You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
8.4 KiB
225 lines
8.4 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file vel_pos_fusion.cpp |
|
* Function for fusing gps and baro measurements/ |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include "mathlib.h" |
|
|
|
void Ekf::fuseVelPosHeight() |
|
{ |
|
bool fuse_map[6] = {}; // map of booelans true when [VN,VE,VD,PN,PE,PD] observations are available |
|
bool innov_check_pass_map[6] = {}; // true when innovations consistency checks pass for [VN,VE,VD,PN,PE,PD] observations |
|
float R[6] = {}; // observation variances for [VN,VE,VD,PN,PE,PD] |
|
float gate_size[6] = {}; // innovation consistency check gate sizes for [VN,VE,VD,PN,PE,PD] observations |
|
float Kfusion[24] = {}; // Kalman gain vector for any single observation - sequential fusion is used |
|
|
|
// calculate innovations, innovations gate sizes and observation variances |
|
if (_fuse_hor_vel) { |
|
fuse_map[0] = fuse_map[1] = true; |
|
// horizontal velocity innovations |
|
_vel_pos_innov[0] = _state.vel(0) - _gps_sample_delayed.vel(0); |
|
_vel_pos_innov[1] = _state.vel(1) - _gps_sample_delayed.vel(1); |
|
// observation variance - use receiver reported accuracy with parameter setting the minimum value |
|
R[0] = fmaxf(_params.gps_vel_noise, 0.01f); |
|
R[0] = fmaxf(R[0], _gps_speed_accuracy); |
|
R[0] = R[0] * R[0]; |
|
R[1] = R[0]; |
|
// innovation gate sizes |
|
gate_size[0] = fmaxf(_params.vel_innov_gate, 1.0f); |
|
gate_size[1] = gate_size[0]; |
|
} |
|
|
|
if (_fuse_vert_vel) { |
|
fuse_map[2] = true; |
|
// vertical velocity innovation |
|
_vel_pos_innov[2] = _state.vel(2) - _gps_sample_delayed.vel(2); |
|
// observation variance - use receiver reported accuracy with parameter setting the minimum value |
|
R[2] = fmaxf(_params.gps_vel_noise, 0.01f); |
|
// use scaled horizontal speed accuracy assuming typical ratio of VDOP/HDOP |
|
R[2] = 1.5f * fmaxf(R[2], _gps_speed_accuracy); |
|
R[2] = R[2] * R[2]; |
|
// innovation gate size |
|
gate_size[2] = fmaxf(_params.vel_innov_gate, 1.0f); |
|
} |
|
|
|
if (_fuse_pos) { |
|
fuse_map[3] = fuse_map[4] = true; |
|
// horizontal position innovations |
|
_vel_pos_innov[3] = _state.pos(0) - _gps_sample_delayed.pos(0); |
|
_vel_pos_innov[4] = _state.pos(1) - _gps_sample_delayed.pos(1); |
|
|
|
// observation variance - user parameter defined |
|
// if we are in flight and not using GPS, then use a specific parameter |
|
if (!_control_status.flags.gps && _control_status.flags.in_air) { |
|
R[3] = fmaxf(_params.pos_noaid_noise, 0.5f); |
|
|
|
} else { |
|
float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f); |
|
float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit); |
|
R[3] = math::constrain(_gps_hpos_accuracy, lower_limit, upper_limit); |
|
|
|
} |
|
|
|
R[3] = R[3] * R[3]; |
|
R[4] = R[3]; |
|
// innovation gate sizes |
|
gate_size[3] = fmaxf(_params.posNE_innov_gate, 1.0f); |
|
gate_size[4] = gate_size[3]; |
|
} |
|
|
|
if (_fuse_height) { |
|
fuse_map[5] = true; |
|
// vertical position innovation - baro measurement has opposite sign to earth z axis |
|
_vel_pos_innov[5] = _state.pos(2) - (_baro_at_alignment - _baro_sample_delayed.hgt); |
|
// observation variance - user parameter defined |
|
R[5] = fmaxf(_params.baro_noise, 0.01f); |
|
R[5] = R[5] * R[5]; |
|
// innovation gate size |
|
gate_size[5] = fmaxf(_params.baro_innov_gate, 1.0f); |
|
} |
|
|
|
// calculate innovation test ratios |
|
for (unsigned obs_index = 0; obs_index < 6; obs_index++) { |
|
if (fuse_map[obs_index]) { |
|
// compute the innovation variance SK = HPH + R |
|
unsigned state_index = obs_index + 3; // we start with vx and this is the 4. state |
|
_vel_pos_innov_var[obs_index] = P[state_index][state_index] + R[obs_index]; |
|
// Compute the ratio of innovation to gate size |
|
_vel_pos_test_ratio[obs_index] = sq(_vel_pos_innov[obs_index]) / (sq(gate_size[obs_index]) * _vel_pos_innov_var[obs_index]); |
|
} |
|
} |
|
|
|
// check position, velocity and height innovations |
|
// treat 3D velocity, 2D position and height as separate sensors |
|
// always pass position checks if using synthetic position measurements |
|
bool vel_check_pass = (_vel_pos_test_ratio[0] <= 1.0f) && (_vel_pos_test_ratio[1] <= 1.0f) |
|
&& (_vel_pos_test_ratio[2] <= 1.0f); |
|
innov_check_pass_map[2] = innov_check_pass_map[1] = innov_check_pass_map[0] = vel_check_pass; |
|
bool using_synthetic_measurements = !_control_status.flags.gps && !_control_status.flags.opt_flow; |
|
bool pos_check_pass = ((_vel_pos_test_ratio[3] <= 1.0f) && (_vel_pos_test_ratio[4] <= 1.0f)) |
|
|| using_synthetic_measurements; |
|
innov_check_pass_map[4] = innov_check_pass_map[3] = pos_check_pass; |
|
innov_check_pass_map[5] = (_vel_pos_test_ratio[5] <= 1.0f); |
|
|
|
// record the successful velocity fusion time |
|
if (vel_check_pass && _fuse_hor_vel) { |
|
_time_last_vel_fuse = _time_last_imu; |
|
} |
|
|
|
// record the successful position fusion time |
|
if (pos_check_pass && _fuse_pos) { |
|
_time_last_pos_fuse = _time_last_imu; |
|
} |
|
|
|
// record the successful height fusion time |
|
if (innov_check_pass_map[5] && _fuse_height) { |
|
_time_last_hgt_fuse = _time_last_imu; |
|
} |
|
|
|
for (unsigned obs_index = 0; obs_index < 6; obs_index++) { |
|
// skip fusion if not requested or checks have failed |
|
if (!fuse_map[obs_index] || !innov_check_pass_map[obs_index]) { |
|
continue; |
|
} |
|
|
|
unsigned state_index = obs_index + 3; // we start with vx and this is the 4. state |
|
|
|
// calculate kalman gain K = PHS, where S = 1/innovation variance |
|
for (int row = 0; row <= 15; row++) { |
|
Kfusion[row] = P[row][state_index] / _vel_pos_innov_var[obs_index]; |
|
} |
|
|
|
// only update magnetic field states if we are fusing 3-axis observations |
|
if (_control_status.flags.mag_3D) { |
|
for (int row = 16; row <= 21; row++) { |
|
Kfusion[row] = P[row][state_index] / _vel_pos_innov_var[obs_index]; |
|
} |
|
|
|
} else { |
|
for (int row = 16; row <= 21; row++) { |
|
Kfusion[row] = 0.0f; |
|
} |
|
} |
|
|
|
// only update wind states if we are doing wind estimation |
|
if (_control_status.flags.wind) { |
|
for (int row = 22; row <= 23; row++) { |
|
Kfusion[row] = P[row][state_index] / _vel_pos_innov_var[obs_index]; |
|
} |
|
|
|
} else { |
|
for (int row = 22; row <= 23; row++) { |
|
Kfusion[row] = 0.0f; |
|
} |
|
} |
|
|
|
// by definition the angle error state is zero at the fusion time |
|
_state.ang_error.setZero(); |
|
|
|
// fuse the observation |
|
fuse(Kfusion, _vel_pos_innov[obs_index]); |
|
|
|
// correct the nominal quaternion |
|
Quaternion dq; |
|
dq.from_axis_angle(_state.ang_error); |
|
_state.quat_nominal = dq * _state.quat_nominal; |
|
_state.quat_nominal.normalize(); |
|
|
|
// update covarinace matrix via Pnew = (I - KH)P |
|
float KHP[_k_num_states][_k_num_states] = {}; |
|
|
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
KHP[row][column] = Kfusion[row] * P[state_index][column]; |
|
} |
|
} |
|
|
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
P[row][column] = P[row][column] - KHP[row][column]; |
|
} |
|
} |
|
|
|
makeSymmetrical(); |
|
limitCov(); |
|
} |
|
|
|
} |
|
|
|
|