You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

187 lines
7.1 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file airspeed_fusion.cpp
* airspeed fusion methods.
* equations generated using EKF/python/ekf_derivation/main.py
*
* @author Carl Olsson <carlolsson.co@gmail.com>
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "../ecl.h"
#include "ekf.h"
#include <mathlib/mathlib.h>
void Ekf::fuseAirspeed()
{
const float &vn = _state.vel(0); // Velocity in north direction
const float &ve = _state.vel(1); // Velocity in east direction
const float &vd = _state.vel(2); // Velocity in downwards direction
const float &vwn = _state.wind_vel(0); // Wind speed in north direction
const float &vwe = _state.wind_vel(1); // Wind speed in east direction
// Variance for true airspeed measurement - (m/sec)^2
const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) *
math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f));
// determine if we need the sideslip fusion to correct states other than wind
const bool update_wind_only = !_is_wind_dead_reckoning;
// Intermediate variables
const float HK0 = vn - vwn;
const float HK1 = ve - vwe;
const float HK2 = ecl::powf(HK0, 2) + ecl::powf(HK1, 2) + ecl::powf(vd, 2);
const float v_tas_pred = sqrtf(HK2); // predicted airspeed
//const float HK3 = powf(HK2, -1.0F/2.0F);
if (v_tas_pred < 1.0f) {
// calculation can be badly conditioned for very low airspeed values so don't fuse this time
return;
}
const float HK3 = 1.0f / v_tas_pred;
const float HK4 = HK0*HK3;
const float HK5 = HK1*HK3;
const float HK6 = 1.0F/HK2;
const float HK7 = HK0*P(4,6) - HK0*P(6,22) + HK1*P(5,6) - HK1*P(6,23) + P(6,6)*vd;
const float HK8 = HK1*P(5,23);
const float HK9 = HK0*P(4,5) - HK0*P(5,22) + HK1*P(5,5) - HK8 + P(5,6)*vd;
const float HK10 = HK1*HK6;
const float HK11 = HK0*P(4,22);
const float HK12 = HK0*P(4,4) - HK1*P(4,23) + HK1*P(4,5) - HK11 + P(4,6)*vd;
const float HK13 = HK0*HK6;
const float HK14 = -HK0*P(22,23) + HK0*P(4,23) - HK1*P(23,23) + HK8 + P(6,23)*vd;
const float HK15 = -HK0*P(22,22) - HK1*P(22,23) + HK1*P(5,22) + HK11 + P(6,22)*vd;
//const float HK16 = HK3/(-HK10*HK14 + HK10*HK9 + HK12*HK13 - HK13*HK15 + HK6*HK7*vd + R_TAS);
// innovation variance - check for badly conditioned calculation
_airspeed_innov_var = (-HK10*HK14 + HK10*HK9 + HK12*HK13 - HK13*HK15 + HK6*HK7*vd + R_TAS);
if (_airspeed_innov_var < R_TAS) { //
// Reset the estimator covariance matrix
// if we are getting aiding from other sources, warn and reset the wind states and covariances only
const char* action_string = nullptr;
if (update_wind_only) {
resetWindStates();
resetWindCovariance();
action_string = "wind";
} else {
initialiseCovariance();
_state.wind_vel.setZero();
action_string = "full";
}
ECL_ERR("airspeed badly conditioned - %s covariance reset", action_string);
_fault_status.flags.bad_airspeed = true;
return;
}
const float HK16 = HK3 / _airspeed_innov_var;
_fault_status.flags.bad_airspeed = false;
// Observation Jacobians
SparseVector24f<4,5,6,22,23> Hfusion;
Hfusion.at<4>() = HK4;
Hfusion.at<5>() = HK5;
Hfusion.at<6>() = HK3*vd;
Hfusion.at<22>() = -HK4;
Hfusion.at<23>() = -HK5;
Vector24f Kfusion; // Kalman gain vector
if (!update_wind_only) {
// we have no other source of aiding, so use airspeed measurements to correct states
for (unsigned row = 0; row <= 3; row++) {
Kfusion(row) = HK16*(HK0*P(4,row) - HK0*P(row,22) + HK1*P(5,row) - HK1*P(row,23) + P(6,row)*vd);
}
Kfusion(4) = HK12*HK16;
Kfusion(5) = HK16*HK9;
Kfusion(6) = HK16*HK7;
for (unsigned row = 7; row <= 21; row++) {
Kfusion(row) = HK16*(HK0*P(4,row) - HK0*P(row,22) + HK1*P(5,row) - HK1*P(row,23) + P(6,row)*vd);
}
}
Kfusion(22) = HK15*HK16;
Kfusion(23) = HK14*HK16;
// Calculate measurement innovation
_airspeed_innov = v_tas_pred - _airspeed_sample_delayed.true_airspeed;
// Compute the ratio of innovation to gate size
_tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var);
// If the innovation consistency check fails then don't fuse the sample and indicate bad airspeed health
if (_tas_test_ratio > 1.0f) {
_innov_check_fail_status.flags.reject_airspeed = true;
return;
} else {
_innov_check_fail_status.flags.reject_airspeed = false;
}
const bool is_fused = measurementUpdate(Kfusion, Hfusion, _airspeed_innov);
_fault_status.flags.bad_airspeed = !is_fused;
if (is_fused) {
_time_last_arsp_fuse = _time_last_imu;
_control_status.flags.fuse_aspd = true;
}
}
void Ekf::get_true_airspeed(float *tas) const
{
const float tempvar = sqrtf(sq(_state.vel(0) - _state.wind_vel(0)) + sq(_state.vel(1) - _state.wind_vel(1)) + sq(_state.vel(2)));
memcpy(tas, &tempvar, sizeof(float));
}
/*
* Reset the wind states using the current airspeed measurement, ground relative nav velocity, yaw angle and assumption of zero sideslip
*/
void Ekf::resetWindStates()
{
const float euler_yaw = getEuler321Yaw(_state.quat_nominal);
if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) {
// estimate wind using zero sideslip assumption and airspeed measurement if airspeed available
_state.wind_vel(0) = _state.vel(0) - _airspeed_sample_delayed.true_airspeed * cosf(euler_yaw);
_state.wind_vel(1) = _state.vel(1) - _airspeed_sample_delayed.true_airspeed * sinf(euler_yaw);
} else {
// If we don't have an airspeed measurement, then assume the wind is zero
_state.wind_vel.setZero();
}
}