You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
5.0 KiB
253 lines
5.0 KiB
/* |
|
* Copyright (C) 2009-2011 Nick Johnson <nickbjohnson4224 at gmail.com> |
|
* |
|
* Permission to use, copy, modify, and distribute this software for any |
|
* purpose with or without fee is hereby granted, provided that the above |
|
* copyright notice and this permission notice appear in all copies. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
|
*/ |
|
|
|
#include <apps/math.h> |
|
#include <float.h> |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <unistd.h> |
|
|
|
#define M_E2 (M_E * M_E) |
|
#define M_E4 (M_E2 * M_E2) |
|
#define M_E8 (M_E4 * M_E4) |
|
#define M_E16 (M_E8 * M_E8) |
|
#define M_E32 (M_E16 * M_E16) |
|
#define M_E64 (M_E32 * M_E32) |
|
#define M_E128 (M_E64 * M_E64) |
|
#define M_E256 (M_E128 * M_E128) |
|
#define M_E512 (M_E256 * M_E256) |
|
#define M_E1024 (M_E512 * M_E512) |
|
|
|
static double _expi_square_tbl[11] = { |
|
M_E, // e^1 |
|
M_E2, // e^2 |
|
M_E4, // e^4 |
|
M_E8, // e^8 |
|
M_E16, // e^16 |
|
M_E32, // e^32 |
|
M_E64, // e^64 |
|
M_E128, // e^128 |
|
M_E256, // e^256 |
|
M_E512, // e^512 |
|
M_E1024, // e^1024 |
|
}; |
|
|
|
static double _expi(size_t n) { |
|
size_t i; |
|
double val; |
|
|
|
if (n > 1024) { |
|
return INFINITY; |
|
} |
|
|
|
val = 1.0; |
|
|
|
for (i = 0; n; i++) { |
|
if (n & (1 << i)) { |
|
n &= ~(1 << i); |
|
val *= _expi_square_tbl[i]; |
|
} |
|
} |
|
|
|
return val; |
|
} |
|
|
|
static float _flt_inv_fact[] = { |
|
1.0 / 1.0, // 1/0! |
|
1.0 / 1.0, // 1/1! |
|
1.0 / 2.0, // 1/2! |
|
1.0 / 6.0, // 1/3! |
|
1.0 / 24.0, // 1/4! |
|
1.0 / 120.0, // 1/5! |
|
1.0 / 720.0, // 1/6! |
|
1.0 / 5040.0, // 1/7! |
|
1.0 / 40320.0, // 1/8! |
|
1.0 / 362880.0, // 1/9! |
|
1.0 / 3628800.0, // 1/10! |
|
}; |
|
|
|
float expf(float x) { |
|
size_t int_part; |
|
bool invert; |
|
float value; |
|
float x0; |
|
size_t i; |
|
|
|
if (x == 0) { |
|
return 1; |
|
} |
|
else if (x < 0) { |
|
invert = true; |
|
x = -x; |
|
} |
|
else { |
|
invert = false; |
|
} |
|
|
|
/* extract integer component */ |
|
int_part = (size_t) x; |
|
|
|
/* set x to fractional component */ |
|
x -= (float) int_part; |
|
|
|
/* perform Taylor series approximation with eleven terms */ |
|
value = 0.0; |
|
x0 = 1.0; |
|
for (i = 0; i < 10; i++) { |
|
value += x0 * _flt_inv_fact[i]; |
|
x0 *= x; |
|
} |
|
|
|
/* multiply by exp of the integer component */ |
|
value *= _expi(int_part); |
|
|
|
if (invert) { |
|
return (1.0 / value); |
|
} |
|
else { |
|
return value; |
|
} |
|
} |
|
|
|
static double _dbl_inv_fact[] = { |
|
1.0 / 1.0, // 1 / 0! |
|
1.0 / 1.0, // 1 / 1! |
|
1.0 / 2.0, // 1 / 2! |
|
1.0 / 6.0, // 1 / 3! |
|
1.0 / 24.0, // 1 / 4! |
|
1.0 / 120.0, // 1 / 5! |
|
1.0 / 720.0, // 1 / 6! |
|
1.0 / 5040.0, // 1 / 7! |
|
1.0 / 40320.0, // 1 / 8! |
|
1.0 / 362880.0, // 1 / 9! |
|
1.0 / 3628800.0, // 1 / 10! |
|
1.0 / 39916800.0, // 1 / 11! |
|
1.0 / 479001600.0, // 1 / 12! |
|
1.0 / 6227020800.0, // 1 / 13! |
|
1.0 / 87178291200.0, // 1 / 14! |
|
1.0 / 1307674368000.0, // 1 / 15! |
|
1.0 / 20922789888000.0, // 1 / 16! |
|
1.0 / 355687428096000.0, // 1 / 17! |
|
1.0 / 6402373705728000.0, // 1 / 18! |
|
}; |
|
|
|
double exp(double x) { |
|
size_t int_part; |
|
bool invert; |
|
double value; |
|
double x0; |
|
size_t i; |
|
|
|
if (x == 0) { |
|
return 1; |
|
} |
|
else if (x < 0) { |
|
invert = true; |
|
x = -x; |
|
} |
|
else { |
|
invert = false; |
|
} |
|
|
|
/* extract integer component */ |
|
int_part = (size_t) x; |
|
|
|
/* set x to fractional component */ |
|
x -= (double) int_part; |
|
|
|
/* perform Taylor series approximation with nineteen terms */ |
|
value = 0.0; |
|
x0 = 1.0; |
|
for (i = 0; i < 19; i++) { |
|
value += x0 * _dbl_inv_fact[i]; |
|
x0 *= x; |
|
} |
|
|
|
/* multiply by exp of the integer component */ |
|
value *= _expi(int_part); |
|
|
|
if (invert) { |
|
return (1.0 / value); |
|
} |
|
else { |
|
return value; |
|
} |
|
} |
|
|
|
static long double _ldbl_inv_fact[] = { |
|
1.0 / 1.0, // 1 / 0! |
|
1.0 / 1.0, // 1 / 1! |
|
1.0 / 2.0, // 1 / 2! |
|
1.0 / 6.0, // 1 / 3! |
|
1.0 / 24.0, // 1 / 4! |
|
1.0 / 120.0, // 1 / 5! |
|
1.0 / 720.0, // 1 / 6! |
|
1.0 / 5040.0, // 1 / 7! |
|
1.0 / 40320.0, // 1 / 8! |
|
1.0 / 362880.0, // 1 / 9! |
|
1.0 / 3628800.0, // 1 / 10! |
|
1.0 / 39916800.0, // 1 / 11! |
|
1.0 / 479001600.0, // 1 / 12! |
|
1.0 / 6227020800.0, // 1 / 13! |
|
1.0 / 87178291200.0, // 1 / 14! |
|
1.0 / 1307674368000.0, // 1 / 15! |
|
1.0 / 20922789888000.0, // 1 / 16! |
|
1.0 / 355687428096000.0, // 1 / 17! |
|
1.0 / 6402373705728000.0, // 1 / 18! |
|
}; |
|
|
|
long double expl(long double x) { |
|
size_t int_part; |
|
bool invert; |
|
long double value; |
|
long double x0; |
|
size_t i; |
|
|
|
if (x == 0) { |
|
return 1; |
|
} |
|
else if (x < 0) { |
|
invert = true; |
|
x = -x; |
|
} |
|
else { |
|
invert = false; |
|
} |
|
|
|
/* extract integer component */ |
|
int_part = (size_t) x; |
|
|
|
/* set x to fractional component */ |
|
x -= (long double) int_part; |
|
|
|
/* perform Taylor series approximation with nineteen terms */ |
|
value = 0.0; |
|
x0 = 1.0; |
|
for (i = 0; i < 19; i++) { |
|
value += x0 * _ldbl_inv_fact[i]; |
|
x0 *= x; |
|
} |
|
|
|
/* multiply by exp of the integer component */ |
|
value *= _expi(int_part); |
|
|
|
if (invert) { |
|
return (1.0 / value); |
|
} |
|
else { |
|
return value; |
|
} |
|
}
|
|
|