You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
381 lines
9.4 KiB
381 lines
9.4 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file Control channel input/output mixer and failsafe. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
#include <nuttx/arch.h> |
|
|
|
#include <sys/types.h> |
|
#include <stdbool.h> |
|
#include <string.h> |
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <fcntl.h> |
|
#include <termios.h> |
|
#include <unistd.h> |
|
#include <fcntl.h> |
|
|
|
#include <drivers/drv_pwm_output.h> |
|
#include <drivers/drv_hrt.h> |
|
|
|
#include <systemlib/ppm_decode.h> |
|
|
|
#include "px4io.h" |
|
|
|
/* |
|
* Count of periodic calls in which we have no data. |
|
*/ |
|
static unsigned mixer_input_drops; |
|
#define MIXER_INPUT_DROP_LIMIT 10 |
|
|
|
/* |
|
* Count of periodic calls in which we have no FMU input. |
|
*/ |
|
static unsigned fmu_input_drops; |
|
#define FMU_INPUT_DROP_LIMIT 20 |
|
|
|
/* |
|
* Serial port fd for serial RX protocols |
|
*/ |
|
static int rx_port = -1; |
|
|
|
/* |
|
* HRT periodic call used to check for control input data. |
|
*/ |
|
static struct hrt_call mixer_input_call; |
|
|
|
/* |
|
* Mixer periodic tick. |
|
*/ |
|
static void mixer_tick(void *arg); |
|
|
|
/* |
|
* Collect RC input data from the controller source(s). |
|
*/ |
|
static void mixer_get_rc_input(void); |
|
|
|
/* |
|
* Update a mixer based on the current control signals. |
|
*/ |
|
static void mixer_update(int mixer, uint16_t *inputs, int input_count); |
|
|
|
/* current servo arm/disarm state */ |
|
bool mixer_servos_armed; |
|
|
|
/* |
|
* Each mixer consumes a set of inputs and produces a single output. |
|
*/ |
|
struct mixer { |
|
uint16_t current_value; |
|
/* XXX more config here */ |
|
} mixers[IO_SERVO_COUNT]; |
|
|
|
int |
|
mixer_init(void) |
|
{ |
|
/* open the serial port */ |
|
rx_port = open("/dev/ttyS0", O_RDONLY | O_NONBLOCK); |
|
|
|
/* look for control data at 50Hz */ |
|
hrt_call_every(&mixer_input_call, 1000, 20000, mixer_tick, NULL); |
|
|
|
return 0; |
|
} |
|
|
|
void |
|
mixer_set_serial_mode(uint8_t serial_mode) |
|
{ |
|
|
|
if (serial_mode == system_state.serial_rx_mode) |
|
return; |
|
|
|
struct termios t; |
|
tcgetattr(rx_port, &t); |
|
|
|
switch (serial_mode) { |
|
case RX_MODE_PPM_ONLY: |
|
break; |
|
case RX_MODE_SPEKTRUM_6: |
|
case RX_MODE_SPEKTRUM_7: |
|
/* 115200, no parity, one stop bit */ |
|
cfsetspeed(&t, 115200); |
|
t.c_cflag &= ~(CSTOPB | PARENB); |
|
break; |
|
case RX_MODE_FUTABA_SBUS: |
|
/* 100000, even parity, two stop bits */ |
|
cfsetspeed(&t, 100000); |
|
t.c_cflag |= (CSTOPB | PARENB); |
|
break; |
|
default: |
|
return; |
|
} |
|
|
|
tcsetattr(rx_port, TCSANOW, &t); |
|
system_state.serial_rx_mode = serial_mode; |
|
} |
|
|
|
static void |
|
mixer_tick(void *arg) |
|
{ |
|
uint16_t *control_values; |
|
int control_count; |
|
int i; |
|
bool should_arm; |
|
|
|
/* |
|
* Start by looking for R/C control inputs. |
|
* This updates system_state with any control inputs received. |
|
*/ |
|
mixer_get_rc_input(); |
|
|
|
/* |
|
* Decide which set of inputs we're using. |
|
*/ |
|
if (system_state.mixer_use_fmu) { |
|
/* we have recent control data from the FMU */ |
|
control_count = PX4IO_OUTPUT_CHANNELS; |
|
control_values = &system_state.fmu_channel_data[0]; |
|
|
|
/* check that we are receiving fresh data from the FMU */ |
|
if (!system_state.fmu_data_received) { |
|
fmu_input_drops++; |
|
|
|
/* too many frames without FMU input, time to go to failsafe */ |
|
if (fmu_input_drops >= FMU_INPUT_DROP_LIMIT) { |
|
system_state.mixer_use_fmu = false; |
|
} |
|
} else { |
|
fmu_input_drops = 0; |
|
system_state.fmu_data_received = false; |
|
} |
|
|
|
} else if (system_state.rc_channels > 0) { |
|
/* we have control data from an R/C input */ |
|
control_count = system_state.rc_channels; |
|
control_values = &system_state.rc_channel_data[0]; |
|
|
|
} else { |
|
/* we have no control input */ |
|
control_count = 0; |
|
} |
|
|
|
/* |
|
* Tickle each mixer, if we have control data. |
|
*/ |
|
if (control_count > 0) { |
|
for (i = 0; i < PX4IO_OUTPUT_CHANNELS; i++) { |
|
mixer_update(i, control_values, control_count); |
|
|
|
/* |
|
* If we are armed, update the servo output. |
|
*/ |
|
if (system_state.armed) |
|
up_pwm_servo_set(i, mixers[i].current_value); |
|
} |
|
} |
|
|
|
/* |
|
* Decide whether the servos should be armed right now. |
|
*/ |
|
should_arm = system_state.armed && (control_count > 0); |
|
if (should_arm && !mixer_servos_armed) { |
|
/* need to arm, but not armed */ |
|
up_pwm_servo_arm(true); |
|
mixer_servos_armed = true; |
|
|
|
} else if (!should_arm && mixer_servos_armed) { |
|
/* armed but need to disarm */ |
|
up_pwm_servo_arm(false); |
|
mixer_servos_armed = false; |
|
} |
|
} |
|
|
|
static void |
|
mixer_update(int mixer, uint16_t *inputs, int input_count) |
|
{ |
|
/* simple passthrough for now */ |
|
if (mixer < input_count) { |
|
mixers[mixer].current_value = inputs[mixer]; |
|
} else { |
|
mixers[mixer].current_value = 0; |
|
} |
|
} |
|
|
|
static bool |
|
mixer_get_spektrum_input(void) |
|
{ |
|
static uint8_t buf[16]; |
|
static unsigned count; |
|
|
|
/* always read as much data as we can into the buffer */ |
|
if (count >= sizeof(buf)) |
|
count = 0; |
|
ssize_t result = read(rx_port, buf, sizeof(buf) - count); |
|
/* no data or an error */ |
|
if (result <= 0) |
|
return false; |
|
count += result; |
|
|
|
/* if there are more than two bytes in the buffer, check for sync */ |
|
if (count >= 2) { |
|
if ((buf[0] != 0x3) || (buf[1] != 0x1)) { |
|
/* not in sync; look for a possible sync marker */ |
|
for (unsigned i = 1; i < count; i++) { |
|
if (buf[i] == 0x3) { |
|
/* could be a frame marker; move buffer bytes */ |
|
count -= i; |
|
memmove(buf, buf + i, count); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
if (count < sizeof(buf)) |
|
return false; |
|
|
|
/* we got a frame; decode it */ |
|
const uint16_t *channels = (const uint16_t *)&buf[2]; |
|
|
|
/* |
|
* Channel assignment for DX6i vs. DX7 is different. |
|
* |
|
* DX7 etc. is: |
|
* |
|
* 0: Aileron |
|
* 1: Flaps |
|
* 2: Gear |
|
* 3: Elevator |
|
* 4: Aux2 |
|
* 5: Throttle |
|
* 6: Rudder |
|
* |
|
* DX6i is: |
|
* |
|
* 0: Aileron |
|
* 1: Flaps |
|
* 2: Elevator |
|
* 3: Rudder |
|
* 4: Throttle |
|
* 5: Gear |
|
* 6: <notused> |
|
* |
|
* We convert these to our standard Futaba-style assignment: |
|
* |
|
* 0: Throttle (Throttle) |
|
* 1: Roll (Aileron) |
|
* 2: Pitch (Elevator) |
|
* 3: Yaw (Rudder) |
|
* 4: Override (Flaps) |
|
* 5: FUNC_0 (Gear) |
|
* 6: FUNC_1 (Aux2) |
|
*/ |
|
if (system_state.serial_rx_mode == RX_MODE_SPEKTRUM_7) { |
|
system_state.rc_channel_data[0] = channels[5]; /* Throttle */ |
|
system_state.rc_channel_data[1] = channels[0]; /* Roll */ |
|
system_state.rc_channel_data[2] = channels[3]; /* Pitch */ |
|
system_state.rc_channel_data[3] = channels[6]; /* Yaw */ |
|
system_state.rc_channel_data[4] = channels[1]; /* Override */ |
|
system_state.rc_channel_data[5] = channels[2]; /* FUNC_0 */ |
|
system_state.rc_channel_data[6] = channels[4]; /* FUNC_1 */ |
|
system_state.rc_channels = 7; |
|
} else { |
|
system_state.rc_channel_data[0] = channels[4]; /* Throttle */ |
|
system_state.rc_channel_data[1] = channels[0]; /* Roll */ |
|
system_state.rc_channel_data[2] = channels[2]; /* Pitch */ |
|
system_state.rc_channel_data[3] = channels[3]; /* Yaw */ |
|
system_state.rc_channel_data[4] = channels[1]; /* Override */ |
|
system_state.rc_channel_data[5] = channels[5]; /* FUNC_0 */ |
|
system_state.rc_channels = 6; |
|
} |
|
count = 0; |
|
return true; |
|
} |
|
|
|
static bool |
|
mixer_get_sbus_input(void) |
|
{ |
|
/* XXX not implemented yet */ |
|
return false; |
|
} |
|
|
|
static void |
|
mixer_get_rc_input(void) |
|
{ |
|
bool got_input = false; |
|
|
|
switch (system_state.serial_rx_mode) { |
|
case RX_MODE_PPM_ONLY: |
|
if (ppm_decoded_channels > 0) { |
|
/* copy channel data */ |
|
system_state.rc_channels = ppm_decoded_channels; |
|
for (unsigned i = 0; i < ppm_decoded_channels; i++) |
|
system_state.rc_channel_data[i] = ppm_buffer[i]; |
|
got_input = true; |
|
} |
|
break; |
|
|
|
case RX_MODE_SPEKTRUM_6: |
|
case RX_MODE_SPEKTRUM_7: |
|
got_input = mixer_get_spektrum_input(); |
|
break; |
|
|
|
case RX_MODE_FUTABA_SBUS: |
|
got_input = mixer_get_sbus_input(); |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
if (got_input) { |
|
mixer_input_drops = 0; |
|
system_state.fmu_report_due = true; |
|
} else { |
|
/* |
|
* No data; count the 'frame drops' and once we hit the limit |
|
* assume that we have lost input. |
|
*/ |
|
if (mixer_input_drops < MIXER_INPUT_DROP_LIMIT) { |
|
mixer_input_drops++; |
|
|
|
/* if we hit the limit, stop pretending we have input and let the FMU know */ |
|
if (mixer_input_drops == MIXER_INPUT_DROP_LIMIT) { |
|
system_state.rc_channels = 0; |
|
system_state.fmu_report_due = true; |
|
} |
|
} |
|
} |
|
}
|
|
|