You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
13 KiB
433 lines
13 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: Lorenz Meier <lm@inf.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ardrone_motor_control.c |
|
* Implementation of AR.Drone 1.0 / 2.0 motor control interface |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
#include <stdio.h> |
|
#include <fcntl.h> |
|
#include <unistd.h> |
|
#include <drivers/drv_gpio.h> |
|
#include <arch/board/up_hrt.h> |
|
|
|
#include "ardrone_motor_control.h" |
|
|
|
static const unsigned long motor_gpios = GPIO_EXT_1 | GPIO_EXT_2 | GPIO_MULTI_1 | GPIO_MULTI_2; |
|
static const unsigned long motor_gpio[4] = { GPIO_EXT_1, GPIO_EXT_2, GPIO_MULTI_1, GPIO_MULTI_2 }; |
|
|
|
typedef union { |
|
uint16_t motor_value; |
|
uint8_t bytes[2]; |
|
} motor_union_t; |
|
|
|
/** |
|
* @brief Generate the 8-byte motor set packet |
|
* |
|
* @return the number of bytes (8) |
|
*/ |
|
void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) |
|
{ |
|
motor_buf[0] = 0x20; |
|
motor_buf[1] = 0x00; |
|
motor_buf[2] = 0x00; |
|
motor_buf[3] = 0x00; |
|
motor_buf[4] = 0x00; |
|
/* |
|
* {0x20, 0x00, 0x00, 0x00, 0x00}; |
|
* 0x20 is start sign / motor command |
|
*/ |
|
motor_union_t curr_motor; |
|
uint16_t nineBitMask = 0x1FF; |
|
|
|
/* Set motor 1 */ |
|
curr_motor.motor_value = (motor1 & nineBitMask) << 4; |
|
motor_buf[0] |= curr_motor.bytes[1]; |
|
motor_buf[1] |= curr_motor.bytes[0]; |
|
|
|
/* Set motor 2 */ |
|
curr_motor.motor_value = (motor2 & nineBitMask) << 3; |
|
motor_buf[1] |= curr_motor.bytes[1]; |
|
motor_buf[2] |= curr_motor.bytes[0]; |
|
|
|
/* Set motor 3 */ |
|
curr_motor.motor_value = (motor3 & nineBitMask) << 2; |
|
motor_buf[2] |= curr_motor.bytes[1]; |
|
motor_buf[3] |= curr_motor.bytes[0]; |
|
|
|
/* Set motor 4 */ |
|
curr_motor.motor_value = (motor4 & nineBitMask) << 1; |
|
motor_buf[3] |= curr_motor.bytes[1]; |
|
motor_buf[4] |= curr_motor.bytes[0]; |
|
} |
|
|
|
void ar_enable_broadcast(int fd) |
|
{ |
|
ar_select_motor(fd, 0); |
|
} |
|
|
|
int ar_multiplexing_init() |
|
{ |
|
int fd; |
|
|
|
fd = open(GPIO_DEVICE_PATH, 0); |
|
|
|
if (fd < 0) { |
|
printf("GPIO: open fail\n"); |
|
return fd; |
|
} |
|
|
|
/* deactivate all outputs */ |
|
int ret = 0; |
|
ret += ioctl(fd, GPIO_SET, motor_gpios); |
|
|
|
if (ioctl(fd, GPIO_SET_OUTPUT, motor_gpios) != 0) { |
|
printf("GPIO: output set fail\n"); |
|
close(fd); |
|
return -1; |
|
} |
|
|
|
if (ret < 0) { |
|
printf("GPIO: clearing pins fail\n"); |
|
close(fd); |
|
return -1; |
|
} |
|
|
|
return fd; |
|
} |
|
|
|
int ar_multiplexing_deinit(int fd) |
|
{ |
|
if (fd < 0) { |
|
printf("GPIO: no valid descriptor\n"); |
|
return fd; |
|
} |
|
|
|
int ret = 0; |
|
|
|
/* deselect motor 1-4 */ |
|
ret += ioctl(fd, GPIO_SET, motor_gpios); |
|
|
|
if (ret != 0) { |
|
printf("GPIO: clear failed %d times\n", ret); |
|
} |
|
|
|
if (ioctl(fd, GPIO_SET_INPUT, motor_gpios) != 0) { |
|
printf("GPIO: input set fail\n"); |
|
return -1; |
|
} |
|
|
|
close(fd); |
|
|
|
return ret; |
|
} |
|
|
|
int ar_select_motor(int fd, uint8_t motor) |
|
{ |
|
int ret = 0; |
|
unsigned long gpioset; |
|
/* |
|
* Four GPIOS: |
|
* GPIO_EXT1 |
|
* GPIO_EXT2 |
|
* GPIO_UART2_CTS |
|
* GPIO_UART2_RTS |
|
*/ |
|
|
|
/* select motor 0 to enable broadcast */ |
|
if (motor == 0) { |
|
/* select motor 1-4 */ |
|
ret += ioctl(fd, GPIO_CLEAR, motor_gpios); |
|
|
|
} else { |
|
/* deselect all */ |
|
ret += ioctl(fd, GPIO_SET, motor_gpios); |
|
|
|
/* select reqested motor */ |
|
ret += ioctl(fd, GPIO_CLEAR, motor_gpio[motor - 1]); |
|
|
|
/* deselect all others */ |
|
// gpioset = motor_gpios ^ motor_gpio[motor - 1]; |
|
// ret += ioctl(fd, GPIO_SET, gpioset); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int ar_init_motors(int ardrone_uart, int *gpios_pin) |
|
{ |
|
/* Initialize multiplexing */ |
|
*gpios_pin = ar_multiplexing_init(); |
|
|
|
/* Write ARDrone commands on UART2 */ |
|
uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40}; |
|
uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0}; |
|
|
|
/* initialize all motors |
|
* - select one motor at a time |
|
* - configure motor |
|
*/ |
|
int i; |
|
int errcounter = 0; |
|
|
|
for (i = 1; i < 5; ++i) { |
|
/* Initialize motors 1-4 */ |
|
initbuf[3] = i; |
|
errcounter += ar_select_motor(*gpios_pin, i); |
|
|
|
write(ardrone_uart, initbuf + 0, 1); |
|
|
|
/* sleep 400 ms */ |
|
usleep(200000); |
|
usleep(200000); |
|
|
|
write(ardrone_uart, initbuf + 1, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
write(ardrone_uart, initbuf + 2, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
write(ardrone_uart, initbuf + 3, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
write(ardrone_uart, initbuf + 4, 1); |
|
/* wait 50 ms */ |
|
usleep(50000); |
|
|
|
/* enable multicast */ |
|
write(ardrone_uart, multicastbuf + 0, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 1, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 2, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 3, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 4, 1); |
|
/* wait 1 ms */ |
|
usleep(1000); |
|
|
|
write(ardrone_uart, multicastbuf + 5, 1); |
|
/* wait 5 ms */ |
|
usleep(50000); |
|
} |
|
|
|
/* start the multicast part */ |
|
errcounter += ar_select_motor(*gpios_pin, 0); |
|
|
|
if (errcounter != 0) { |
|
fprintf(stderr, "[ar motors] init sequence incomplete, failed %d times", -errcounter); |
|
fflush(stdout); |
|
} |
|
return errcounter; |
|
} |
|
|
|
/* |
|
* Sets the leds on the motor controllers, 1 turns led on, 0 off. |
|
*/ |
|
void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green, uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green) |
|
{ |
|
/* |
|
* 2 bytes are sent. The first 3 bits describe the command: 011 means led control |
|
* the following 4 bits are the red leds for motor 4, 3, 2, 1 |
|
* then 4 bits with unknown function, then 4 bits for green leds for motor 4, 3, 2, 1 |
|
* the last bit is unknown. |
|
* |
|
* The packet is therefore: |
|
* 011 rrrr 0000 gggg 0 |
|
*/ |
|
uint8_t leds[2]; |
|
leds[0] = 0x60 | ((led4_red & 0x01) << 4) | ((led3_red & 0x01) << 3) | ((led2_red & 0x01) << 2) | ((led1_red & 0x01) << 1); |
|
leds[1] = ((led4_green & 0x01) << 4) | ((led3_green & 0x01) << 3) | ((led2_green & 0x01) << 2) | ((led1_green & 0x01) << 1); |
|
write(ardrone_uart, leds, 2); |
|
} |
|
|
|
int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) { |
|
const unsigned int min_motor_interval = 20000; |
|
static uint64_t last_motor_time = 0; |
|
if (hrt_absolute_time() - last_motor_time > min_motor_interval) { |
|
uint8_t buf[5] = {0}; |
|
ar_get_motor_packet(buf, motor1, motor2, motor3, motor4); |
|
int ret; |
|
if ((ret = write(ardrone_fd, buf, sizeof(buf))) > 0) { |
|
return OK; |
|
} else { |
|
return ret; |
|
} |
|
} else { |
|
return -ERROR; |
|
} |
|
} |
|
|
|
void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators, bool verbose) { |
|
|
|
float roll_control = actuators->control[0]; |
|
float pitch_control = actuators->control[1]; |
|
float yaw_control = actuators->control[2]; |
|
float motor_thrust = actuators->control[3]; |
|
|
|
unsigned int motor_skip_counter = 0; |
|
|
|
const float min_thrust = 0.02f; /**< 2% minimum thrust */ |
|
const float max_thrust = 1.0f; /**< 100% max thrust */ |
|
const float scaling = 512.0f; /**< 100% thrust equals a value of 512 */ |
|
|
|
const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */ |
|
const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */ |
|
|
|
/* initialize all fields to zero */ |
|
uint16_t motor_pwm[4] = {0}; |
|
float motor_calc[4] = {0}; |
|
|
|
float output_band = 0.0f; |
|
float band_factor = 0.75f; |
|
const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */ |
|
float yaw_factor = 1.0f; |
|
|
|
if (motor_thrust <= min_thrust) { |
|
motor_thrust = min_thrust; |
|
output_band = 0.0f; |
|
|
|
} else if (motor_thrust < startpoint_full_control && motor_thrust > min_thrust) { |
|
output_band = band_factor * (motor_thrust - min_thrust); |
|
|
|
} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_thrust - band_factor * startpoint_full_control) { |
|
output_band = band_factor * startpoint_full_control; |
|
|
|
} else if (motor_thrust >= max_thrust - band_factor * startpoint_full_control) { |
|
output_band = band_factor * (max_thrust - motor_thrust); |
|
} |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("1: mot1: %3.1f band: %3.1f r: %3.1f n: %3.1f y: %3.1f\n", (double)motor_thrust, (double)output_band, (double)roll_control, (double)pitch_control, (double)yaw_control); |
|
} |
|
|
|
//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer |
|
|
|
// FRONT (MOTOR 1) |
|
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control); |
|
|
|
// RIGHT (MOTOR 2) |
|
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control); |
|
|
|
// BACK (MOTOR 3) |
|
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control); |
|
|
|
// LEFT (MOTOR 4) |
|
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control); |
|
|
|
// if we are not in the output band |
|
if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band |
|
&& motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band |
|
&& motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band |
|
&& motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) { |
|
|
|
yaw_factor = 0.5f; |
|
// FRONT (MOTOR 1) |
|
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control * yaw_factor); |
|
|
|
// RIGHT (MOTOR 2) |
|
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control * yaw_factor); |
|
|
|
// BACK (MOTOR 3) |
|
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control * yaw_factor); |
|
|
|
// LEFT (MOTOR 4) |
|
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control * yaw_factor); |
|
} |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("2: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]); |
|
} |
|
|
|
for (int i = 0; i < 4; i++) { |
|
//check for limits |
|
if (motor_calc[i] < motor_thrust - output_band) { |
|
motor_calc[i] = motor_thrust - output_band; |
|
} |
|
|
|
if (motor_calc[i] > motor_thrust + output_band) { |
|
motor_calc[i] = motor_thrust + output_band; |
|
} |
|
} |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("3: band lim: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]); |
|
} |
|
|
|
/* set the motor values */ |
|
|
|
/* scale up from 0..1 to 10..512) */ |
|
motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas); |
|
motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas); |
|
motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas); |
|
motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas); |
|
|
|
if (verbose && motor_skip_counter % 100 == 0) { |
|
printf("4: scaled: m1: %d m2: %d m3: %d m4: %d\n", motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); |
|
} |
|
|
|
/* Keep motors spinning while armed and prevent overflows */ |
|
|
|
/* Failsafe logic - should never be necessary */ |
|
motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10; |
|
motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10; |
|
motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10; |
|
motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10; |
|
|
|
/* Failsafe logic - should never be necessary */ |
|
motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512; |
|
motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512; |
|
motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512; |
|
motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512; |
|
|
|
/* send motors via UART */ |
|
if (verbose && motor_skip_counter % 100 == 0) printf("5: mot: %3.1f-%i-%i-%i-%i\n\n", (double)motor_thrust, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); |
|
ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]); |
|
|
|
motor_skip_counter++; |
|
}
|
|
|