You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
479 lines
16 KiB
479 lines
16 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Doug Weibel <douglas.weibel@colorado.edu> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
/** |
|
* @file fixedwing_pos_control.c |
|
* Implementation of a fixed wing attitude controller. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <unistd.h> |
|
#include <fcntl.h> |
|
#include <errno.h> |
|
#include <math.h> |
|
#include <poll.h> |
|
#include <time.h> |
|
#include <drivers/drv_hrt.h> |
|
#include <arch/board/board.h> |
|
#include <uORB/uORB.h> |
|
#include <uORB/topics/vehicle_global_position.h> |
|
#include <uORB/topics/vehicle_global_position_setpoint.h> |
|
#include <uORB/topics/vehicle_attitude_setpoint.h> |
|
#include <uORB/topics/manual_control_setpoint.h> |
|
#include <uORB/topics/actuator_controls.h> |
|
#include <uORB/topics/vehicle_rates_setpoint.h> |
|
#include <uORB/topics/vehicle_attitude.h> |
|
#include <uORB/topics/parameter_update.h> |
|
#include <systemlib/param/param.h> |
|
#include <systemlib/pid/pid.h> |
|
#include <systemlib/geo/geo.h> |
|
#include <systemlib/perf_counter.h> |
|
#include <systemlib/systemlib.h> |
|
|
|
/* |
|
* Controller parameters, accessible via MAVLink |
|
* |
|
*/ |
|
PARAM_DEFINE_FLOAT(FW_HEAD_P, 0.1f); |
|
PARAM_DEFINE_FLOAT(FW_HEADR_I, 0.1f); |
|
PARAM_DEFINE_FLOAT(FW_HEADR_LIM, 1.5f); //TODO: think about reasonable value |
|
PARAM_DEFINE_FLOAT(FW_XTRACK_P, 0.01745f); // Radians per meter off track |
|
PARAM_DEFINE_FLOAT(FW_ALT_P, 0.1f); |
|
PARAM_DEFINE_FLOAT(FW_ROLL_LIM, 0.7f); // Roll angle limit in radians |
|
PARAM_DEFINE_FLOAT(FW_HEADR_P, 0.1f); |
|
PARAM_DEFINE_FLOAT(FW_PITCH_LIM, 0.35f); /**< Pitch angle limit in radians per second */ |
|
|
|
struct fw_pos_control_params { |
|
float heading_p; |
|
float headingr_p; |
|
float headingr_i; |
|
float headingr_lim; |
|
float xtrack_p; |
|
float altitude_p; |
|
float roll_lim; |
|
float pitch_lim; |
|
}; |
|
|
|
struct fw_pos_control_param_handles { |
|
param_t heading_p; |
|
param_t headingr_p; |
|
param_t headingr_i; |
|
param_t headingr_lim; |
|
param_t xtrack_p; |
|
param_t altitude_p; |
|
param_t roll_lim; |
|
param_t pitch_lim; |
|
}; |
|
|
|
|
|
struct planned_path_segments_s { |
|
bool segment_type; |
|
double start_lat; // Start of line or center of arc |
|
double start_lon; |
|
double end_lat; |
|
double end_lon; |
|
float radius; // Radius of arc |
|
float arc_start_bearing; // Bearing from center to start of arc |
|
float arc_sweep; // Angle (radians) swept out by arc around center. |
|
// Positive for clockwise, negative for counter-clockwise |
|
}; |
|
|
|
|
|
/* Prototypes */ |
|
/* Internal Prototypes */ |
|
static int parameters_init(struct fw_pos_control_param_handles *h); |
|
static int parameters_update(const struct fw_pos_control_param_handles *h, struct fw_pos_control_params *p); |
|
|
|
/** |
|
* Deamon management function. |
|
*/ |
|
__EXPORT int fixedwing_pos_control_main(int argc, char *argv[]); |
|
|
|
/** |
|
* Mainloop of deamon. |
|
*/ |
|
int fixedwing_pos_control_thread_main(int argc, char *argv[]); |
|
|
|
/** |
|
* Print the correct usage. |
|
*/ |
|
static void usage(const char *reason); |
|
|
|
/* Variables */ |
|
static bool thread_should_exit = false; /**< Deamon exit flag */ |
|
static bool thread_running = false; /**< Deamon status flag */ |
|
static int deamon_task; /**< Handle of deamon task / thread */ |
|
|
|
|
|
/** |
|
* Parameter management |
|
*/ |
|
static int parameters_init(struct fw_pos_control_param_handles *h) |
|
{ |
|
/* PID parameters */ |
|
h->heading_p = param_find("FW_HEAD_P"); |
|
h->headingr_p = param_find("FW_HEADR_P"); |
|
h->headingr_i = param_find("FW_HEADR_I"); |
|
h->headingr_lim = param_find("FW_HEADR_LIM"); |
|
h->xtrack_p = param_find("FW_XTRACK_P"); |
|
h->altitude_p = param_find("FW_ALT_P"); |
|
h->roll_lim = param_find("FW_ROLL_LIM"); |
|
h->pitch_lim = param_find("FW_PITCH_LIM"); |
|
|
|
return OK; |
|
} |
|
|
|
static int parameters_update(const struct fw_pos_control_param_handles *h, struct fw_pos_control_params *p) |
|
{ |
|
param_get(h->heading_p, &(p->heading_p)); |
|
param_get(h->headingr_p, &(p->headingr_p)); |
|
param_get(h->headingr_i, &(p->headingr_i)); |
|
param_get(h->headingr_lim, &(p->headingr_lim)); |
|
param_get(h->xtrack_p, &(p->xtrack_p)); |
|
param_get(h->altitude_p, &(p->altitude_p)); |
|
param_get(h->roll_lim, &(p->roll_lim)); |
|
param_get(h->pitch_lim, &(p->pitch_lim)); |
|
|
|
return OK; |
|
} |
|
|
|
|
|
/* Main Thread */ |
|
int fixedwing_pos_control_thread_main(int argc, char *argv[]) |
|
{ |
|
/* read arguments */ |
|
bool verbose = false; |
|
|
|
for (int i = 1; i < argc; i++) { |
|
if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) { |
|
verbose = true; |
|
} |
|
} |
|
|
|
/* welcome user */ |
|
printf("[fixedwing pos control] started\n"); |
|
|
|
/* declare and safely initialize all structs */ |
|
struct vehicle_global_position_s global_pos; |
|
memset(&global_pos, 0, sizeof(global_pos)); |
|
struct vehicle_global_position_s start_pos; // Temporary variable, replace with |
|
memset(&start_pos, 0, sizeof(start_pos)); // previous waypoint when available |
|
struct vehicle_global_position_setpoint_s global_setpoint; |
|
memset(&global_setpoint, 0, sizeof(global_setpoint)); |
|
struct vehicle_attitude_s att; |
|
memset(&att, 0, sizeof(att)); |
|
struct crosstrack_error_s xtrack_err; |
|
memset(&xtrack_err, 0, sizeof(xtrack_err)); |
|
struct parameter_update_s param_update; |
|
memset(¶m_update, 0, sizeof(param_update)); |
|
|
|
/* output structs */ |
|
struct vehicle_attitude_setpoint_s attitude_setpoint; |
|
memset(&attitude_setpoint, 0, sizeof(attitude_setpoint)); |
|
|
|
/* publish attitude setpoint */ |
|
attitude_setpoint.roll_body = 0.0f; |
|
attitude_setpoint.pitch_body = 0.0f; |
|
attitude_setpoint.yaw_body = 0.0f; |
|
attitude_setpoint.thrust = 0.0f; |
|
orb_advert_t attitude_setpoint_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &attitude_setpoint); |
|
|
|
/* subscribe */ |
|
int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); |
|
int global_setpoint_sub = orb_subscribe(ORB_ID(vehicle_global_position_setpoint)); |
|
int att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); |
|
int param_sub = orb_subscribe(ORB_ID(parameter_update)); |
|
|
|
/* Setup of loop */ |
|
struct pollfd fds[2] = { |
|
{ .fd = param_sub, .events = POLLIN }, |
|
{ .fd = att_sub, .events = POLLIN } |
|
}; |
|
bool global_sp_updated_set_once = false; |
|
|
|
float psi_track = 0.0f; |
|
|
|
int counter = 0; |
|
|
|
struct fw_pos_control_params p; |
|
struct fw_pos_control_param_handles h; |
|
|
|
PID_t heading_controller; |
|
PID_t heading_rate_controller; |
|
PID_t offtrack_controller; |
|
PID_t altitude_controller; |
|
|
|
parameters_init(&h); |
|
parameters_update(&h, &p); |
|
pid_init(&heading_controller, p.heading_p, 0.0f, 0.0f, 0.0f, 10000.0f, PID_MODE_DERIVATIV_NONE); //arbitrary high limit |
|
pid_init(&heading_rate_controller, p.headingr_p, p.headingr_i, 0.0f, 0.0f, p.roll_lim, PID_MODE_DERIVATIV_NONE); |
|
pid_init(&altitude_controller, p.altitude_p, 0.0f, 0.0f, 0.0f, p.pitch_lim, PID_MODE_DERIVATIV_NONE); |
|
pid_init(&offtrack_controller, p.xtrack_p, 0.0f, 0.0f, 0.0f , 60.0f * M_DEG_TO_RAD, PID_MODE_DERIVATIV_NONE); //TODO: remove hardcoded value |
|
|
|
/* error and performance monitoring */ |
|
perf_counter_t fw_interval_perf = perf_alloc(PC_INTERVAL, "fixedwing_pos_control_interval"); |
|
perf_counter_t fw_err_perf = perf_alloc(PC_COUNT, "fixedwing_pos_control_err"); |
|
|
|
while (!thread_should_exit) { |
|
/* wait for a sensor update, check for exit condition every 500 ms */ |
|
int ret = poll(fds, 2, 500); |
|
|
|
if (ret < 0) { |
|
/* poll error, count it in perf */ |
|
perf_count(fw_err_perf); |
|
|
|
} else if (ret == 0) { |
|
/* no return value, ignore */ |
|
} else { |
|
|
|
/* only update parameters if they changed */ |
|
if (fds[0].revents & POLLIN) { |
|
/* read from param to clear updated flag */ |
|
struct parameter_update_s update; |
|
orb_copy(ORB_ID(parameter_update), param_sub, &update); |
|
|
|
/* update parameters from storage */ |
|
parameters_update(&h, &p); |
|
pid_set_parameters(&heading_controller, p.heading_p, 0, 0, 0, 10000.0f); //arbitrary high limit |
|
pid_set_parameters(&heading_rate_controller, p.headingr_p, p.headingr_i, 0, 0, p.roll_lim); |
|
pid_set_parameters(&altitude_controller, p.altitude_p, 0, 0, 0, p.pitch_lim); |
|
pid_set_parameters(&offtrack_controller, p.xtrack_p, 0, 0, 0, 60.0f * M_DEG_TO_RAD); //TODO: remove hardcoded value |
|
} |
|
|
|
/* only run controller if attitude changed */ |
|
if (fds[1].revents & POLLIN) { |
|
|
|
|
|
static uint64_t last_run = 0; |
|
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; |
|
last_run = hrt_absolute_time(); |
|
|
|
/* check if there is a new position or setpoint */ |
|
bool pos_updated; |
|
orb_check(global_pos_sub, &pos_updated); |
|
bool global_sp_updated; |
|
orb_check(global_setpoint_sub, &global_sp_updated); |
|
|
|
/* load local copies */ |
|
orb_copy(ORB_ID(vehicle_attitude), att_sub, &att); |
|
|
|
if (pos_updated) { |
|
orb_copy(ORB_ID(vehicle_global_position), global_pos_sub, &global_pos); |
|
} |
|
|
|
if (global_sp_updated) { |
|
orb_copy(ORB_ID(vehicle_global_position_setpoint), global_setpoint_sub, &global_setpoint); |
|
start_pos = global_pos; //for now using the current position as the startpoint (= approx. last waypoint because the setpoint switch occurs at the waypoint) |
|
global_sp_updated_set_once = true; |
|
psi_track = get_bearing_to_next_waypoint((double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d, |
|
(double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d); |
|
|
|
printf("next wp direction: %0.4f\n", (double)psi_track); |
|
} |
|
|
|
/* Simple Horizontal Control */ |
|
if (global_sp_updated_set_once) { |
|
// if (counter % 100 == 0) |
|
// printf("lat_sp %d, ln_sp %d, lat: %d, lon: %d\n", global_setpoint.lat, global_setpoint.lon, global_pos.lat, global_pos.lon); |
|
|
|
/* calculate crosstrack error */ |
|
// Only the case of a straight line track following handled so far |
|
int distance_res = get_distance_to_line(&xtrack_err, (double)global_pos.lat / (double)1e7d, (double)global_pos.lon / (double)1e7d, |
|
(double)start_pos.lat / (double)1e7d, (double)start_pos.lon / (double)1e7d, |
|
(double)global_setpoint.lat / (double)1e7d, (double)global_setpoint.lon / (double)1e7d); |
|
|
|
// XXX what is xtrack_err.past_end? |
|
if (distance_res == OK /*&& !xtrack_err.past_end*/) { |
|
|
|
float delta_psi_c = pid_calculate(&offtrack_controller, 0, xtrack_err.distance, 0.0f, 0.0f); //p.xtrack_p * xtrack_err.distance |
|
|
|
float psi_c = psi_track + delta_psi_c; |
|
float psi_e = psi_c - att.yaw; |
|
|
|
/* wrap difference back onto -pi..pi range */ |
|
psi_e = _wrap_pi(psi_e); |
|
|
|
if (verbose) { |
|
printf("xtrack_err.distance %.4f ", (double)xtrack_err.distance); |
|
printf("delta_psi_c %.4f ", (double)delta_psi_c); |
|
printf("psi_c %.4f ", (double)psi_c); |
|
printf("att.yaw %.4f ", (double)att.yaw); |
|
printf("psi_e %.4f ", (double)psi_e); |
|
} |
|
|
|
/* calculate roll setpoint, do this artificially around zero */ |
|
float delta_psi_rate_c = pid_calculate(&heading_controller, psi_e, 0.0f, 0.0f, 0.0f); |
|
float psi_rate_track = 0; //=V_gr/r_track , this will be needed for implementation of arc following |
|
float psi_rate_c = delta_psi_rate_c + psi_rate_track; |
|
|
|
/* limit turn rate */ |
|
if (psi_rate_c > p.headingr_lim) { |
|
psi_rate_c = p.headingr_lim; |
|
|
|
} else if (psi_rate_c < -p.headingr_lim) { |
|
psi_rate_c = -p.headingr_lim; |
|
} |
|
|
|
float psi_rate_e = psi_rate_c - att.yawspeed; |
|
|
|
// XXX sanity check: Assume 10 m/s stall speed and no stall condition |
|
float ground_speed = sqrtf(global_pos.vx * global_pos.vx + global_pos.vy * global_pos.vy); |
|
|
|
if (ground_speed < 10.0f) { |
|
ground_speed = 10.0f; |
|
} |
|
|
|
float psi_rate_e_scaled = psi_rate_e * ground_speed / 9.81f; //* V_gr / g |
|
|
|
attitude_setpoint.roll_body = pid_calculate(&heading_rate_controller, psi_rate_e_scaled, 0.0f, 0.0f, deltaT); |
|
|
|
if (verbose) { |
|
printf("psi_rate_c %.4f ", (double)psi_rate_c); |
|
printf("psi_rate_e_scaled %.4f ", (double)psi_rate_e_scaled); |
|
printf("rollbody %.4f\n", (double)attitude_setpoint.roll_body); |
|
} |
|
|
|
if (verbose && counter % 100 == 0) |
|
printf("xtrack_err.distance: %0.4f, delta_psi_c: %0.4f\n", xtrack_err.distance, delta_psi_c); |
|
|
|
} else { |
|
if (verbose && counter % 100 == 0) |
|
printf("distance_res: %d, past_end %d\n", distance_res, xtrack_err.past_end); |
|
} |
|
|
|
/* Very simple Altitude Control */ |
|
if (pos_updated) { |
|
|
|
//TODO: take care of relative vs. ab. altitude |
|
attitude_setpoint.pitch_body = pid_calculate(&altitude_controller, global_setpoint.altitude, global_pos.alt, 0.0f, 0.0f); |
|
|
|
} |
|
|
|
// XXX need speed control |
|
attitude_setpoint.thrust = 0.7f; |
|
|
|
/* publish the attitude setpoint */ |
|
orb_publish(ORB_ID(vehicle_attitude_setpoint), attitude_setpoint_pub, &attitude_setpoint); |
|
|
|
/* measure in what intervals the controller runs */ |
|
perf_count(fw_interval_perf); |
|
|
|
counter++; |
|
|
|
} else { |
|
// XXX no setpoint, decent default needed (loiter?) |
|
} |
|
} |
|
} |
|
} |
|
|
|
printf("[fixedwing_pos_control] exiting.\n"); |
|
thread_running = false; |
|
|
|
|
|
close(attitude_setpoint_pub); |
|
|
|
fflush(stdout); |
|
exit(0); |
|
|
|
return 0; |
|
|
|
} |
|
|
|
/* Startup Functions */ |
|
|
|
static void |
|
usage(const char *reason) |
|
{ |
|
if (reason) |
|
fprintf(stderr, "%s\n", reason); |
|
|
|
fprintf(stderr, "usage: fixedwing_pos_control {start|stop|status}\n\n"); |
|
exit(1); |
|
} |
|
|
|
/** |
|
* The deamon app only briefly exists to start |
|
* the background job. The stack size assigned in the |
|
* Makefile does only apply to this management task. |
|
* |
|
* The actual stack size should be set in the call |
|
* to task_create(). |
|
*/ |
|
int fixedwing_pos_control_main(int argc, char *argv[]) |
|
{ |
|
if (argc < 1) |
|
usage("missing command"); |
|
|
|
if (!strcmp(argv[1], "start")) { |
|
|
|
if (thread_running) { |
|
printf("fixedwing_pos_control already running\n"); |
|
/* this is not an error */ |
|
exit(0); |
|
} |
|
|
|
thread_should_exit = false; |
|
deamon_task = task_spawn("fixedwing_pos_control", |
|
SCHED_DEFAULT, |
|
SCHED_PRIORITY_MAX - 20, |
|
2048, |
|
fixedwing_pos_control_thread_main, |
|
(argv) ? (const char **)&argv[2] : (const char **)NULL); |
|
thread_running = true; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "stop")) { |
|
thread_should_exit = true; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "status")) { |
|
if (thread_running) { |
|
printf("\tfixedwing_pos_control is running\n"); |
|
|
|
} else { |
|
printf("\tfixedwing_pos_control not started\n"); |
|
} |
|
|
|
exit(0); |
|
} |
|
|
|
usage("unrecognized command"); |
|
exit(1); |
|
}
|
|
|