You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
211 lines
5.9 KiB
211 lines
5.9 KiB
#include <cassert> |
|
#include <cstdio> |
|
|
|
#include <matrix/math.hpp> |
|
|
|
using namespace matrix; |
|
|
|
template class Quaternion<float>; |
|
template class Euler<float>; |
|
template class Dcm<float>; |
|
|
|
int main() |
|
{ |
|
double eps = 1e-6; |
|
|
|
// check data |
|
Eulerf euler_check(0.1f, 0.2f, 0.3f); |
|
Quatf q_check(0.98334744f, 0.0342708f, 0.10602051f, .14357218f); |
|
float dcm_data[] = { |
|
0.93629336f, -0.27509585f, 0.21835066f, |
|
0.28962948f, 0.95642509f, -0.03695701f, |
|
-0.19866933f, 0.0978434f, 0.97517033f |
|
}; |
|
Dcmf dcm_check(dcm_data); |
|
|
|
// euler ctor |
|
euler_check.T().print(); |
|
assert(euler_check == Vector3f(0.1f, 0.2f, 0.3f)); |
|
|
|
// euler default ctor |
|
Eulerf e; |
|
Eulerf e_zero = zeros<float, 3, 1>(); |
|
assert(e == e_zero); |
|
assert(e == e); |
|
|
|
// euler vector ctor |
|
Vector<float, 3> v; |
|
v(0) = 0.1f; |
|
v(1) = 0.2f; |
|
v(2) = 0.3f; |
|
Eulerf euler_copy(v); |
|
assert(euler_copy == euler_check); |
|
|
|
// quaternion ctor |
|
Quatf q(1, 2, 3, 4); |
|
assert(fabs(q(0) - 1) < eps); |
|
assert(fabs(q(1) - 2) < eps); |
|
assert(fabs(q(2) - 3) < eps); |
|
assert(fabs(q(3) - 4) < eps); |
|
|
|
// quat normalization |
|
q.T().print(); |
|
q.normalize(); |
|
q.T().print(); |
|
assert(q == Quatf(0.18257419f, 0.36514837f, |
|
0.54772256f, 0.73029674f)); |
|
|
|
// quat default ctor |
|
q = Quatf(); |
|
assert(q == Quatf(1, 0, 0, 0)); |
|
|
|
// euler to quaternion |
|
q = Quatf(euler_check); |
|
q.T().print(); |
|
assert(q == q_check); |
|
|
|
// euler to dcm |
|
Dcmf dcm(euler_check); |
|
dcm.print(); |
|
assert(dcm == dcm_check); |
|
|
|
// quaternion to euler |
|
Eulerf e1(q_check); |
|
assert(e1 == euler_check); |
|
|
|
// quaternion to dcm |
|
Dcmf dcm1(q_check); |
|
dcm1.print(); |
|
assert(dcm1 == dcm_check); |
|
|
|
// dcm default ctor |
|
Dcmf dcm2; |
|
dcm2.print(); |
|
SquareMatrix<float, 3> I = eye<float, 3>(); |
|
assert(dcm2 == I); |
|
|
|
// dcm to euler |
|
Eulerf e2(dcm_check); |
|
assert(e2 == euler_check); |
|
|
|
// dcm to quaterion |
|
Quatf q2(dcm_check); |
|
assert(q2 == q_check); |
|
|
|
|
|
// euler gimbal lock check |
|
// note if theta = pi/2, then roll is set to zero |
|
float pi_2 = float(M_PI_2); |
|
Eulerf euler_gimbal_lock(0.1f, pi_2, 0.2f); |
|
Dcmf dcm_lock(euler_gimbal_lock); |
|
Eulerf euler_gimbal_lock_out(dcm_lock); |
|
euler_gimbal_lock_out.T().print(); |
|
euler_gimbal_lock.T().print(); |
|
assert(euler_gimbal_lock == euler_gimbal_lock_out); |
|
|
|
// note if theta = pi/2, then roll is set to zero |
|
Eulerf euler_gimbal_lock2(0.1f, -pi_2, 0.2f); |
|
Dcmf dcm_lock2(euler_gimbal_lock2); |
|
Eulerf euler_gimbal_lock_out2(dcm_lock2); |
|
euler_gimbal_lock_out2.T().print(); |
|
euler_gimbal_lock2.T().print(); |
|
assert(euler_gimbal_lock2 == euler_gimbal_lock_out2); |
|
|
|
// quaterion copy ctors |
|
float data_v4[] = {1, 2, 3, 4}; |
|
Vector<float, 4> v4(data_v4); |
|
Quatf q_from_v(v4); |
|
assert(q_from_v == v4); |
|
|
|
Matrix<float, 4, 1> m4(data_v4); |
|
Quatf q_from_m(m4); |
|
assert(q_from_m == m4); |
|
|
|
// quaternion derivate |
|
Vector<float, 4> q_dot = q.derivative(Vector3f(1, 2, 3)); |
|
printf("q_dot:\n"); |
|
q_dot.T().print(); |
|
|
|
// quaternion product |
|
Quatf q_prod_check( |
|
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f); |
|
assert(q_prod_check == q_check*q_check); |
|
q_check *= q_check; |
|
assert(q_prod_check == q_check); |
|
|
|
// Quaternion scalar multiplication |
|
float scalar = 0.5; |
|
Quatf q_scalar_mul(1.0f, 2.0f, 3.0f, 4.0f); |
|
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar, |
|
3.0f * scalar, 4.0f * scalar); |
|
Quatf q_scalar_mul_res = scalar * q_scalar_mul; |
|
assert(q_scalar_mul_check == q_scalar_mul_res); |
|
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar; |
|
assert(q_scalar_mul_check == q_scalar_mul_res2); |
|
Quatf q_scalar_mul_res3(q_scalar_mul); |
|
q_scalar_mul_res3 *= scalar; |
|
assert(q_scalar_mul_check == q_scalar_mul_res3); |
|
|
|
// quaternion inverse |
|
q = q_check.inversed(); |
|
assert(fabsf(q_check(0) - q(0)) < eps); |
|
assert(fabsf(q_check(1) + q(1)) < eps); |
|
assert(fabsf(q_check(2) + q(2)) < eps); |
|
assert(fabsf(q_check(3) + q(3)) < eps); |
|
|
|
q = q_check; |
|
q.invert(); |
|
assert(fabsf(q_check(0) - q(0)) < eps); |
|
assert(fabsf(q_check(1) + q(1)) < eps); |
|
assert(fabsf(q_check(2) + q(2)) < eps); |
|
assert(fabsf(q_check(3) + q(3)) < eps); |
|
|
|
// rotate quaternion (nonzero rotation) |
|
Quatf qI(1.0f, 0.0f, 0.0f, 0.0f); |
|
Vector<float, 3> rot; |
|
rot(0) = 1.0f; |
|
rot(1) = rot(2) = 0.0f; |
|
qI.rotate(rot); |
|
Quatf q_true(cosf(1.0f / 2), sinf(1.0f / 2), 0.0f, 0.0f); |
|
assert(fabsf(qI(0) - q_true(0)) < eps); |
|
assert(fabsf(qI(1) - q_true(1)) < eps); |
|
assert(fabsf(qI(2) - q_true(2)) < eps); |
|
assert(fabsf(qI(3) - q_true(3)) < eps); |
|
|
|
// rotate quaternion (zero rotation) |
|
qI = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
rot(0) = 0.0f; |
|
rot(1) = rot(2) = 0.0f; |
|
qI.rotate(rot); |
|
q_true = Quatf(cosf(0.0f), sinf(0.0f), 0.0f, 0.0f); |
|
assert(fabsf(qI(0) - q_true(0)) < eps); |
|
assert(fabsf(qI(1) - q_true(1)) < eps); |
|
assert(fabsf(qI(2) - q_true(2)) < eps); |
|
assert(fabsf(qI(3) - q_true(3)) < eps); |
|
|
|
// get rotation axis from quaternion (nonzero rotation) |
|
q = Quatf(cosf(1.0f / 2), 0.0f, sinf(1.0f / 2), 0.0f); |
|
rot = q.to_axis_angle(); |
|
assert(fabsf(rot(0)) < eps); |
|
assert(fabsf(rot(1) -1.0f) < eps); |
|
assert(fabsf(rot(2)) < eps); |
|
|
|
// get rotation axis from quaternion (zero rotation) |
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
rot = q.to_axis_angle(); |
|
assert(fabsf(rot(0)) < eps); |
|
assert(fabsf(rot(1)) < eps); |
|
assert(fabsf(rot(2)) < eps); |
|
|
|
// from axis angle (zero rotation) |
|
rot(0) = rot(1) = rot(2) = 0.0f; |
|
q.from_axis_angle(rot, 0.0f); |
|
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
assert(fabsf(q(0) - q_true(0)) < eps); |
|
assert(fabsf(q(1) - q_true(1)) < eps); |
|
assert(fabsf(q(2) - q_true(2)) < eps); |
|
assert(fabsf(q(3) - q_true(3)) < eps); |
|
|
|
}; |
|
|
|
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
|
|
|