You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
6.6 KiB
195 lines
6.6 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file terrain_estimator.cpp |
|
* Function for fusing rangefinder measurements to estimate terrain vertical position/ |
|
* |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include "mathlib.h" |
|
|
|
bool Ekf::initHagl() |
|
{ |
|
// get most recent range measurement from buffer |
|
rangeSample latest_measurement = _range_buffer.get_newest(); |
|
|
|
if ((_time_last_imu - latest_measurement.time_us) < 2e5 && _R_rng_to_earth_2_2 > 0.7071f) { |
|
// if we have a fresh measurement, use it to initialise the terrain estimator |
|
_terrain_vpos = _state.pos(2) + latest_measurement.rng * _R_rng_to_earth_2_2; |
|
// initialise state variance to variance of measurement |
|
_terrain_var = sq(_params.range_noise); |
|
// success |
|
return true; |
|
|
|
} else if (!_control_status.flags.in_air) { |
|
// if on ground we assume a ground clearance |
|
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance; |
|
// Use the ground clearance value as our uncertainty |
|
_terrain_var = sq(_params.rng_gnd_clearance); |
|
// ths is a guess |
|
return false; |
|
|
|
} else { |
|
// no information - cannot initialise |
|
return false; |
|
} |
|
} |
|
|
|
void Ekf::runTerrainEstimator() |
|
{ |
|
// Perform a continuity check on range finder data |
|
checkRangeDataContinuity(); |
|
|
|
// Perform initialisation check |
|
if (!_terrain_initialised) { |
|
_terrain_initialised = initHagl(); |
|
|
|
} else { |
|
|
|
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle |
|
|
|
// process noise due to errors in vehicle height estimate |
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise); |
|
|
|
// process noise due to terrain gradient |
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) * (sq(_state.vel(0)) + sq(_state.vel( |
|
1))); |
|
|
|
// limit the variance to prevent it becoming badly conditioned |
|
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f); |
|
|
|
// Fuse range finder data if available |
|
if (_range_data_ready) { |
|
fuseHagl(); |
|
|
|
// update range sensor angle parameters in case they have changed |
|
// we do this here to avoid doing those calculations at a high rate |
|
_sin_tilt_rng = sinf(_params.rng_sens_pitch); |
|
_cos_tilt_rng = cosf(_params.rng_sens_pitch); |
|
|
|
} |
|
} |
|
} |
|
|
|
void Ekf::fuseHagl() |
|
{ |
|
// If the vehicle is excessively tilted, do not try to fuse range finder observations |
|
if (_R_rng_to_earth_2_2 > 0.7071f) { |
|
// get a height above ground measurement from the range finder assuming a flat earth |
|
float meas_hagl = _range_sample_delayed.rng * _R_rng_to_earth_2_2; |
|
|
|
// predict the hagl from the vehicle position and terrain height |
|
float pred_hagl = _terrain_vpos - _state.pos(2); |
|
|
|
// calculate the innovation |
|
_hagl_innov = pred_hagl - meas_hagl; |
|
|
|
// calculate the observation variance adding the variance of the vehicles own height uncertainty |
|
float obs_variance = fmaxf(P[9][9], 0.0f) + sq(_params.range_noise) + sq(_params.range_noise_scaler * _range_sample_delayed.rng); |
|
|
|
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion |
|
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance); |
|
|
|
// perform an innovation consistency check and only fuse data if it passes |
|
float gate_size = fmaxf(_params.range_innov_gate, 1.0f); |
|
_terr_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var); |
|
|
|
if (_terr_test_ratio <= 1.0f) { |
|
// calculate the Kalman gain |
|
float gain = _terrain_var / _hagl_innov_var; |
|
// correct the state |
|
_terrain_vpos -= gain * _hagl_innov; |
|
// correct the variance |
|
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f); |
|
// record last successful fusion event |
|
_time_last_hagl_fuse = _time_last_imu; |
|
_innov_check_fail_status.flags.reject_hagl = false; |
|
|
|
} else { |
|
_innov_check_fail_status.flags.reject_hagl = true; |
|
|
|
} |
|
|
|
} else { |
|
return; |
|
} |
|
} |
|
|
|
// return true if the estimate is fresh |
|
// return the estimated vertical position of the terrain relative to the NED origin |
|
bool Ekf::get_terrain_vert_pos(float *ret) |
|
{ |
|
memcpy(ret, &_terrain_vpos, sizeof(float)); |
|
|
|
if (_terrain_initialised && _range_data_continuous) { |
|
return true; |
|
|
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
void Ekf::get_hagl_innov(float *hagl_innov) |
|
{ |
|
memcpy(hagl_innov, &_hagl_innov, sizeof(_hagl_innov)); |
|
} |
|
|
|
|
|
void Ekf::get_hagl_innov_var(float *hagl_innov_var) |
|
{ |
|
memcpy(hagl_innov_var, &_hagl_innov_var, sizeof(_hagl_innov_var)); |
|
} |
|
|
|
// check that the range finder data is continuous |
|
void Ekf::checkRangeDataContinuity() |
|
{ |
|
// update range data continuous flag (2Hz ie 500 ms) |
|
/* Timing in micro seconds */ |
|
|
|
/* Apply a 1.0 sec low pass filter to the time delta from the last range finder updates */ |
|
_dt_last_range_update_filt_us = _dt_last_range_update_filt_us * (1.0f - _dt_update) + _dt_update * |
|
(_time_last_imu - _time_last_range); |
|
|
|
_dt_last_range_update_filt_us = fminf(_dt_last_range_update_filt_us, 1e6f); |
|
|
|
if (_dt_last_range_update_filt_us < 5e5f) { |
|
_range_data_continuous = true; |
|
|
|
} else { |
|
_range_data_continuous = false; |
|
} |
|
}
|
|
|