You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
443 lines
20 KiB
443 lines
20 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015-2020 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file estimator_interface.h |
|
* Definition of base class for attitude estimators |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#pragma once |
|
|
|
#include <ecl.h> |
|
#include "common.h" |
|
#include "RingBuffer.h" |
|
#include <AlphaFilter/AlphaFilter.hpp> |
|
#include "imu_down_sampler.hpp" |
|
#include "sensor_range_finder.hpp" |
|
#include "utils.hpp" |
|
|
|
#include <geo/geo.h> |
|
#include <matrix/math.hpp> |
|
#include <mathlib/mathlib.h> |
|
|
|
using namespace estimator; |
|
|
|
class EstimatorInterface |
|
{ |
|
public: |
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined |
|
virtual bool collect_gps(const gps_message &gps) = 0; |
|
|
|
void setIMUData(const imuSample &imu_sample); |
|
|
|
/* |
|
Returns following IMU vibration metrics in the following array locations |
|
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle) |
|
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle) |
|
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity) |
|
*/ |
|
const Vector3f &getImuVibrationMetrics() const { return _vibe_metrics; } |
|
|
|
void setMagData(const magSample &mag_sample); |
|
|
|
void setGpsData(const gps_message &gps); |
|
|
|
void setBaroData(const baroSample &baro_sample); |
|
|
|
void setAirspeedData(const airspeedSample &airspeed_sample); |
|
|
|
void setRangeData(const rangeSample &range_sample); |
|
|
|
// if optical flow sensor gyro delta angles are not available, set gyro_xyz vector fields to NaN and the EKF will use its internal delta angle data instead |
|
void setOpticalFlowData(const flowSample &flow); |
|
|
|
// set external vision position and attitude data |
|
void setExtVisionData(const extVisionSample &evdata); |
|
|
|
void setAuxVelData(const auxVelSample &auxvel_sample); |
|
|
|
// return a address to the parameters struct |
|
// in order to give access to the application |
|
parameters *getParamHandle() { return &_params; } |
|
|
|
// set vehicle landed status data |
|
void set_in_air_status(bool in_air) |
|
{ |
|
if (!in_air) { |
|
_time_last_on_ground_us = _time_last_imu; |
|
|
|
} else { |
|
_time_last_in_air = _time_last_imu; |
|
} |
|
_control_status.flags.in_air = in_air; |
|
} |
|
|
|
// return true if the attitude is usable |
|
bool attitude_valid() const { return ISFINITE(_output_new.quat_nominal(0)) && _control_status.flags.tilt_align; } |
|
|
|
// get vehicle landed status data |
|
bool get_in_air_status() const { return _control_status.flags.in_air; } |
|
|
|
// get wind estimation status |
|
bool get_wind_status() const { return _control_status.flags.wind; } |
|
|
|
// set vehicle is fixed wing status |
|
void set_is_fixed_wing(bool is_fixed_wing) { _control_status.flags.fixed_wing = is_fixed_wing; } |
|
|
|
// set flag if synthetic sideslip measurement should be fused |
|
void set_fuse_beta_flag(bool fuse_beta) { _control_status.flags.fuse_beta = (fuse_beta && _control_status.flags.in_air); } |
|
|
|
// set flag if static pressure rise due to ground effect is expected |
|
// use _params.gnd_effect_deadzone to adjust for expected rise in static pressure |
|
// flag will clear after GNDEFFECT_TIMEOUT uSec |
|
void set_gnd_effect_flag(bool gnd_effect) |
|
{ |
|
_control_status.flags.gnd_effect = gnd_effect; |
|
_time_last_gnd_effect_on = _time_last_imu; |
|
} |
|
|
|
// set air density used by the multi-rotor specific drag force fusion |
|
void set_air_density(float air_density) { _air_density = air_density; } |
|
|
|
// set sensor limitations reported by the rangefinder |
|
void set_rangefinder_limits(float min_distance, float max_distance) |
|
{ |
|
_range_sensor.setLimits(min_distance, max_distance); |
|
} |
|
|
|
// set sensor limitations reported by the optical flow sensor |
|
void set_optical_flow_limits(float max_flow_rate, float min_distance, float max_distance) |
|
{ |
|
_flow_max_rate = max_flow_rate; |
|
_flow_min_distance = min_distance; |
|
_flow_max_distance = max_distance; |
|
} |
|
|
|
// the flags considered are opt_flow, gps, ev_vel and ev_pos |
|
bool isOnlyActiveSourceOfHorizontalAiding(bool aiding_flag) const; |
|
|
|
/* |
|
* Check if there are any other active source of horizontal aiding |
|
* Warning: does not tell if the selected source is |
|
* active, use isOnlyActiveSourceOfHorizontalAiding() for this |
|
* |
|
* The flags considered are opt_flow, gps, ev_vel and ev_pos |
|
* |
|
* @param aiding_flag a flag in _control_status.flags |
|
* @return true if an other source than aiding_flag is active |
|
*/ |
|
bool isOtherSourceOfHorizontalAidingThan(bool aiding_flag) const; |
|
|
|
// Return true if at least one source of horizontal aiding is active |
|
// the flags considered are opt_flow, gps, ev_vel and ev_pos |
|
bool isHorizontalAidingActive() const; |
|
|
|
int getNumberOfActiveHorizontalAidingSources() const; |
|
|
|
// return true if the EKF is dead reckoning the position using inertial data only |
|
bool inertial_dead_reckoning() const { return _is_dead_reckoning; } |
|
|
|
const matrix::Quatf &getQuaternion() const { return _output_new.quat_nominal; } |
|
|
|
// get the velocity of the body frame origin in local NED earth frame |
|
Vector3f getVelocity() const { return _output_new.vel - _vel_imu_rel_body_ned; } |
|
|
|
// get the velocity derivative in earth frame |
|
const Vector3f &getVelocityDerivative() const { return _vel_deriv; } |
|
|
|
// get the derivative of the vertical position of the body frame origin in local NED earth frame |
|
float getVerticalPositionDerivative() const { return _output_vert_new.vert_vel - _vel_imu_rel_body_ned(2); } |
|
|
|
// get the position of the body frame origin in local earth frame |
|
Vector3f getPosition() const |
|
{ |
|
// rotate the position of the IMU relative to the boy origin into earth frame |
|
const Vector3f pos_offset_earth = _R_to_earth_now * _params.imu_pos_body; |
|
// subtract from the EKF position (which is at the IMU) to get position at the body origin |
|
return _output_new.pos - pos_offset_earth; |
|
} |
|
|
|
// Get the value of magnetic declination in degrees to be saved for use at the next startup |
|
// Returns true when the declination can be saved |
|
// At the next startup, set param.mag_declination_deg to the value saved |
|
bool get_mag_decl_deg(float *val) const |
|
{ |
|
if (_NED_origin_initialised && (_params.mag_declination_source & MASK_SAVE_GEO_DECL)) { |
|
*val = math::degrees(_mag_declination_gps); |
|
return true; |
|
|
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
// get EKF mode status |
|
const filter_control_status_u &control_status() const { return _control_status; } |
|
const decltype(filter_control_status_u::flags) &control_status_flags() const { return _control_status.flags; } |
|
|
|
const filter_control_status_u &control_status_prev() const { return _control_status_prev; } |
|
const decltype(filter_control_status_u::flags) &control_status_prev_flags() const { return _control_status_prev.flags; } |
|
|
|
// get EKF internal fault status |
|
const fault_status_u &fault_status() const { return _fault_status; } |
|
const decltype(fault_status_u::flags) &fault_status_flags() const { return _fault_status.flags; } |
|
|
|
const innovation_fault_status_u &innov_check_fail_status() const { return _innov_check_fail_status; } |
|
const decltype(innovation_fault_status_u::flags) &innov_check_fail_status_flags() const { return _innov_check_fail_status.flags; } |
|
|
|
const warning_event_status_u &warning_event_status() const { return _warning_events; } |
|
const decltype(warning_event_status_u::flags) &warning_event_flags() const { return _warning_events.flags; } |
|
void clear_warning_events() { _warning_events.value = 0; } |
|
|
|
const information_event_status_u &information_event_status() const { return _information_events; } |
|
const decltype(information_event_status_u::flags) &information_event_flags() const { return _information_events.flags; } |
|
void clear_information_events() { _information_events.value = 0; } |
|
|
|
bool isVehicleAtRest() const { return _control_status.flags.vehicle_at_rest; } |
|
|
|
// Getter for the average imu update period in s |
|
float get_dt_imu_avg() const { return _dt_imu_avg; } |
|
|
|
// Getter for the imu sample on the delayed time horizon |
|
const imuSample &get_imu_sample_delayed() const { return _imu_sample_delayed; } |
|
|
|
// Getter for the baro sample on the delayed time horizon |
|
const baroSample &get_baro_sample_delayed() const { return _baro_sample_delayed; } |
|
|
|
const bool& global_origin_valid() const { return _NED_origin_initialised; } |
|
const map_projection_reference_s& global_origin() const { return _pos_ref; } |
|
|
|
void print_status(); |
|
|
|
static constexpr unsigned FILTER_UPDATE_PERIOD_MS{10}; // ekf prediction period in milliseconds - this should ideally be an integer multiple of the IMU time delta |
|
static constexpr float FILTER_UPDATE_PERIOD_S{FILTER_UPDATE_PERIOD_MS * 0.001f}; |
|
|
|
protected: |
|
|
|
EstimatorInterface() = default; |
|
virtual ~EstimatorInterface() = default; |
|
|
|
virtual bool init(uint64_t timestamp) = 0; |
|
|
|
parameters _params; // filter parameters |
|
|
|
/* |
|
OBS_BUFFER_LENGTH defines how many observations (non-IMU measurements) we can buffer |
|
which sets the maximum frequency at which we can process non-IMU measurements. Measurements that |
|
arrive too soon after the previous measurement will not be processed. |
|
max freq (Hz) = (OBS_BUFFER_LENGTH - 1) / (IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_S) |
|
This can be adjusted to match the max sensor data rate plus some margin for jitter. |
|
*/ |
|
uint8_t _obs_buffer_length{0}; |
|
|
|
/* |
|
IMU_BUFFER_LENGTH defines how many IMU samples we buffer which sets the time delay from current time to the |
|
EKF fusion time horizon and therefore the maximum sensor time offset relative to the IMU that we can compensate for. |
|
max sensor time offet (msec) = IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_MS |
|
This can be adjusted to a value that is FILTER_UPDATE_PERIOD_MS longer than the maximum observation time delay. |
|
*/ |
|
uint8_t _imu_buffer_length{0}; |
|
|
|
float _dt_imu_avg{0.0f}; // average imu update period in s |
|
|
|
imuSample _imu_sample_delayed{}; // captures the imu sample on the delayed time horizon |
|
|
|
// measurement samples capturing measurements on the delayed time horizon |
|
magSample _mag_sample_delayed{}; |
|
baroSample _baro_sample_delayed{}; |
|
gpsSample _gps_sample_delayed{}; |
|
sensor::SensorRangeFinder _range_sensor{}; |
|
airspeedSample _airspeed_sample_delayed{}; |
|
flowSample _flow_sample_delayed{}; |
|
extVisionSample _ev_sample_delayed{}; |
|
dragSample _drag_sample_delayed{}; |
|
dragSample _drag_down_sampled{}; // down sampled drag specific force data (filter prediction rate -> observation rate) |
|
auxVelSample _auxvel_sample_delayed{}; |
|
|
|
float _air_density{CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C}; // air density (kg/m**3) |
|
|
|
// Sensor limitations |
|
float _flow_max_rate{0.0f}; ///< maximum angular flow rate that the optical flow sensor can measure (rad/s) |
|
float _flow_min_distance{0.0f}; ///< minimum distance that the optical flow sensor can operate at (m) |
|
float _flow_max_distance{0.0f}; ///< maximum distance that the optical flow sensor can operate at (m) |
|
|
|
// Output Predictor |
|
outputSample _output_new{}; // filter output on the non-delayed time horizon |
|
outputVert _output_vert_new{}; // vertical filter output on the non-delayed time horizon |
|
imuSample _newest_high_rate_imu_sample{}; // imu sample capturing the newest imu data |
|
Matrix3f _R_to_earth_now; // rotation matrix from body to earth frame at current time |
|
Vector3f _vel_imu_rel_body_ned; // velocity of IMU relative to body origin in NED earth frame |
|
Vector3f _vel_deriv; // velocity derivative at the IMU in NED earth frame (m/s/s) |
|
|
|
bool _imu_updated{false}; // true if the ekf should update (completed downsampling process) |
|
bool _initialised{false}; // true if the ekf interface instance (data buffering) is initialized |
|
|
|
bool _NED_origin_initialised{false}; |
|
bool _gps_speed_valid{false}; |
|
float _gps_origin_eph{0.0f}; // horizontal position uncertainty of the GPS origin |
|
float _gps_origin_epv{0.0f}; // vertical position uncertainty of the GPS origin |
|
struct map_projection_reference_s _pos_ref {}; // Contains WGS-84 position latitude and longitude (radians) of the EKF origin |
|
struct map_projection_reference_s _gps_pos_prev {}; // Contains WGS-84 position latitude and longitude (radians) of the previous GPS message |
|
float _gps_alt_prev{0.0f}; // height from the previous GPS message (m) |
|
float _gps_yaw_offset{0.0f}; // Yaw offset angle for dual GPS antennas used for yaw estimation (radians). |
|
|
|
// innovation consistency check monitoring ratios |
|
float _yaw_test_ratio{}; // yaw innovation consistency check ratio |
|
Vector3f _mag_test_ratio; // magnetometer XYZ innovation consistency check ratios |
|
Vector2f _gps_vel_test_ratio; // GPS velocity innovation consistency check ratios |
|
Vector2f _gps_pos_test_ratio; // GPS position innovation consistency check ratios |
|
Vector2f _ev_vel_test_ratio; // EV velocity innovation consistency check ratios |
|
Vector2f _ev_pos_test_ratio ; // EV position innovation consistency check ratios |
|
Vector2f _aux_vel_test_ratio; // Auxiliary horizontal velocity innovation consistency check ratio |
|
Vector2f _baro_hgt_test_ratio; // baro height innovation consistency check ratios |
|
Vector2f _rng_hgt_test_ratio; // range finder height innovation consistency check ratios |
|
float _optflow_test_ratio{}; // Optical flow innovation consistency check ratio |
|
float _tas_test_ratio{}; // tas innovation consistency check ratio |
|
float _hagl_test_ratio{}; // height above terrain measurement innovation consistency check ratio |
|
float _beta_test_ratio{}; // sideslip innovation consistency check ratio |
|
Vector2f _drag_test_ratio; // drag innovation consistency check ratio |
|
innovation_fault_status_u _innov_check_fail_status{}; |
|
|
|
bool _is_dead_reckoning{false}; // true if we are no longer fusing measurements that constrain horizontal velocity drift |
|
bool _deadreckon_time_exceeded{true}; // true if the horizontal nav solution has been deadreckoning for too long and is invalid |
|
bool _is_wind_dead_reckoning{false}; // true if we are navigationg reliant on wind relative measurements |
|
|
|
float _gps_drift_metrics[3] {}; // Array containing GPS drift metrics |
|
// [0] Horizontal position drift rate (m/s) |
|
// [1] Vertical position drift rate (m/s) |
|
// [2] Filtered horizontal velocity (m/s) |
|
uint64_t _time_last_move_detect_us{0}; // timestamp of last movement detection event in microseconds |
|
uint64_t _time_last_on_ground_us{0}; ///< last time we were on the ground (uSec) |
|
uint64_t _time_last_in_air{0}; ///< last time we were in air (uSec) |
|
bool _gps_drift_updated{false}; // true when _gps_drift_metrics has been updated and is ready for retrieval |
|
|
|
// data buffer instances |
|
RingBuffer<imuSample> _imu_buffer{12}; // buffer length 12 with default parameters |
|
RingBuffer<outputSample> _output_buffer{12}; |
|
RingBuffer<outputVert> _output_vert_buffer{12}; |
|
|
|
RingBuffer<gpsSample> _gps_buffer; |
|
RingBuffer<magSample> _mag_buffer; |
|
RingBuffer<baroSample> _baro_buffer; |
|
RingBuffer<rangeSample> _range_buffer; |
|
RingBuffer<airspeedSample> _airspeed_buffer; |
|
RingBuffer<flowSample> _flow_buffer; |
|
RingBuffer<extVisionSample> _ext_vision_buffer; |
|
RingBuffer<dragSample> _drag_buffer; |
|
RingBuffer<auxVelSample> _auxvel_buffer; |
|
|
|
// timestamps of latest in buffer saved measurement in microseconds |
|
uint64_t _time_last_imu{0}; |
|
uint64_t _time_last_gps{0}; |
|
uint64_t _time_last_mag{0}; ///< measurement time of last magnetomter sample (uSec) |
|
uint64_t _time_last_baro{0}; |
|
uint64_t _time_last_range{0}; |
|
uint64_t _time_last_airspeed{0}; |
|
uint64_t _time_last_ext_vision{0}; |
|
uint64_t _time_last_optflow{0}; |
|
uint64_t _time_last_auxvel{0}; |
|
//last time the baro ground effect compensation was turned on externally (uSec) |
|
uint64_t _time_last_gnd_effect_on{0}; |
|
|
|
fault_status_u _fault_status{}; |
|
|
|
// allocate data buffers and initialize interface variables |
|
bool initialise_interface(uint64_t timestamp); |
|
|
|
float _mag_declination_gps{NAN}; // magnetic declination returned by the geo library using the last valid GPS position (rad) |
|
float _mag_inclination_gps{NAN}; // magnetic inclination returned by the geo library using the last valid GPS position (rad) |
|
float _mag_strength_gps{NAN}; // magnetic strength returned by the geo library using the last valid GPS position (T) |
|
|
|
// this is the current status of the filter control modes |
|
filter_control_status_u _control_status{}; |
|
|
|
// this is the previous status of the filter control modes - used to detect mode transitions |
|
filter_control_status_u _control_status_prev{}; |
|
|
|
virtual float compensateBaroForDynamicPressure(const float baro_alt_uncompensated) const = 0; |
|
|
|
// these are used to record single frame events for external monitoring and should NOT be used for |
|
// state logic becasue they will be cleared externally after being read. |
|
warning_event_status_u _warning_events{}; |
|
information_event_status_u _information_events{}; |
|
|
|
private: |
|
|
|
inline void setDragData(const imuSample &imu); |
|
|
|
inline void computeVibrationMetric(const imuSample &imu); |
|
inline bool checkIfVehicleAtRest(float dt, const imuSample &imu); |
|
|
|
void printBufferAllocationFailed(const char *buffer_name); |
|
|
|
ImuDownSampler _imu_down_sampler{FILTER_UPDATE_PERIOD_S}; |
|
|
|
unsigned _min_obs_interval_us{0}; // minimum time interval between observations that will guarantee data is not lost (usec) |
|
|
|
// IMU vibration and movement monitoring |
|
Vector3f _delta_ang_prev; // delta angle from the previous IMU measurement |
|
Vector3f _delta_vel_prev; // delta velocity from the previous IMU measurement |
|
Vector3f _vibe_metrics; // IMU vibration metrics |
|
// [0] Level of coning vibration in the IMU delta angles (rad^2) |
|
// [1] high frequency vibration level in the IMU delta angle data (rad) |
|
// [2] high frequency vibration level in the IMU delta velocity data (m/s) |
|
|
|
// Used to down sample barometer data |
|
uint64_t _baro_timestamp_sum{0}; // summed timestamp to provide the timestamp of the averaged sample |
|
float _baro_alt_sum{0.0f}; // summed pressure altitude readings (m) |
|
uint8_t _baro_sample_count{0}; // number of barometric altitude measurements summed |
|
|
|
// Used by the multi-rotor specific drag force fusion |
|
uint8_t _drag_sample_count{0}; // number of drag specific force samples assumulated at the filter prediction rate |
|
float _drag_sample_time_dt{0.0f}; // time integral across all samples used to form _drag_down_sampled (sec) |
|
|
|
// Used to downsample magnetometer data |
|
uint64_t _mag_timestamp_sum{0}; |
|
Vector3f _mag_data_sum; |
|
uint8_t _mag_sample_count{0}; |
|
|
|
// observation buffer final allocation failed |
|
bool _gps_buffer_fail{false}; |
|
bool _mag_buffer_fail{false}; |
|
bool _baro_buffer_fail{false}; |
|
bool _range_buffer_fail{false}; |
|
bool _airspeed_buffer_fail{false}; |
|
bool _flow_buffer_fail{false}; |
|
bool _ev_buffer_fail{false}; |
|
bool _drag_buffer_fail{false}; |
|
bool _auxvel_buffer_fail{false}; |
|
|
|
};
|
|
|