roll> <pitch> <yaw> <thrust> (values -100 .. 100)"); |
|
exit(1); |
|
} |
|
|
|
actuator_controls_s ac; |
|
|
|
ac.control[0] = strtol(argv[1], 0, 0) / 100.0f; |
|
|
|
ac.control[1] = strtol(argv[2], 0, 0) / 100.0f; |
|
|
|
ac.control[2] = strtol(argv[3], 0, 0) / 100.0f; |
|
|
|
ac.control[3] = strtol(argv[4], 0, 0) / 100.0f; |
|
|
|
orb_advert_t handle = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &ac); |
|
|
|
if (handle < 0) { |
|
puts("advertise failed"); |
|
exit(1); |
|
} |
|
|
|
exit(0); |
|
} |
|
|
|
} // namespace |
|
|
|
extern "C" __EXPORT int hil_main(int argc, char *argv[]); |
|
|
|
int |
|
hil_main(int argc, char *argv[]) |
|
{ |
|
PortMode new_mode = PORT_MODE_UNDEFINED; |
|
const char *verb = argv[1]; |
|
|
|
if (hil_start() != OK) |
|
errx(1, "failed to start the HIL driver"); |
|
|
|
/* |
|
* Mode switches. |
|
*/ |
|
|
|
// this was all cut-and-pasted from the FMU driver; it's junk |
|
if (!strcmp(verb, "mode_pwm")) { |
|
new_mode = PORT1_FULL_PWM; |
|
|
|
} else if (!strcmp(verb, "mode_pwm_serial")) { |
|
new_mode = PORT1_PWM_AND_SERIAL; |
|
|
|
} else if (!strcmp(verb, "mode_pwm_gpio")) { |
|
new_mode = PORT1_PWM_AND_GPIO; |
|
|
|
} else if (!strcmp(verb, "mode_port2_pwm8")) { |
|
new_mode = PORT2_8PWM; |
|
|
|
} else if (!strcmp(verb, "mode_port2_pwm12")) { |
|
new_mode = PORT2_8PWM; |
|
|
|
} else if (!strcmp(verb, "mode_port2_pwm16")) { |
|
new_mode = PORT2_8PWM; |
|
} |
|
|
|
/* was a new mode set? */ |
|
if (new_mode != PORT_MODE_UNDEFINED) { |
|
|
|
/* yes but it's the same mode */ |
|
if (new_mode == g_port_mode) |
|
return OK; |
|
|
|
/* switch modes */ |
|
return hil_new_mode(new_mode); |
|
} |
|
|
|
if (!strcmp(verb, "test")) |
|
test(); |
|
|
|
if (!strcmp(verb, "fake")) |
|
fake(argc - 1, argv + 1); |
|
|
|
|
|
fprintf(stderr, "HIL: unrecognized command, try:\n"); |
|
fprintf(stderr, " mode_pwm, mode_gpio_serial, mode_pwm_serial, mode_pwm_gpio, mode_port2_pwm8, mode_port2_pwm12, mode_port2_pwm16\n"); |
|
return -EINVAL; |
|
}
|
|
|