You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
7.1 KiB
187 lines
7.1 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file airspeed_fusion.cpp |
|
* airspeed fusion methods. |
|
* equations generated using EKF/python/ekf_derivation/main.py |
|
* |
|
* @author Carl Olsson <carlolsson.co@gmail.com> |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
#include "../ecl.h" |
|
#include "ekf.h" |
|
#include <mathlib/mathlib.h> |
|
|
|
void Ekf::fuseAirspeed() |
|
{ |
|
const float &vn = _state.vel(0); // Velocity in north direction |
|
const float &ve = _state.vel(1); // Velocity in east direction |
|
const float &vd = _state.vel(2); // Velocity in downwards direction |
|
const float &vwn = _state.wind_vel(0); // Wind speed in north direction |
|
const float &vwe = _state.wind_vel(1); // Wind speed in east direction |
|
|
|
// Variance for true airspeed measurement - (m/sec)^2 |
|
const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * |
|
math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f)); |
|
|
|
// determine if we need the sideslip fusion to correct states other than wind |
|
const bool update_wind_only = !_is_wind_dead_reckoning; |
|
|
|
// Intermediate variables |
|
const float HK0 = vn - vwn; |
|
const float HK1 = ve - vwe; |
|
const float HK2 = ecl::powf(HK0, 2) + ecl::powf(HK1, 2) + ecl::powf(vd, 2); |
|
const float v_tas_pred = sqrtf(HK2); // predicted airspeed |
|
//const float HK3 = powf(HK2, -1.0F/2.0F); |
|
if (v_tas_pred < 1.0f) { |
|
// calculation can be badly conditioned for very low airspeed values so don't fuse this time |
|
return; |
|
} |
|
const float HK3 = 1.0f / v_tas_pred; |
|
const float HK4 = HK0*HK3; |
|
const float HK5 = HK1*HK3; |
|
const float HK6 = 1.0F/HK2; |
|
const float HK7 = HK0*P(4,6) - HK0*P(6,22) + HK1*P(5,6) - HK1*P(6,23) + P(6,6)*vd; |
|
const float HK8 = HK1*P(5,23); |
|
const float HK9 = HK0*P(4,5) - HK0*P(5,22) + HK1*P(5,5) - HK8 + P(5,6)*vd; |
|
const float HK10 = HK1*HK6; |
|
const float HK11 = HK0*P(4,22); |
|
const float HK12 = HK0*P(4,4) - HK1*P(4,23) + HK1*P(4,5) - HK11 + P(4,6)*vd; |
|
const float HK13 = HK0*HK6; |
|
const float HK14 = -HK0*P(22,23) + HK0*P(4,23) - HK1*P(23,23) + HK8 + P(6,23)*vd; |
|
const float HK15 = -HK0*P(22,22) - HK1*P(22,23) + HK1*P(5,22) + HK11 + P(6,22)*vd; |
|
//const float HK16 = HK3/(-HK10*HK14 + HK10*HK9 + HK12*HK13 - HK13*HK15 + HK6*HK7*vd + R_TAS); |
|
|
|
// innovation variance - check for badly conditioned calculation |
|
_airspeed_innov_var = (-HK10*HK14 + HK10*HK9 + HK12*HK13 - HK13*HK15 + HK6*HK7*vd + R_TAS); |
|
if (_airspeed_innov_var < R_TAS) { // |
|
// Reset the estimator covariance matrix |
|
// if we are getting aiding from other sources, warn and reset the wind states and covariances only |
|
const char* action_string = nullptr; |
|
if (update_wind_only) { |
|
resetWindStates(); |
|
resetWindCovariance(); |
|
action_string = "wind"; |
|
|
|
} else { |
|
initialiseCovariance(); |
|
_state.wind_vel.setZero(); |
|
action_string = "full"; |
|
} |
|
ECL_ERR("airspeed badly conditioned - %s covariance reset", action_string); |
|
|
|
_fault_status.flags.bad_airspeed = true; |
|
|
|
return; |
|
} |
|
const float HK16 = HK3 / _airspeed_innov_var; |
|
_fault_status.flags.bad_airspeed = false; |
|
|
|
// Observation Jacobians |
|
SparseVector24f<4,5,6,22,23> Hfusion; |
|
Hfusion.at<4>() = HK4; |
|
Hfusion.at<5>() = HK5; |
|
Hfusion.at<6>() = HK3*vd; |
|
Hfusion.at<22>() = -HK4; |
|
Hfusion.at<23>() = -HK5; |
|
|
|
Vector24f Kfusion; // Kalman gain vector |
|
if (!update_wind_only) { |
|
// we have no other source of aiding, so use airspeed measurements to correct states |
|
for (unsigned row = 0; row <= 3; row++) { |
|
Kfusion(row) = HK16*(HK0*P(4,row) - HK0*P(row,22) + HK1*P(5,row) - HK1*P(row,23) + P(6,row)*vd); |
|
} |
|
|
|
Kfusion(4) = HK12*HK16; |
|
Kfusion(5) = HK16*HK9; |
|
Kfusion(6) = HK16*HK7; |
|
|
|
for (unsigned row = 7; row <= 21; row++) { |
|
Kfusion(row) = HK16*(HK0*P(4,row) - HK0*P(row,22) + HK1*P(5,row) - HK1*P(row,23) + P(6,row)*vd); |
|
} |
|
} |
|
|
|
Kfusion(22) = HK15*HK16; |
|
Kfusion(23) = HK14*HK16; |
|
|
|
// Calculate measurement innovation |
|
_airspeed_innov = v_tas_pred - _airspeed_sample_delayed.true_airspeed; |
|
|
|
// Compute the ratio of innovation to gate size |
|
_tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var); |
|
|
|
// If the innovation consistency check fails then don't fuse the sample and indicate bad airspeed health |
|
if (_tas_test_ratio > 1.0f) { |
|
_innov_check_fail_status.flags.reject_airspeed = true; |
|
return; |
|
|
|
} else { |
|
_innov_check_fail_status.flags.reject_airspeed = false; |
|
} |
|
|
|
const bool is_fused = measurementUpdate(Kfusion, Hfusion, _airspeed_innov); |
|
|
|
_fault_status.flags.bad_airspeed = !is_fused; |
|
|
|
if (is_fused) { |
|
_time_last_arsp_fuse = _time_last_imu; |
|
_control_status.flags.fuse_aspd = true; |
|
} |
|
} |
|
|
|
void Ekf::get_true_airspeed(float *tas) const |
|
{ |
|
const float tempvar = sqrtf(sq(_state.vel(0) - _state.wind_vel(0)) + sq(_state.vel(1) - _state.wind_vel(1)) + sq(_state.vel(2))); |
|
memcpy(tas, &tempvar, sizeof(float)); |
|
} |
|
|
|
/* |
|
* Reset the wind states using the current airspeed measurement, ground relative nav velocity, yaw angle and assumption of zero sideslip |
|
*/ |
|
void Ekf::resetWindStates() |
|
{ |
|
const float euler_yaw = getEuler321Yaw(_state.quat_nominal); |
|
|
|
if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) { |
|
// estimate wind using zero sideslip assumption and airspeed measurement if airspeed available |
|
_state.wind_vel(0) = _state.vel(0) - _airspeed_sample_delayed.true_airspeed * cosf(euler_yaw); |
|
_state.wind_vel(1) = _state.vel(1) - _airspeed_sample_delayed.true_airspeed * sinf(euler_yaw); |
|
|
|
} else { |
|
// If we don't have an airspeed measurement, then assume the wind is zero |
|
_state.wind_vel.setZero(); |
|
} |
|
}
|
|
|