You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
7.1 KiB
216 lines
7.1 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: Lorenz Meier <lm@inf.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file calibration_routines.c |
|
* Calibration routines implementations. |
|
* |
|
* @author Lorenz Meier <lm@inf.ethz.ch> |
|
*/ |
|
|
|
#include <math.h> |
|
|
|
#include "calibration_routines.h" |
|
|
|
|
|
int sphere_fit_least_squares(const float x[], const float y[], const float z[], |
|
unsigned int size, unsigned int max_iterations, float delta, float *sphere_x, float *sphere_y, float *sphere_z, float *sphere_radius) { |
|
|
|
float x_sumplain = 0.0f; |
|
float x_sumsq = 0.0f; |
|
float x_sumcube = 0.0f; |
|
|
|
float y_sumplain = 0.0f; |
|
float y_sumsq = 0.0f; |
|
float y_sumcube = 0.0f; |
|
|
|
float z_sumplain = 0.0f; |
|
float z_sumsq = 0.0f; |
|
float z_sumcube = 0.0f; |
|
|
|
float xy_sum = 0.0f; |
|
float xz_sum = 0.0f; |
|
float yz_sum = 0.0f; |
|
|
|
float x2y_sum = 0.0f; |
|
float x2z_sum = 0.0f; |
|
float y2x_sum = 0.0f; |
|
float y2z_sum = 0.0f; |
|
float z2x_sum = 0.0f; |
|
float z2y_sum = 0.0f; |
|
|
|
for (unsigned int i = 0; i < size; i++) { |
|
|
|
float x2 = x[i] * x[i]; |
|
float y2 = y[i] * y[i]; |
|
float z2 = z[i] * z[i]; |
|
|
|
x_sumplain += x[i]; |
|
x_sumsq += x2; |
|
x_sumcube += x2 * x[i]; |
|
|
|
y_sumplain += y[i]; |
|
y_sumsq += y2; |
|
y_sumcube += y2 * y[i]; |
|
|
|
z_sumplain += z[i]; |
|
z_sumsq += z2; |
|
z_sumcube += z2 * z[i]; |
|
|
|
xy_sum += x[i] * y[i]; |
|
xz_sum += x[i] * z[i]; |
|
yz_sum += y[i] * z[i]; |
|
|
|
x2y_sum += x2 * y[i]; |
|
x2z_sum += x2 * z[i]; |
|
|
|
y2x_sum += y2 * x[i]; |
|
y2z_sum += y2 * z[i]; |
|
|
|
z2x_sum += z2 * x[i]; |
|
z2y_sum += z2 * y[i]; |
|
} |
|
|
|
// |
|
//Least Squares Fit a sphere A,B,C with radius squared Rsq to 3D data |
|
// |
|
// P is a structure that has been computed with the data earlier. |
|
// P.npoints is the number of elements; the length of X,Y,Z are identical. |
|
// P's members are logically named. |
|
// |
|
// X[n] is the x component of point n |
|
// Y[n] is the y component of point n |
|
// Z[n] is the z component of point n |
|
// |
|
// A is the x coordiante of the sphere |
|
// B is the y coordiante of the sphere |
|
// C is the z coordiante of the sphere |
|
// Rsq is the radius squared of the sphere. |
|
// |
|
//This method should converge; maybe 5-100 iterations or more. |
|
// |
|
float x_sum = x_sumplain / size; //sum( X[n] ) |
|
float x_sum2 = x_sumsq / size; //sum( X[n]^2 ) |
|
float x_sum3 = x_sumcube / size; //sum( X[n]^3 ) |
|
float y_sum = y_sumplain / size; //sum( Y[n] ) |
|
float y_sum2 = y_sumsq / size; //sum( Y[n]^2 ) |
|
float y_sum3 = y_sumcube / size; //sum( Y[n]^3 ) |
|
float z_sum = z_sumplain / size; //sum( Z[n] ) |
|
float z_sum2 = z_sumsq / size; //sum( Z[n]^2 ) |
|
float z_sum3 = z_sumcube / size; //sum( Z[n]^3 ) |
|
|
|
float XY = xy_sum / size; //sum( X[n] * Y[n] ) |
|
float XZ = xz_sum / size; //sum( X[n] * Z[n] ) |
|
float YZ = yz_sum / size; //sum( Y[n] * Z[n] ) |
|
float X2Y = x2y_sum / size; //sum( X[n]^2 * Y[n] ) |
|
float X2Z = x2z_sum / size; //sum( X[n]^2 * Z[n] ) |
|
float Y2X = y2x_sum / size; //sum( Y[n]^2 * X[n] ) |
|
float Y2Z = y2z_sum / size; //sum( Y[n]^2 * Z[n] ) |
|
float Z2X = z2x_sum / size; //sum( Z[n]^2 * X[n] ) |
|
float Z2Y = z2y_sum / size; //sum( Z[n]^2 * Y[n] ) |
|
|
|
//Reduction of multiplications |
|
float F0 = x_sum2 + y_sum2 + z_sum2; |
|
float F1 = 0.5f * F0; |
|
float F2 = -8.0f * (x_sum3 + Y2X + Z2X); |
|
float F3 = -8.0f * (X2Y + y_sum3 + Z2Y); |
|
float F4 = -8.0f * (X2Z + Y2Z + z_sum3); |
|
|
|
//Set initial conditions: |
|
float A = x_sum; |
|
float B = y_sum; |
|
float C = z_sum; |
|
|
|
//First iteration computation: |
|
float A2 = A*A; |
|
float B2 = B*B; |
|
float C2 = C*C; |
|
float QS = A2 + B2 + C2; |
|
float QB = -2.0f * (A*x_sum + B*y_sum + C*z_sum); |
|
|
|
//Set initial conditions: |
|
float Rsq = F0 + QB + QS; |
|
|
|
//First iteration computation: |
|
float Q0 = 0.5f * (QS - Rsq); |
|
float Q1 = F1 + Q0; |
|
float Q2 = 8.0f * ( QS - Rsq + QB + F0 ); |
|
float aA,aB,aC,nA,nB,nC,dA,dB,dC; |
|
|
|
//Iterate N times, ignore stop condition. |
|
int n = 0; |
|
while( n < max_iterations ){ |
|
n++; |
|
|
|
//Compute denominator: |
|
aA = Q2 + 16.0f * (A2 - 2.0f * A*x_sum + x_sum2); |
|
aB = Q2 + 16.0f *(B2 - 2.0f * B*y_sum + y_sum2); |
|
aC = Q2 + 16.0f *(C2 - 2.0f * C*z_sum + z_sum2); |
|
aA = (aA == 0.0f) ? 1.0f : aA; |
|
aB = (aB == 0.0f) ? 1.0f : aB; |
|
aC = (aC == 0.0f) ? 1.0f : aC; |
|
|
|
//Compute next iteration |
|
nA = A - ((F2 + 16.0f * ( B*XY + C*XZ + x_sum*(-A2 - Q0) + A*(x_sum2 + Q1 - C*z_sum - B*y_sum) ) )/aA); |
|
nB = B - ((F3 + 16.0f * ( A*XY + C*YZ + y_sum*(-B2 - Q0) + B*(y_sum2 + Q1 - A*x_sum - C*z_sum) ) )/aB); |
|
nC = C - ((F4 + 16.0f * ( A*XZ + B*YZ + z_sum*(-C2 - Q0) + C*(z_sum2 + Q1 - A*x_sum - B*y_sum) ) )/aC); |
|
|
|
//Check for stop condition |
|
dA = (nA - A); |
|
dB = (nB - B); |
|
dC = (nC - C); |
|
if( (dA*dA + dB*dB + dC*dC) <= delta ){ break; } |
|
|
|
//Compute next iteration's values |
|
A = nA; |
|
B = nB; |
|
C = nC; |
|
A2 = A*A; |
|
B2 = B*B; |
|
C2 = C*C; |
|
QS = A2 + B2 + C2; |
|
QB = -2.0f * (A*x_sum + B*y_sum + C*z_sum); |
|
Rsq = F0 + QB + QS; |
|
Q0 = 0.5f * (QS - Rsq); |
|
Q1 = F1 + Q0; |
|
Q2 = 8.0f * ( QS - Rsq + QB + F0 ); |
|
} |
|
|
|
*sphere_x = A; |
|
*sphere_y = B; |
|
*sphere_z = C; |
|
*sphere_radius = sqrtf(Rsq); |
|
|
|
return 0; |
|
}
|
|
|